CN116885250A - 基于水凝胶包囊的植入燃料电池及其制备方法 - Google Patents

基于水凝胶包囊的植入燃料电池及其制备方法 Download PDF

Info

Publication number
CN116885250A
CN116885250A CN202310505302.3A CN202310505302A CN116885250A CN 116885250 A CN116885250 A CN 116885250A CN 202310505302 A CN202310505302 A CN 202310505302A CN 116885250 A CN116885250 A CN 116885250A
Authority
CN
China
Prior art keywords
bacterial cellulose
film
solution
placing
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310505302.3A
Other languages
English (en)
Inventor
刘树敏
陈佳
孙金鹏
张莉英
尹明
李源欣
王晓蓓
贾亚洲
刘巧宾
王艳杰
孔祥霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Institute of Aerospace Engineering
Original Assignee
North China Institute of Aerospace Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Institute of Aerospace Engineering filed Critical North China Institute of Aerospace Engineering
Priority to CN202310505302.3A priority Critical patent/CN116885250A/zh
Publication of CN116885250A publication Critical patent/CN116885250A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microbiology (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Biochemistry (AREA)
  • Inert Electrodes (AREA)

Abstract

本发明提出了一种基于水凝胶包囊的植入燃料电池及其制备方法,所述燃料电池,包括植入器件的外表面沉积有多孔镀层,多孔镀层的外表面由阳极区域和阴极区域组成,阳极区域包裹有阳极膜,阴极区域包裹有阴极膜。多孔镀层通过电化学循环伏安法在植入器件表面进行双金属共沉积形成。本发明提高了燃料电池的功率密度,可达到6.6μW/cm2,具有良好的生物相容性和长期稳定性。

Description

基于水凝胶包囊的植入燃料电池及其制备方法
技术领域
本发明涉及燃料电池技术领域,特别是指一种基于水凝胶包囊的植入燃料电池及其制备方法。
背景技术
随着微型植入器件的发展,如生物传感器、微纳机器人药物、脑机接口等,高度小型化的植入电源亟待解决。葡萄糖燃料电池的电极膜可以分为酶、微生物、非生物催化电极膜。酶和微生物电极膜催化效率高,但存在感染风险和易失活等缺点。非生物催化电极膜存在催化选择性差和活性低等缺点,但这些劣势已被其稳定性和微机电系统集成性所弱化。植入体表面非生物催化葡萄糖燃料电池利用植入体的表面作为电池电极,是微小型植入器件的理想选择。目前植入体表面非生物催化葡萄糖燃料电池虽然可以将电池的体积缩小到微纳尺度,但是即使在不考虑复杂的体内环境的情况下,其电池的功率密度小和长期稳定性也没有得到根本解决。
已有的植入燃料电池,如采用碳纳米管/纳米金属/水凝胶直接附在植入器件表面作为阳极膜,存在碳纳米管毒性较大,易脱落,生物相容性差等问题,而且需要向水凝胶上负载碳纳米管,容易堵塞水凝胶的网孔结构,影响阳极膜的离子导电性,同时也使阳极膜的制备工艺复杂化,而且功率密度较低。
发明内容
本发明提出一种基于水凝胶包囊的植入燃料电池及其制备方法,提高了燃料电池的功率密度,可达到6.6μW/cm2,具有良好的生物相容性和长期稳定性。
本发明的技术方案是这样实现的:基于水凝胶包囊的植入燃料电池,包括植入器件,植入器件的外表面沉积有多孔镀层,多孔镀层的外表面由阳极区域和阴极区域组成,阳极区域包裹有阳极膜,阴极区域包裹有阴极膜。
进一步地,阳极膜为纳米贵金属/细菌纤维素复合膜,阳极膜为细菌纤维素膜,纳米贵金属包括铂、金、钌和铑。
进一步地,纳米贵金属/细菌纤维素复合膜的电导率在4.5-5.5s/cm。
进一步地,阳极膜和阴极膜的厚度均为2-3mm。
进一步地,多孔镀层为多孔铂金属层。
基于水凝胶包囊的植入燃料电池的制备方法,包括以下步骤:
(1)在植入器件表面通过电化学循环伏安法进行双金属共沉积,在植入器件表面形成多孔镀层;
(2)在多孔镀层的阳极区域包裹阳极膜,多孔镀层的阴极区域包裹阴极膜。
进一步地,步骤(1)中,双金属共沉积的方法如下:将植入器件置于硫酸铜和氯铂酸的混合溶液中,硫酸铜和氯铂酸的浓度均为0.1mol/L,电化学循环伏安法的参数为:500-1000cycles,50mV·s-1,1.40~-0.40V vs.SCE。铜一直处于沉积-溶解的状态,因此植入器件表面形成了多孔铂金属层。
进一步地,步骤(2)中,阳极膜为纳米贵金属/细菌纤维素复合膜,纳米贵金属/细菌纤维素复合膜的制备方法如下:
1)将细菌纤维素膜先置于氯铂酸溶液中进行吸附,然后置于硼氢化钠溶液中,加热搅拌反应,反应后清洗;
2)将步骤1)处理后的细菌纤维素置于四氯金酸溶液中进行吸附,然后置于硼氢化钠溶液中,加热搅拌反应,反应后清洗;
3)将步骤2)处理后的细菌纤维素置于五氯钌酸钾溶液中进行吸附,然后置于硼氢化钠溶液中,加热搅拌反应,反应后清洗;
4)将步骤3)处理后的细菌纤维素置于氯铑酸钾溶液中进行吸附,然后置于硼氢化钠溶液中,加热搅拌反应,反应后清洗,得到纳米贵金属/细菌纤维素复合膜,纳米贵金属/细菌纤维素复合膜的电导率在4.5-5.5s/cm;
进一步地,步骤1)-4)中,氯铂酸溶液、四氯金酸溶液、五氯钌酸钾溶液、氯铑酸钾溶液的浓度均为50mM(mM为mmol/L),吸附时间为3h;硼氢化钠溶液的浓度为1mol/L,加热温度为40℃,反应时间为3h。
进一步地,步骤1)中,细菌纤维素膜需先进行预处理,预处理的方法如下:用去离子水漂洗细菌纤维素膜,然后将洗净的细菌纤维素膜置于NaOH溶液中,水浴加热,再用去离子水漂洗至中性。
本发明的有益效果:
本发明在植入电极表面沉积多孔镀层,然后在多孔镀层的上表面包裹纳米贵金属/细菌纤维素复合膜作为阳极膜,多孔镀层的剩余面包裹细菌纤维素膜作为阴极膜,提高了燃料电池的功率密度,可达到6.6μW/cm2,具有良好的生物相容性。
另外,植入器件的外表面若为同种金属,如均为铂金属,则无法形成燃料电池所需的电势差,而本申请在植入器件表面沉积多孔铂金属层后,通过阳极膜和阴极膜的包裹,实现植入器件和燃料电池的一体化。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为实施例1的PtNPs/BC的电镜图一;
图2为实施例1的PtNPs/BC的电镜图二;
图3为实施例1的PtNPs/BC的电镜图三;
图4为实施例1的燃料电池的开路电压测试图;
图5为实施例1的燃料电池的功率密度测试图;
图6为BC和PtNPs/BC对骨髓干细胞OD值;
图7为实施例1的燃料电池的功率密度稳定性测试图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,基于水凝胶包囊的植入燃料电池,包括植入器件,植入器件的外表面沉积有多孔镀层,多孔镀层为多孔铂金属层。多孔镀层的外表面由阳极区域和阴极区域组成,阳极区域包裹有阳极膜,阴极区域包裹有阴极膜,如植入器件为六面体结构,多孔镀层的上表面包裹有阳极膜,多孔镀层的剩余面(周侧壁以及下表面)均包裹有阴极膜。阳极膜为纳米贵金属/细菌纤维素复合膜,阳极膜为细菌纤维素膜,纳米贵金属包括铂、金、钌和铑。阳极膜和阴极膜的厚度均为2-3mm。
基于水凝胶包囊的植入燃料电池的制备方法,包括以下步骤:
1、制备阳极膜
1)细菌纤维素膜(BC)预处理:用去离子水将厚度约为2mm的整张细菌纤维素膜漂洗数次,并用pH试纸测试漂洗液的pH,让pH值稳定在5.8-6.5的范围内;将冲洗干净的细菌纤维素膜置于0.1mol/L的NaOH溶液中,水浴90℃,加热1h,再用离子水反复漂洗至中性;最后利用刀具将洗好的细菌纤维素膜切成若干直径为1.5cm的小圆片,放到PBS溶液中备用;
2)纳米贵金属/细菌纤维素复合膜(PtNPs/BC)的制备:将步骤1)预处理后的细菌纤维素膜置于50mM的氯铂酸的水溶液中吸附3h,然后将其置于1mol/L的硼氢化钠的水溶液中,在40℃,磁子搅拌的情况下,反应3h,最后用去离子水洗净,反复离心;
重复上述步骤,将氯铂酸的水溶液依次替换成50mM的四氯金酸的水溶液、50mM的五氯钌酸钾的水溶液、50mM的氯铑酸钾的水溶液,从而依次完成铂、金、钌和铑四种贵金属的负载,得到纳米贵金属/细菌纤维素复合膜,使其电导率达到5s/cm左右。
2、燃料电池的制备
(1)在植入器件表面通过电化学循环伏安法进行双金属共沉积,具体方法如下:将植入器件置于硫酸铜和氯铂酸的混合水溶液中,硫酸铜和氯铂酸的浓度均为0.1mol/L,电化学循环伏安法的参数为:500cycles,50mV·s-1,1.40V vs.SCE,在植入器件表面形成多孔铂金属层;
(2)在多孔铂金属层上表面包裹步骤2)制备的纳米贵金属/细菌纤维素复合膜,纳米贵金属/细菌纤维素复合膜作为阳极膜,多孔镀层的剩余面包裹步骤1)预处理后的细菌纤维素膜,该细菌纤维素膜作为阴极膜。
有些植入器件的外壳为铂金属,因此本实施例中的燃料电池以方形铂片作为植入器件。
本实施例制备的PtNPs/BC的电镜图如图1、2和3所示,从图中可以看出,纳米贵金属/细菌纤维素复合膜具有多层叠层形态,而且细菌纤维素上载有纳米贵金属(图3)。
对实施例的燃料电池进行开路电压和功率密度的测试,测试方法如下:将负载和燃料电池串联,通过改变负载的阻值,在和负载并联的万用表上获得电压,在和负载串联的万用表上获得电流。测试的溶液体系:含有5mM葡萄糖的PBS溶液(pH=7.5);氧气和氮气混合气体的流量为0.5L/min,氧气浓度为7.0%氧饱和。
图4为本实施例制备的燃料电池的开路电压测试图,从图中可以看出,PtNPs/BC的开路电压提高到了0.8V以上。
图5为本实施例制备的燃料电池的功率密度测试图,从图中可以看出,功率密度可以达到6.6μW/cm2
图7为燃料电池的功率密度稳定性测试图,从图中可以看出,功率密度30天降低了5%左右,具有长期稳定性。
图6为BC和PtNPs/BC两种电极膜对骨髓干细胞OD值的影响,也就是CCK-8的细胞增殖实验,对BC、PtNPs/BC两种电极膜进行了评估,和骨髓干细胞进行了共培养,分别测定了1、3和5天,5天以后,PtNPs/BC的细胞增值率是BC的97%,良好的生物相容性源于细菌纤维对PtNPs良好的固定能力和PtNPs的化学惰性。
实施例2
本实施例与实施例1基本相同,不同之处在于:电化学循环伏安法的参数为:1000cycles,50mV·s-1,-0.40V vs.SCE。
实施例3
本实施例与实施例1基本相同,不同之处在于:在植入器件表面通过电化学循环伏安法进行多金属共沉积,在植入器件表面形成多孔镀层,植入器件的上表面,电化学循环伏安法的参数为:800cycles,50mV·s-1,1.0V vs.SCE。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.基于水凝胶包囊的植入燃料电池,其特征在于:包括植入器件表面壳体,植入器件的外表面沉积有多孔镀层,多孔镀层的外表面由阳极区域和阴极区域组成,阳极区域包裹有阳极膜,阴极区域包裹有阴极膜。
2.根据权利要求1所述的基于水凝胶包囊的植入燃料电池,其特征在于:阳极膜为纳米贵金属/细菌纤维素复合膜,阳极膜为细菌纤维素膜,纳米贵金属包括铂、金、钌和铑。
3.根据权利要求2所述的基于水凝胶包囊的植入燃料电池,其特征在于:纳米贵金属/细菌纤维素复合膜的电导率在4.5-5.5s/cm。
4.根据权利要求1-3之一所述的基于水凝胶包囊的植入燃料电池,其特征在于:阳极膜和阴极膜的厚度均为2-3mm。
5.根据权利要求1-3之一所述的基于水凝胶包囊的植入燃料电池,其特征在于:多孔镀层为多孔铂金属层。
6.基于水凝胶包囊的植入燃料电池的制备方法,其特征在于,包括以下步骤:
(1)在植入器件表面通过电化学循环伏安法进行双金属共沉积,在植入器件表面形成多孔镀层;
(2)在多孔镀层的阳极区域包裹阳极膜,多孔镀层的阴极区域包裹阴极膜。
7.根据权利要求6所述的制备方法,其特征在于,步骤(1)中,双金属共沉积的方法如下:将植入器件置于硫酸铜和氯铂酸的混合溶液中,硫酸铜和氯铂酸的浓度均为0.1mol/L,电化学循环伏安法的参数为:500-1000cycles,50mV·s-1,1.40~-0.40V vs.SCE。
8.根据权利要求6或7所述的制备方法,其特征在于,步骤(2)中,阳极膜为纳米贵金属/细菌纤维素复合膜,纳米贵金属/细菌纤维素复合膜的制备方法如下:
1)将细菌纤维素膜先置于氯铂酸溶液中进行吸附,然后置于硼氢化钠溶液中,加热搅拌反应,反应后清洗;
2)将步骤1)处理后的细菌纤维素置于四氯金酸溶液中进行吸附,然后置于硼氢化钠溶液中,加热搅拌反应,反应后清洗;
3)将步骤2)处理后的细菌纤维素置于五氯钌酸钾溶液中进行吸附,然后置于硼氢化钠溶液中,加热搅拌反应,反应后清洗;
4)将步骤3)处理后的细菌纤维素置于氯铑酸钾溶液中进行吸附,然后置于硼氢化钠溶液中,加热搅拌反应,反应后清洗,得到纳米贵金属/细菌纤维素复合膜,纳米贵金属/细菌纤维素复合膜的电导率在4.5-5.5s/cm。
9.根据权利要求8所述的制备方法,其特征在于,步骤1)-4)中,氯铂酸溶液、四氯金酸溶液、五氯钌酸钾溶液、氯铑酸钾溶液的浓度均为50mM,吸附时间为3h;硼氢化钠溶液的浓度为1mol/L,加热温度为40℃,反应时间为3h。
10.根据权利要求8所述的制备方法,其特征在于,步骤1)中,细菌纤维素膜需先进行预处理,预处理的方法如下:用去离子水漂洗细菌纤维素膜,然后将洗净的细菌纤维素膜置于NaOH溶液中,水浴加热,再用去离子水漂洗至中性。
CN202310505302.3A 2023-05-06 2023-05-06 基于水凝胶包囊的植入燃料电池及其制备方法 Pending CN116885250A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310505302.3A CN116885250A (zh) 2023-05-06 2023-05-06 基于水凝胶包囊的植入燃料电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310505302.3A CN116885250A (zh) 2023-05-06 2023-05-06 基于水凝胶包囊的植入燃料电池及其制备方法

Publications (1)

Publication Number Publication Date
CN116885250A true CN116885250A (zh) 2023-10-13

Family

ID=88253612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310505302.3A Pending CN116885250A (zh) 2023-05-06 2023-05-06 基于水凝胶包囊的植入燃料电池及其制备方法

Country Status (1)

Country Link
CN (1) CN116885250A (zh)

Similar Documents

Publication Publication Date Title
Cornejo et al. Surface modification for enhanced biofilm formation and electron transport in shewanella anodes
Kerzenmacher et al. Energy harvesting by implantable abiotically catalyzed glucose fuel cells
Kloke et al. Cyclic electrodeposition of PtCu alloy: facile fabrication of highly porous platinum electrodes
Kloke et al. Porous platinum electrodes fabricated by cyclic electrodeposition of PtCu alloy: application to implantable glucose fuel cells
US20130230744A1 (en) Electrode for microbial fuel cell and microbial fuel cell using the same
KR20020042650A (ko) 연료전지용 촉매화 다공성 탄소 전극 제조 방법
JP7199815B2 (ja) 電気化学デバイスおよびその製造方法
Shen et al. Two-dimensional graphene paper supported flexible enzymatic fuel cells
Köhler et al. Performance loss of a Pt‐based implantable glucose fuel cell in simulated tissue and cerebrospinal fluids
Priya et al. CuO microspheres modified glassy carbon electrodes as sensor materials and fuel cell catalysts
Frei et al. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids
CN114122437B (zh) 可植入大脑的柔性纤维生物燃料电池及其制备方法和应用
Jeon et al. High performance of the flow-type one-compartment hydrogen peroxide fuel cell using buckypaper and narrow fuel pathway under physiological conditions
CN116885250A (zh) 基于水凝胶包囊的植入燃料电池及其制备方法
Wan et al. A single-liquid miniature biofuel cell with boosting power density via gas diffusion bioelectrodes
Moeini et al. Surface-orientated platinum nanoparticles electrodeposited on a carbon substrate as a high performance electrocatalyst for glucose oxidation reaction in alkaline media
CN116099566A (zh) 铂掺杂改性钴基催化剂的制备方法
WO2019034189A1 (en) GALVANIC SYSTEM WITH INCREASED OUTPUT VOLTAGE AND METHOD FOR INCREASING THE OUTPUT VOLTAGE OF THE GALVANIC SYSTEM
CN109453808A (zh) 一种三维多级孔洞的石墨烯/聚吡咯复合材料的制备方法及其应用
CN113707891A (zh) 一种自支撑电极基底材料及基于其的双室酶生物燃料电池
Moeini et al. A Nickel Sublayer: An Improvement in the Electrochemical Performance of Platinum-Based Electrocatalysts as Anodes in Glucose Alkaline Fuel Cells
Hosseini et al. Synthesis and characterization of palladium nanoparticles immobilized on ZrO 2 nanotubes as a new highly active electrode for methanol electro-oxidation
Yin et al. A high-power glucose fuel cell for potential application in implant surfaces
Lim et al. Glucose oxidation on gold-modified copper electrode
EP4349480A1 (en) Catalyst, method for producing catalyst, and intermediate product

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination