CN116490638A - 包覆切削工具 - Google Patents

包覆切削工具 Download PDF

Info

Publication number
CN116490638A
CN116490638A CN202280007688.9A CN202280007688A CN116490638A CN 116490638 A CN116490638 A CN 116490638A CN 202280007688 A CN202280007688 A CN 202280007688A CN 116490638 A CN116490638 A CN 116490638A
Authority
CN
China
Prior art keywords
layer
hard coating
nitride
metal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280007688.9A
Other languages
English (en)
Inventor
那须宣仁
佐佐木智也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Moldino Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moldino Tool Engineering Ltd filed Critical Moldino Tool Engineering Ltd
Publication of CN116490638A publication Critical patent/CN116490638A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • C23C14/0658Carbon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

包覆切削工具具备基材和硬质皮膜。硬质皮膜具有:b层,被配置在基材之上;c层,所述c层为被配置在b层之上的层叠皮膜,并且为c1层和c2层分别以50nm以下的膜厚交替层叠的层叠皮膜,所述c1层为含有Al和Cr的氮化物或碳氮化物,所述c2层为含有Ti和Si的氮化物或碳氮化物;以及d层,被配置在c层之上,并且为TiSi的氮化物或碳氮化物。在c层中,相对于金属(包括半金属)元素和非金属元素的总量,含有0.10原子%以下的Ar。在将金属(包括半金属)元素、氮、氧、碳和Ar的合计设为100原子%时,硬质皮膜的氮原子比率A与金属(包括半金属)元素的原子比率B满足1.02<A/B的关系。

Description

包覆切削工具
技术领域
本发明涉及包覆切削工具。
本申请基于2021年3月24日在日本申请的专利申请2021-049708号要求优先权,并将其内容援用于此。
背景技术
以往,作为提高切削工具寿命的技术,采用了将由各种陶瓷构成的硬质皮膜包覆在切削工具表面的表面处理技术。近年来,广泛应用例如像专利文献1那样设置有以纳米级的膜厚交替层叠的层叠皮膜的包覆切削工具。
专利文献1:日本专利公开2006-152321号公报
根据本发明人的研究,确认到以往提出的层叠结构的包覆切削工具在耐久性上有改善的余地。
发明内容
本发明的一方式为包覆切削工具,其特征在于,
具备基材和形成在所述基材上的硬质皮膜,
所述硬质皮膜具有:
b层,被配置在所述基材之上,由氮化物或碳氮化物构成;
c层,所述c层为被配置在所述b层之上的层叠皮膜,并且为c1层和c2层分别以50nm以下的膜厚交替层叠的层叠皮膜,所述c1层为含有Al和Cr的氮化物或碳氮化物,所述c2层为含有Ti和Si的氮化物或碳氮化物;以及
d层,被配置在所述c层之上,并且为TiSi的氮化物或碳氮化物,
在所述c层中,相对于金属(包括半金属)元素和非金属元素的总量,含有0.10原子%以下的Ar,在将金属(包括半金属)元素、氮、氧、碳和Ar的合计设为100原子%时,所述硬质皮膜的氮原子比率A与金属(包括半金属)元素的原子比率B满足1.02<A/B的关系,所述c层为面心立方晶格结构。
根据本发明,能够提供耐久性优异的包覆切削工具。
附图说明
图1是表示样本No.1的选区电子衍射图案及其强度分布的一例。
图2是表示样本No.2的选区电子衍射图案及其强度分布的一例。
图3是表示样本No.6的选区电子衍射图案及其强度分布的一例。
具体实施方式
本实施方式的包覆切削工具具有基材和形成在基材上的硬质皮膜。硬质皮膜从基材侧起依次具有由氮化物或碳氮化物构成的b层、由层叠皮膜构成的c层和由TiSi的氮化物或碳氮化物构成的d层。以下,对各层进行详细说明。
在本实施方式的包覆切削工具中,基材没有特别限定,优选以强度和韧性优异的WC-Co基硬质合金为基材。
本实施方式所涉及的b层是被配置在基材之上的氮化物或碳氮化物。b层是提高基材与作为层叠皮膜的c层的密接性的基底层。由于被配置在基材之上的b层是氮化物或碳氮化物,因此成为基材与硬质皮膜的密接性优异的包覆切削工具。b层优选为耐热性和耐磨损性优异的氮化物。另外,为了提高与作为层叠皮膜的c层的密接性,b层优选为选自Al、Cr及Ti中的一种或两种以上的元素的氮化物或碳氮化物。优选地,在b层中,相对于金属(包括半金属。以下同样)元素的总量,Al为50原子%以上且70原子%以下。b层的晶体结构优选为面心立方晶格结构。由此,在作为设置于b层之上的层叠皮膜的c层中,c层的微观组织中含有的hcp结构的AlN会减少。通过减少脆弱的hcp结构的AlN,从而提高包覆切削工具的耐久性。b层只要是氮化物或碳氮化物,也可以由组成不同的多个层构成。
b层优选为比c层整体厚的皮膜。b层的膜厚优选为c层的膜厚的2倍以上且10倍以下。b层的膜厚优选在0.2μm以上且4.0μm以下的范围内。
本实施方式所涉及的c层是设置在作为基底层的b层与后述的作为TiSi的氮化物或碳氮化物的d层之间的层叠皮膜。
具体而言,c层是c1层和c2层分别以50nm以下的膜厚交替层叠的层叠皮膜,该c1层为含有Al和Cr的氮化物或碳氮化物,该c2层为含有Ti和Si的氮化物或碳氮化物。AlCr系的氮化物或碳氮化物是耐热性优异的膜种类。TiSi系的氮化物或碳氮化物是耐磨损性优异的膜种类。通过将它们以纳米级交替层叠,硬质皮膜整体的密接性会提高,并且耐热性和耐磨损性优异。c层优选为耐热性优异的氮化物。
c层整体的膜厚优选在0.05μm以上且2.0μm以下的范围内。
c1层为含有Al和Cr的氮化物或碳氮化物。优选地,在c1层中,相对于金属元素的总量,含有50原子%以上的Al。优选地,在c1层中,相对于金属元素的总量,Al和Cr的合计含有比率为80原子%以上。c1层可以含有c2层中含有的Ti和Si。
c2层为含有Ti和Si的氮化物或碳氮化物。优选地,在c2层中,相对于金属元素的总量,Ti为50原子%以上。优选地,在c2层中,相对于金属元素的总量,Si为10原子%以上。c2层可以含有c1层中含有的Al和Cr。
优选地,在c层的平均组成中,相对于金属元素的总量,Al、Ti和Cr的合计为80原子%以上。优选地,在c层的平均组成中,相对于金属元素的总量,Al的含有比率最大。优选地,在c层的平均组成中,相对于金属元素的总量,Al为30原子%以上且50原子%以下。优选地,在c层的平均组成中,继Al之后Ti或Cr的含有比率较大。优选地,在c层的平均组成中,相对于金属元素的总量,Ti和Cr的合计为50原子%以上且80原子%以下。
优选地,在c层的平均组成中,相对于金属元素的总量,Ti为15原子%以上且40原子%以下。优选地,在c层的平均组成中,相对于金属元素的总量,Cr为15原子%以上且40原子%以下。优选地,在c层的平均组成中,相对于金属元素的总量,Si为3原子%以上且20原子%以下。优选地,在c层的平均组成中,相对于金属元素的总量,Si为5原子%以上。优选地,在c层的平均组成中,相对于金属元素的总量,Si为15原子%以下。
c层可以含有除了Al、Ti、Cr和Si以外的金属元素。例如,以提高耐磨损性、耐热性等为目的,也可以含有选自元素周期表4a族元素、5a族元素、6a族元素以及B、Y、Yb、Cu中的一种或两种以上的元素。这些元素是为了提高包覆切削工具的皮膜特性而通常含有的元素,可以在不使包覆切削工具的耐久性显著降低的范围内进行添加。但是,如果除了Al、Ti、Cr和Si以外的金属元素的含有比率过大,则有c层的耐久性降低的情况。因此,在c层含有除了Al、Ti、Cr和Si以外的金属元素时,其合计含有比率优选为15原子%以下,更优选为10原子%以下。
在c层中,在将金属(包括半金属)元素、氮、氧、碳和Ar的合计设为100原子%时,所述硬质皮膜的氮原子比率A与金属(包括半金属)元素的原子比率B满足1.02<A/B的关系。由此,层叠皮膜富含N,在微观水平上形成氮化物,hcp结构的AlN变少。另外,因结晶性提高而与b层、d层的界面的晶体结构匹配,硬质皮膜整体的密接性会提高。c层优选为1.05<A/B。但是,若N过多,则硬质皮膜的残留压缩应力过高,硬质皮膜容易发生自破坏。因此,c层优选为A/B<1.20。进一步地,c层优选为A/B<1.12。更进一步地,c层优选为A/B<1.10。
在c层中,相对于金属(包括半金属)元素和非金属元素的总量(硬质皮膜整体),含有0.1原子%以下的氩(Ar)。
由于溅射法通过使用氩离子对靶成分进行溅射而包覆硬质皮膜,因此在硬质皮膜中容易含有氩。如果进行硬质皮膜的晶体粒径的微粒化则硬度会提高,另一方面,晶界会变多,硬质皮膜中含有的氩在晶界富集。在硬质皮膜的氩含有比率过大的情况下,硬质皮膜的韧性会下降,难以发挥充分的工具性能。因此,在本实施方式中,为了降低在硬质皮膜的晶界富集的氩,使c层含有0.1原子%以下的氩。在本实施方式中,并不特别限定氩(Ar)含有比率的下限。本实施方式所涉及的硬质皮膜由于通过溅射法包覆,因此可以含有0.02原子%以上的氩(Ar)。c层的氩含有比率优选为0.08原子%以下,更优选为0.05原子%以下。通过将氩含有比率设为上述范围,能够进一步提高c层的机械特性。
在本实施方式所涉及的硬质皮膜中,作为非金属元素,除了氮以外,有时还包括微量的氩、氧和碳。能够通过将金属(包括半金属)元素和氮、氧、碳、氩的含有比率设为100原子%来求出氩含有比率。
c层为面心立方晶格结构(fcc结构)。在本实施方式中,面心立方晶格结构是指在使用X射线衍射或透射型电子显微镜(TEM)的选区电子衍射图案等中,由面心立方晶格结构引起的衍射峰强度示出最大强度。因此,如果作为硬质皮膜整体而言由面心立方晶格结构引起的衍射峰强度示出最大强度,则即使在使用透射型电子显微镜(TEM)的微观分析中,局部包括密排六方结构(hcp结构)、非晶质相,硬质皮膜也为面心立方晶格结构。另一方面,由于由hcp结构引起的衍射峰强度为最大强度的硬质皮膜脆弱,因此在应用于包覆切削工具时有耐久性降低的趋势。本实施方式所涉及的硬质皮膜的晶体结构例如可以通过使用X射线衍射或透射型电子显微镜(TEM)的选区电子衍射图案等来确认。在硬质皮膜的被检面积小的情况下,有时难以通过X射线衍射来确定晶体结构。在这种情况下,也能够通过使用透射型电子显微镜(TEM)的选区电子衍射图案等来进行晶体结构的确定。本发明的硬质皮膜优选在选区电子衍射图案中不具有hcp结构的AlN的衍射图案。
d层是作为耐磨损性优异的膜种类的TiSi的氮化物或碳氮化物。由于d层为TiSi的氮化物或碳氮化物,因此纳米压痕硬度容易成为比40GPa高的硬度。更优选地,d层的纳米压痕硬度为42GPa以上。另外,对于TiSi的氮化物或碳氮化物而言,硬质皮膜的组织变得微细且硬质皮膜的硬度变高,并且耐热性也优异,还被赋予较高的残留压缩应力。因此,通过将TiSi的氮化物或碳氮化物的d层设置在层叠皮膜的上层,能够在高负荷的使用环境下显著改善包覆切削工具的耐久性。为了发挥作为TiSi的氮化物或碳氮化物的特性,d层的Ti含有比率优选为60原子%以上且95原子%以下。另外,d层的Si含有比率优选为5原子%以上且40原子%以下。d层优选为耐热性和耐磨损性优异的氮化物。d层的晶体结构优选为面心立方晶格结构。d层优选不含有非晶相。此外,根据需要,也可以在d层的上层设置其他层。
d层优选为比c层整体厚的皮膜。d层的膜厚优选为c层的膜厚的2倍以上且10倍以下。d层的膜厚优选在0.2μm以上且4.0μm以下的范围内。
在本实施方式所涉及的硬质皮膜的包覆中,优选在物理蒸镀法中应用通过对靶成分进行溅射来包覆硬质皮膜的溅射法。
物理蒸镀法对硬质皮膜赋予残留压缩应力,有耐缺损性优异的趋势。在物理蒸镀法中,电弧离子镀法有靶成分的离子化率高且硬质皮膜的密接性优异的趋势,因此被广泛应用。但是,电弧离子镀法由于靶成分因电弧放电而熔化,因此有如下趋势:包括在炉内的氧和碳的不可避免的杂质容易被引入到硬质皮膜中,难以得到氮含有比率高的硬质皮膜。
因此,通过应用不会使靶熔化的溅射法,从而有降低硬质皮膜中含有的氧和碳的不可避免的杂质的趋势。但是,在以往的DC溅射法和只对靶施加较高的电力的高输出功率溅射法中,由于靶成分的离子化率较低,因此硬质皮膜中形成的氮化物不够充分。因此,当在溅射法中还应用对靶依次施加电力的溅射法来改变待施加电力的靶时,优选设定对电力施加结束的靶和开始电力施加的靶这两个靶同时施加电力的时间。
通过利用这种溅射法进行包覆,从而在成膜中维持靶的离子化率高的状态,有硬质皮膜的结晶性较高且形成充分的氮化物的趋势。
另外,为了在硬质皮膜中形成充分的氮化物,电力脉冲的最大电力密度优选为0.5kW/cm2以上。但是,如果施加于靶的电力密度过大,则难以稳定地进行成膜。另外,在对电力施加结束的合金靶和开始电力施加的合金靶这两个合金靶同时施加电力的时间过短或过长时,靶的离子化不够充分,难以在硬质皮膜中形成充分的氮化物。因此,对电力施加结束的合金靶和开始电力施加的合金靶这两个合金靶同时施加电力的时间优选为5微秒以上且20微秒以下。为了提高靶成分的离子化率,优选使用三个以上的AlCr系合金靶和三个以上的TiSi系合金靶。
另外,优选通过将溅射装置的炉内温度设为430℃以上来实施预备放电,并且将导入到炉内的氮气的流量设为410sccm以上,将氩气的流量设为300sccm以上且450sccm以下。另外,优选将炉内压力设为0.6Pa~0.8Pa。为了提高氮的含量,通过在上述条件下进行包覆,从而降低硬质皮膜的氩和氧的含有比率,并且容易提高氮含有比率。另外,为了将硬质皮膜设为面心立方晶格结构,并且设为结晶性高的微粒组织,对成为基体的切削工具施加的负的偏置电压优选控制在-80V~-40V的范围。
下面,通过实施例及比较例来进一步具体说明本发明,但本发明并不限定于以下的实施例。
实施例1
在实施例1中,首先评价改变成膜条件后的层叠皮膜的物理性能。
<工具>
作为工具,准备了组成为WC(余量成分)-Co(8.0质量%)-Cr(0.5质量%)-Ta(0.3质量%)、WC平均粒度为0.5μm、硬度为93.6HRA(洛氏硬度、以JIS G 0202为基准测定的值)的硬质合金制的双刃球头立铣刀(工具直径0.8mm、株式会社MOLDINO制造)。
使用了能够搭载12台溅射蒸发源的溅射装置。将这些蒸镀源中的六个AlCr系合金靶(Al58%Cr40%Si2%数字为原子比率,以下同样)和六个TiSi系合金靶(Ti80%Si20%)作为蒸镀源设置在装置内。此外,使用尺寸为直径16cm、厚度12mm的靶。
将工具固定在溅射装置内的样品架上,并且对工具连接偏置电源。此外,偏置电源是与靶独立地对工具施加负的偏置电压的结构。工具以每分钟旋转三次的方式自转,并且通过固定夹具和样品架而公转。工具与靶表面之间的距离为100mm。
导入气体使用Ar和N2,从设置于溅射装置的气体供给口导入该导入气体。
<轰击处理>
对于样本No.1,首先在对工具包覆硬质皮膜之前,按照以下顺序对工具进行轰击处理。在通过溅射装置内的加热器使炉内温度成为430℃的状态下进行30分钟的加热。然后,对溅射装置的炉内进行真空排气,将炉内压力设为5.0×10-3Pa以下。并且,通过将Ar气体导入到溅射装置的炉内,将炉内压力调整为0.8Pa。并且,通过对工具施加-200V的直流偏置电压,从而利用Ar离子来实施工具的清洁(轰击处理)。
接着,在将炉内温度保持430℃的状态下,向溅射装置的炉内以400sccm导入Ar气体,之后以470sccm导入N2气体而将炉内压力设为0.70Pa。对工具施加-50V的直流偏置电压,对AlCr系合金靶施加0.6kW/cm2的最大电力密度,将电力的每一周期的放电时间设为0.8毫秒,将对AlCr系合金靶同时施加电力的时间设为10微秒。另外,对TiSi系合金靶施加1.5kW/cm2的最大电力密度,将电力的每一周期的放电时间设为3.6毫秒,将对TiSi系合金靶同时施加电力的时间设为10微秒。然后,对各个合金靶连续施加电力,包覆各自的膜厚为约4nm且总膜厚为约2μm的层叠皮膜。
对于样本No.2而言,在包覆层叠皮膜时,将N2气体的导入流量设为420sccm,将炉内压力设为0.62Pa,除此以外,与样本No.1相同。
对于样本No.3而言,在包覆层叠皮膜时,将N2气体的导入流量设为520sccm,将炉内压力设为0.78Pa,除此以外,与样本No.1相同。
对于样本No.4而言,在包覆层叠皮膜时,将N2气体的导入流量设为560sccm,将炉内压力设为0.83Pa,除此以外,与样本No.1相同。
对于样本No.5而言,在包覆层叠皮膜时,将N2气体的导入流量设为600sccm,将炉内压力设为0.88Pa,除此以外,与样本No.1相同。
对于样本No.6而言,在包覆层叠皮膜时,将N2气体的导入流量设为340sccm,将炉内压力设为0.57Pa,除此以外,与样本No.1相同。
对于样本No.7而言,在包覆层叠皮膜时,将N2气体的导入流量设为400sccm,将炉内压力设为0.60Pa,除此以外,与样本No.1相同。
使用纳米压痕测试仪(艾利奥尼克斯(株)制造ENT-2100)来测定硬度和弹性模量。
使用电子探针显微分析仪(株式会社日本电子制造JXA-8500F)附带的波长分散型电子探针显微分析(WDS-EPMA)来测定硬质皮膜的皮膜组成。测定条件为加速电压10kV、照射电流5×10-8A、引入时间10秒钟,对分析区域为直径1μm的范围测定五个点,通过其平均值求出硬质皮膜的金属含有比率以及金属成分和非金属成分的合计中的Ar含有比率。
[表1]
确认到样本No.1~5的氮含有比率较高且硬度和弹性模量较高。另一方面,确认到样本No.6的氮含有比率较低且硬度和弹性模量较低。另外,确认到与No.6、7相比,样本No.1~5的Ar含有比率也较少。
为了在微观水平上确认样本No.1、2、6的差异,进行了TEM分析。在加速电压120kV、选区区域φ750nm、照相机长度100cm、入射电子量5.0pA/cm2(荧光板上)的条件下,求出基于TEM的层叠皮膜的选区电子衍射图案。改变求出的选区电子衍射图案的亮度,求出强度分布。分析部位为膜厚方向上的中间部分。
在图1中示出样本No.1的选区电子衍射图案及其强度分布。在图2中示出样本No.2的选区电子衍射图案及其强度分布。在图3中示出样本No.6的选区电子衍射图案及其强度分布。
根据强度分布,确认到在样本No.6中大量含有hcp结构的AlN。对于样本No.6而言,由于氮较少而在微观水平上不能充分形成氮化物,推测hcp结构的AlN变多。由于脆弱的hcp结构的AlN增加,样本No.6的硬度和弹性模量变低。另外,推测因大量含有hcp结构的AlN而组织变得微细且Ar含有比率也变高。
另一方面,对于样本No.1、2而言,由于氮含有比率较高且在微观水平上充分形成有氮化物,因此在强度分布上不具有如样本No.6那样的hcp结构的AlN的峰值。对于样本No.2而言,在选区电子衍射图案的强度分布中,没有如样本No.6那样的hcp结构的AlN的峰值,但在选区电子衍射图案中稍微具有hcp结构的AlN。另一方面,对于样本No.1而言,在选区电子衍射图案中不具有hcp结构的AlN。由此,推测样本No.1的硬度和弹性模量高于样本No.2的硬度和弹性模量。
实施例2
在实施例2中,利用设置有在实施例1中评价的层叠皮膜的包覆切削工具进行切削评价。直至轰击处理为止与实施例1相同。
对于本实施例1,在轰击处理之后,在将炉内温度保持430℃的状态下,向溅射装置的炉内以400sccm导入Ar气体,之后以490sccm导入N2气体,将炉内压力设为0.72Pa。接着,对工具施加-50V的直流偏置电压,对AlCr系合金靶施加0.8kW/cm2的最大电力密度,将电力的每一周期的放电时间设为0.8毫秒,将对AlCr系合金靶同时施加电力的时间设为10微秒,包覆膜厚为约0.6μm的基底层。
接着,在将炉内温度保持430℃的状态下,向溅射装置的炉内以400sccm导入Ar气体,之后以470sccm导入N2气体,将炉内压力设为0.70Pa。接着,对工具施加-50V的直流偏置电压,对AlCr系合金靶施加0.6kW/cm2的最大电力密度,将电力的每一周期的放电时间设为0.8毫秒,将对AlCr系合金靶同时施加电力的时间设为10微秒。另外,对TiSi系合金靶施加1.5kW/cm2的最大电力密度,将电力的每一周期的放电时间设为3.6毫秒,将对TiSi系合金靶同时施加电力的时间设为10微秒。然后,对各个合金靶连续施加电力,包覆各自的膜厚为约4nm且总膜厚为约0.1μm的层叠皮膜。
接着,在将炉内温度保持430℃的状态下,向溅射装置的炉内以400sccm导入Ar气体,之后以200sccm导入N2气体,将炉内压力设为0.54Pa。对工具施加-50V的直流偏置电压,对TiSi系合金靶施加1.5kW/cm2的最大电力密度,将施加电力的每一周期的放电时间设为3.6毫秒,将对TiSi系合金靶同时施加电力的时间设为10微秒,包覆膜厚为约0.4μm的上层。
对于本实施例2而言,在包覆层叠皮膜时,将N2气体的导入流量设为420sccm,将炉内压力设为0.62Pa,除此以外,与本实施例1相同。
对于本实施例3而言,在包覆层叠皮膜时,将N2气体的导入流量设为520sccm,将炉内压力设为0.78Pa,除此以外,与样本No.1相同。
对于本实施例4而言,在包覆层叠皮膜时,将N2气体的导入流量设为560sccm,将炉内压力设为0.83Pa,除此以外,与样本No.1相同。
对于本实施例5而言,在包覆层叠皮膜时,将N2气体的导入流量设为600sccm,将炉内压力设为0.88Pa,除此以外,与样本No.1相同。
对于比较例1而言,在包覆层叠皮膜时,将N2气体的导入流量设为340sccm,将炉内压力设为0.57Pa,除此以外,与本实施例1相同。
对于比较例2而言,在包覆层叠皮膜时,将N2气体的导入流量设为400sccm,将炉内压力设为0.60Pa,除此以外,与样本No.1相同。
<<切削条件>>
对于制作出的包覆切削工具,在以下所示的切削条件下进行切削试验。在表2中示出切削试验结果。切削条件的详细情况如下所述。
<加工条件>
·切削方法:底面切削
·工件:STAVAX(52HRC)
·使用工具:双刃球头立铣刀(工具直径0.8mm颈部以下长度(首下長)5mm)
·切削深度:轴向0.04mm、径向0.04mm
·切削速度:60m/min
·单刃进给量:0.018mm/刃
·冷却液:干式加工
·切削距离:50m
[表2]
切削评价(VBMax(mm))
本实施例1 0.018
本实施例2 0.018
本实施例3 0.023
本实施例4 0.020
本实施例5 0.026
比较例1 0.026
比较例2 0.030
本实施例1~4与比较例1、2相比有最大磨损宽度较小且工具磨损稳定的趋势。由于层叠皮膜富含N且Ar较少,因此推定为抑制了工具损伤。虽然本实施例5和比较例1的最大磨损宽度相同,但本实施例5处于稳定的工具损伤状态。

Claims (1)

1.一种包覆切削工具,其特征在于,
具备基材和形成在所述基材上的硬质皮膜,
所述硬质皮膜具有:
b层,被配置在所述基材之上,由氮化物或碳氮化物构成;
c层,所述c层为被配置在所述b层之上的层叠皮膜,并且为c1层和c2层分别以50nm以下的膜厚交替层叠的层叠皮膜,所述c1层为含有Al和Cr的氮化物或碳氮化物,所述c2层为含有Ti和Si的氮化物或碳氮化物;以及
d层,被配置在所述c层之上,并且为TiSi的氮化物或碳氮化物,
在所述c层中,相对于包括半金属在内的金属元素和非金属元素的总量,含有0.10原子%以下的Ar,在将包括半金属在内的金属元素、氮、氧、碳和Ar的合计设为100原子%时,所述硬质皮膜的氮原子比率A与包括半金属在内的金属元素的原子比率B满足1.02<A/B的关系,所述c层为面心立方晶格结构。
CN202280007688.9A 2021-03-24 2022-03-22 包覆切削工具 Pending CN116490638A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021-049708 2021-03-24
JP2021049708 2021-03-24
PCT/JP2022/012943 WO2022202729A1 (ja) 2021-03-24 2022-03-22 被覆切削工具

Publications (1)

Publication Number Publication Date
CN116490638A true CN116490638A (zh) 2023-07-25

Family

ID=83397411

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280007688.9A Pending CN116490638A (zh) 2021-03-24 2022-03-22 包覆切削工具

Country Status (6)

Country Link
US (1) US20230390829A1 (zh)
EP (1) EP4316707A1 (zh)
JP (1) JPWO2022202729A1 (zh)
KR (1) KR20230093316A (zh)
CN (1) CN116490638A (zh)
WO (1) WO2022202729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117305986A (zh) * 2023-11-29 2023-12-29 北京青禾晶元半导体科技有限责任公司 单晶碳化硅长晶原料、单晶碳化硅长晶方法及单晶碳化硅

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4373897B2 (ja) 2004-11-25 2009-11-25 日立ツール株式会社 硬質皮膜被覆部材及びその被覆方法
JP5303816B2 (ja) * 2009-10-01 2013-10-02 日立ツール株式会社 硬質皮膜被覆工具
KR102345375B1 (ko) * 2016-03-30 2021-12-29 가부시키가이샤 몰디노 피복 절삭 공구
EP3490745A4 (en) * 2016-08-01 2019-12-25 Mitsubishi Materials Corporation CUTTING TOOL COATED WITH A MULTILAYERED HARD FILM
WO2018100849A1 (ja) * 2016-11-29 2018-06-07 住友電工ハードメタル株式会社 表面被覆切削工具
JP7341821B2 (ja) 2019-09-25 2023-09-11 日東電工株式会社 透明導電性フィルムおよびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117305986A (zh) * 2023-11-29 2023-12-29 北京青禾晶元半导体科技有限责任公司 单晶碳化硅长晶原料、单晶碳化硅长晶方法及单晶碳化硅
CN117305986B (zh) * 2023-11-29 2024-03-29 北京青禾晶元半导体科技有限责任公司 单晶碳化硅长晶原料、单晶碳化硅长晶方法及单晶碳化硅

Also Published As

Publication number Publication date
WO2022202729A1 (ja) 2022-09-29
US20230390829A1 (en) 2023-12-07
JPWO2022202729A1 (zh) 2022-09-29
KR20230093316A (ko) 2023-06-27
EP4316707A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
CN108883481B (zh) 包覆切削工具
CN111511490B (zh) 包覆切削工具
WO2022172954A1 (ja) 被覆工具
CN110691662B (zh) 包覆切削工具
WO2009150887A1 (ja) 硬質皮膜層及びその形成方法
WO2019065397A1 (ja) 被覆切削工具
CN113613817B (zh) 包覆切削工具
JP3480086B2 (ja) 硬質層被覆切削工具
WO2021167087A1 (ja) 被覆工具
CN116490638A (zh) 包覆切削工具
JP2012228735A (ja) 耐摩耗性に優れる被覆工具およびその製造方法
CN113365768B (zh) 包覆切削工具
WO2019035219A1 (ja) 被覆切削工具
JP5035979B2 (ja) 高速ミーリング加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具およびその製造方法
WO2023022230A1 (ja) 被覆工具
JP2024047170A (ja) 被覆切削工具
WO2024048304A1 (ja) 被覆工具
JP2024075109A (ja) 被覆切削工具
JP2024027836A (ja) 被覆工具
CN113874143A (zh) 包覆切削工具

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination