CN116140940A - Method for machining functional hole of hydraulic shell in five-axis machining center - Google Patents
Method for machining functional hole of hydraulic shell in five-axis machining center Download PDFInfo
- Publication number
- CN116140940A CN116140940A CN202310276944.0A CN202310276944A CN116140940A CN 116140940 A CN116140940 A CN 116140940A CN 202310276944 A CN202310276944 A CN 202310276944A CN 116140940 A CN116140940 A CN 116140940A
- Authority
- CN
- China
- Prior art keywords
- hole
- machining
- functional hole
- axis
- functional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C3/00—Milling particular work; Special milling operations; Machines therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Milling Processes (AREA)
Abstract
Description
技术领域technical field
本发明属于功能孔加工技术领域,具体涉及一种五轴加工中心加工液压壳体功能孔的方法。The invention belongs to the technical field of functional hole machining, and in particular relates to a method for machining a hydraulic housing functional hole by a five-axis machining center.
背景技术Background technique
目前,我国民用航空产品需求量逐步增加,迫使民用航空制造业产能必须大幅提升。随着科研项目的增多,原有模式下的生产成本和加工时间不断增加,尤其是交付时间方面难于保证,民用航空液压类壳体零件作为液压设备上的关键零件,对产品总体功能和成本起着至关重要的作用。At present, the demand for civil aviation products in my country is gradually increasing, forcing the production capacity of the civil aviation manufacturing industry to be greatly increased. With the increase of scientific research projects, the production cost and processing time under the original model continue to increase, especially the delivery time is difficult to guarantee. As the key parts of hydraulic equipment, civil aviation hydraulic shell parts play a significant role in the overall function and cost of the product. play a vital role.
液压壳体作为飞行控制系统关键部件,运用航空航天铝材进行加工而成,结构特征复杂,功能孔相对都是深长孔,加工难度大,孔径大小、接刀位置及表面质量加工一次合格率差,需要返复调试。传统的加工方法生产合格率低,调试周期长,不能满足飞行控制系统迭代更新时效的要求。本发明主要优势在于产品无需装夹在工作台中心,通过五轴联动设备环绕切削功能配合非标定制刀具,在铣削机床上以车床的形式粗车、精车成型加工多个功能孔。实现产品质量稳定性,减少人为质量风险,降低生产成本,缩短生产周期,有显著的经济效益。As a key component of the flight control system, the hydraulic housing is processed by aerospace aluminum materials. The structural features are complex, and the functional holes are relatively long and deep. The processing is difficult, and the hole diameter, position of the tool and the surface quality are poorly processed once. , need to return to debugging. The traditional processing method has a low production pass rate and a long debugging cycle, which cannot meet the timeliness requirements of the iterative update of the flight control system. The main advantage of the invention is that the product does not need to be clamped in the center of the workbench, and the five-axis linkage equipment surrounds the cutting function and cooperates with non-standard custom tools to process multiple functional holes in the form of rough turning and finishing turning on the milling machine tool. Achieve product quality stability, reduce human quality risks, reduce production costs, shorten production cycles, and have significant economic benefits.
发明内容Contents of the invention
本发明的目的就在于为了解决上述问题而提供一种结构简单,设计合理的五轴加工中心加工液压壳体功能孔的方法。The object of the present invention is to provide a method for machining functional holes of a hydraulic housing by a five-axis machining center with a simple structure and a reasonable design in order to solve the above problems.
本发明通过以下技术方案来实现上述目的:The present invention achieves the above object through the following technical solutions:
一种五轴加工中心加工液压壳体功能孔的方法,该方法包括以下步骤:A method for machining a hydraulic casing function hole by a five-axis machining center, the method comprising the following steps:
步骤S1,于工作台表面固定待加工的壳体;Step S1, fixing the shell to be processed on the surface of the workbench;
步骤S2,基于五轴机床红外感应探针确定壳体的加工零点;Step S2, determining the machining zero point of the housing based on the infrared sensor probe of the five-axis machine tool;
步骤S3,基于特殊刀具,采用分层等高的横向车削加工方式,依次对待加工的壳体的每一个功能孔进行粗铣;Step S3, based on a special tool, adopting a layered and contoured horizontal turning method, and performing rough milling on each functional hole of the shell to be processed in turn;
步骤S4,对粗铣后的功能孔进行精加工,精铣设定距离后,采集精铣后的实测孔大小数据,调整刀具补偿后继续精铣该功能孔,重复该步骤,直至精铣每一待加工的功能孔。Step S4, finish machining the functional hole after rough milling, collect the measured hole size data after finishing milling after setting the distance, adjust the tool compensation and continue to finish milling the functional hole, repeat this step until every A functional hole to be processed.
作为本发明的进一步优化方案,在所述步骤S1中,所述工作台的表面固定连接有夹具工装,所述夹具工装通过固定组件将壳体固定,所述固定组件包括垫片与螺丝。As a further optimization solution of the present invention, in the step S1, the surface of the workbench is fixedly connected with a fixture tool, and the fixture tool fixes the housing through a fixing component, and the fixing component includes a washer and a screw.
作为本发明的进一步优化方案,在所述步骤S1中,所述壳体的工艺装夹面与夹具工装的面完全重合,且壳体的工艺装夹面的平面度小于等于0.01mm。As a further optimization solution of the present invention, in the step S1, the process clamping surface of the housing completely coincides with the surface of the jig, and the flatness of the process clamping surface of the housing is less than or equal to 0.01 mm.
作为本发明的进一步优化方案,在所述步骤S1中,所述固定组件以25N*M的力锁紧所述壳体。As a further optimization solution of the present invention, in the step S1, the fixing assembly locks the housing with a force of 25N*M.
作为本发明的进一步优化方案,在所述步骤S2中,检查红外感应探针的同轴度跳动后确定加工零点。As a further optimization solution of the present invention, in the step S2, the machining zero point is determined after checking the runout of the coaxiality of the infrared sensing probe.
作为本发明的进一步优化方案,在所述步骤S3中,采用10倍径内冷式阻尼减震刀杆、非标设计92°刀片槽、刀尖圆角R0.4且凸出刀杆外径范围1.5mm,配合镜面抛光刃口JC5000系列材质进行粗铣;且粗铣时,保持中心冷却流量30mpa。As a further optimization scheme of the present invention, in the step S3, a 10-fold diameter internally cooled damping and shock-absorbing cutter bar, a non-standard design of 92° insert groove, a rounded corner of the tool tip R0.4 and protruding from the outer diameter of the tool bar The range is 1.5mm, and the rough milling is carried out with the JC5000 series material of the mirror polished cutting edge; and during the rough milling, the central cooling flow rate is maintained at 30mpa.
作为本发明的进一步优化方案,在所述步骤S3中,当粗加工的功能孔为盲孔时,无论是切槽或粗镗孔,均为轴向分段作业。As a further optimization solution of the present invention, in the step S3, when the rough-machined functional hole is a blind hole, whether it is grooving or rough boring, it is an axial segmental operation.
作为本发明的进一步优化方案,加工深盲孔时,将空心刀具插入至孔内,采用70mpa的水压,冲洗10秒后,对孔内底层内壁进行粗铣。As a further optimization solution of the present invention, when machining a deep blind hole, insert a hollow tool into the hole, use a water pressure of 70mpa, rinse for 10 seconds, and then rough mill the inner wall of the bottom layer in the hole.
作为本发明的进一步优化方案,在所述步骤S4中,采用10倍径内冷式阻尼减震刀杆、非标设计92°刀片槽、刀尖圆角R0.2且凸出刀杆外径范围1.2mm,结合超微粒金刚石烧结体刀片进行精铣,且精铣时,保持中心冷却流量10mpa。As a further optimization scheme of the present invention, in the step S4, a 10-fold diameter internally cooled damping and shock-absorbing cutter bar, a non-standard design of 92° blade groove, a rounded corner of the tool tip R0.2 and protruding from the outer diameter of the tool bar The range is 1.2mm, combined with ultra-fine diamond sintered blades for fine milling, and during fine milling, the central cooling flow rate is maintained at 10mpa.
本发明的有益效果在于:本发明通过对粗车、精车工艺策略进行改进,在五轴立式加工中心用直线2轴(相对虚拟平面上的Z轴垂直相交的轴)边进行圆弧插补,边通过铣削主轴位置控制功能使车削刀具的刀尖对切削面进行垂直动作来进行车削加工。在没有车削功能的加工中心上,可进行车削加工对于偏心的工件进行车削加工;而且每个孔不需要安装在机器的旋转中心,一次装夹即可实现多个孔系的加工,灵活可靠;The beneficial effect of the present invention is that: the present invention improves the process strategy of rough turning and fine turning, and performs arc interpolation on the side of the five-axis vertical machining center with
本发明可以减少产品孔深长加工时的震动,功能孔与环形槽一次加工成型,接刀圆弧过度顺滑、加工质量好且生产效率高,而且适用于不同类型大小尺寸功能孔加工;The invention can reduce the vibration when the product hole is deep and long, and the functional hole and the annular groove are formed at one time.
本发明改变了传统思维方式,加工稳定性强,能适应大批量生产而保持其尺寸稳定性,控制指标数据有:功能孔直径保证公差在0/+0.012以内、多个同心孔同心度保证在0.02以内、内孔台阶面与孔心垂直度保证在0.01以内等等,优化技术融合创新的加工方法,是一种创新工艺;The invention changes the traditional way of thinking, has strong processing stability, and can adapt to mass production while maintaining its dimensional stability. The control index data includes: the diameter of the functional hole is guaranteed to be within 0/+0.012, and the concentricity of multiple concentric holes is guaranteed to be within 0.012. Within 0.02, the verticality between the step surface of the inner hole and the center of the hole is guaranteed to be within 0.01, etc., the optimization technology combined with the innovative processing method is an innovative process;
该发明可以有效的解决深长孔加工时存在精尺寸难保证,功能孔同轴度及大小不稳定,切削速度效率慢,接刀台阶等问题。The invention can effectively solve the problems of difficulty in guaranteeing precise dimensions, unstable coaxiality and size of functional holes, slow cutting speed and efficiency, and steps for tool connection during deep and long hole machining.
附图说明Description of drawings
图1是本发明的壳体与工作台配合的结构示意图;Fig. 1 is the structural schematic diagram that housing of the present invention cooperates with workbench;
图2是本发明的图1的俯视结构示意图;Fig. 2 is a top view structural schematic diagram of Fig. 1 of the present invention;
图3是本发明方法的流程示意图;Fig. 3 is a schematic flow sheet of the inventive method;
图4是本发明的车削原理示意图;Fig. 4 is a schematic diagram of the turning principle of the present invention;
图5是本发明粗车切削轨迹第一段加工示意图;Fig. 5 is a schematic diagram of the processing of the first segment of the rough turning cutting track of the present invention;
图6是本发明粗车切削轨迹第二段加工示意图;Fig. 6 is a schematic diagram of the processing of the second segment of the rough turning cutting track of the present invention;
图7是本发明10倍径内冷式阻尼减震刀杆示意图。Fig. 7 is a schematic diagram of a 10-times-diameter inner-cooled damping and vibration-absorbing tool holder of the present invention.
图中:1、工作台;2、夹具工装;3、壳体;4、固定组件。In the figure: 1. Workbench; 2. Fixture tooling; 3. Shell; 4. Fixed components.
具体实施方式Detailed ways
下面结合附图对本申请作进一步详细描述,有必要在此指出的是,以下具体实施方式只用于对本申请进行进一步的说明,不能理解为对本申请保护范围的限制,该领域的技术人员可以根据上述申请内容对本申请作出一些非本质的改进和调整。The application will be described in further detail below in conjunction with the accompanying drawings. It is necessary to point out that the following specific embodiments are only used to further illustrate the application, and cannot be interpreted as limiting the protection scope of the application. The above application content makes some non-essential improvements and adjustments to this application.
实施例1Example 1
如图1至图7所示,一种五轴加工中心加工液压壳体功能孔的方法,该方法包括以下步骤:As shown in Figures 1 to 7, a method for machining a functional hole of a hydraulic housing with a five-axis machining center, the method includes the following steps:
步骤S1,于工作台1表面固定待加工的壳体3;Step S1, fixing the
步骤S2,基于五轴机床红外感应探针确定壳体3的加工零点;Step S2, determining the machining zero point of the
步骤S3,基于特殊刀具,采用分层等高的横向车削加工方式,依次对待加工的壳体3的每一个功能孔进行粗铣;Step S3, based on a special tool, adopting a layered and contoured horizontal turning method, and performing rough milling on each functional hole of the
步骤S4,对粗铣后的功能孔进行精加工,精铣设定距离后,采集精铣后的实测孔大小数据,调整刀具补偿后继续精铣该功能孔,重复该步骤,直至精铣每一待加工的功能孔。Step S4, finish machining the functional hole after rough milling, collect the measured hole size data after finishing milling after setting the distance, adjust the tool compensation and continue to finish milling the functional hole, repeat this step until every A functional hole to be processed.
进一步的,在所述步骤S1中,所述工作台1的表面固定连接有夹具工装2,所述夹具工装2通过固定组件4将壳体3固定,所述固定组件4包括垫片与螺丝。一般来讲,可以选用垫片与M6螺丝来配合壳体3与夹具工装2固定,该夹具工装2至少设置一组可与壳体3贴合的面。Further, in the step S1, the surface of the
再进一步的,在所述步骤S1中,所述壳体3的工艺装夹面与夹具工装2的面完全重合,且壳体3的工艺装夹面的平面度小于等于0.01mm。Still further, in the step S1, the process clamping surface of the
再进一步的,在所述步骤S1中,所述固定组件4以25N*M的力锁紧所述壳体3。具体使用时,还需要用千分表在壳体周边点表,确认锁紧时表针的变动量。Still further, in the step S1, the fixing
进一步的,在所述步骤S2中,检查红外感应探针的同轴度跳动后确定加工零点,并反向验证数据的准确性。Further, in the step S2, after checking the runout of the coaxiality of the infrared sensing probe, the machining zero point is determined, and the accuracy of the data is reversely verified.
具体的,在所述步骤S3中,采用10倍径内冷式阻尼减震刀杆、非标设计92°刀片槽、刀尖圆角R0.4且凸出刀杆外径范围1.5mm,配合镜面抛光刃口JC5000系列材质进行粗铣,可以有效的提高被加工材料的表面光洁度及刀片寿命。且粗铣时,保持中心冷却流量30mpa,防止冷却水流冲击造成刀具发生颤振。Specifically, in the step S3, a 10-diameter inner-cooled damping and shock-absorbing cutter bar, a non-standard design of 92° insert groove, a rounded corner of the tool tip R0.4 and a protruding tool bar outer diameter range of 1.5mm, and matching Rough milling of JC5000 series materials with mirror polished cutting edges can effectively improve the surface finish of the processed material and the blade life. And during rough milling, keep the central cooling flow rate at 30mpa to prevent the tool from vibrating due to the impact of cooling water flow.
其中,调用非标定制92°切削角特殊刀具,主轴转速为600-800r/mi n,进给量为0.1mm/r,根据数控程序代码来控制刀具,使刀具分层等高的进行横向车削加工,功能孔单边留量0.05-0.08mm,依次对每一个功能孔粗铣。Among them, the non-standard customized 92° cutting angle special tool is used, the spindle speed is 600-800r/min, the feed rate is 0.1mm/r, the tool is controlled according to the NC program code, and the tool is layered and equal for horizontal turning. For processing, the unilateral allowance of functional holes is 0.05-0.08mm, and each functional hole is roughly milled in turn.
在所述步骤S3中,当粗加工的功能孔为盲孔时,无论是切槽或粗镗孔,均为轴向分段作业,如图4所示。In the step S3, when the rough-machined functional hole is a blind hole, whether it is grooving or rough boring, it is an axial segmental operation, as shown in FIG. 4 .
加工深盲孔时,将空心刀具插入至孔内,采用70mpa的水压,冲洗10秒后,对孔内底层内壁进行粗铣,将铁屑冲洗干净,防止最后一层因铁屑过多,刀具切到孔底刀粒会被挤坏。When processing a deep blind hole, insert a hollow tool into the hole, use 70mpa water pressure, rinse for 10 seconds, and then rough mill the inner wall of the bottom layer in the hole to wash away the iron filings to prevent the last layer from being too much iron filings. The knife grain will be crushed when the knife cuts to the bottom of the hole.
进一步的,当粗加工、精加工刀具退移出孔口时,往往刀杆较大机率上有缠屑,应在退刀程序段加上M4反转并停顿几秒,把铁屑甩掉,保证内孔侧壁表面质量。Furthermore, when the roughing and finishing tools move out of the hole, there is a high probability that there will be chips on the tool bar. You should add M4 in the tool retracting program segment and stop for a few seconds to shake off the iron chips to ensure The surface quality of the sidewall of the inner hole.
进一步的,当加工外圆柱或内孔时,刀具注册选择的模式为:车削特殊模式,并区分刀尖朝向:外圆刀尖朝左边、内孔朝右边,在使用时,可以达到尺寸精度满足0.015以内,粗糙度Ra1.6--Ra0.8微米以内。Furthermore, when machining an outer cylinder or an inner hole, the mode selected for tool registration is: turning special mode, and distinguishes the orientation of the tool tip: the outer circle tool tip faces to the left, and the inner hole faces to the right. When in use, the dimensional accuracy can meet Within 0.015, roughness Ra1.6--Ra0.8 microns.
在所述步骤S4中,采用10倍径内冷式阻尼减震刀杆、非标设计92°刀片槽、刀尖圆角R0.2且凸出刀杆外径范围1.2mm,结合超微粒金刚石烧结体刀片进行精铣,可获取较完美的尺寸和表面精度,且精铣时,保持中心冷却流量10mpa,防止冷却水流冲击造成刀具发生颤振,提升零件的加工效率和表面质量。In the step S4, a 10-times-diameter internally cooled damping and shock-absorbing cutter bar, a non-standard design of 92° insert groove, a rounded corner of the tool tip R0.2 and a protruding tool bar outer diameter range of 1.2mm, combined with ultra-fine diamond The fine milling of sintered inserts can obtain more perfect size and surface accuracy, and during fine milling, the central cooling flow rate is maintained at 10mpa, which prevents the tool from chattering due to the impact of cooling water flow, and improves the processing efficiency and surface quality of parts.
其中,具体对盲孔的加工方式为:先进行粗加工,先粗铣上半部分孔槽,然后退刀,换空心管,高压冲洗铝屑,再粗铣下半部分孔槽;再进行相应的精铣操作,先精铣孔,再精铣槽。Among them, the specific processing method for blind holes is: rough machining first, first rough milling the upper half of the hole, then retract the tool, replace the hollow tube, wash the aluminum scraps under high pressure, and then rough mill the lower half of the hole; then carry out the corresponding The fine milling operation, first fine milling hole, and then fine milling groove.
需要说明的是,该五轴加工中心加工液压壳体功能孔的方法,在使用时,本发明通过对粗车、精车工艺策略进行改进,在五轴立式加工中心用直线2轴(相对虚拟平面上的Z轴垂直相交的轴)边进行圆弧插补,边通过铣削主轴位置控制功能使车削刀具的刀尖对切削面进行垂直动作来进行车削加工。在没有车削功能的加工中心上,可进行车削加工对于偏心的工件进行车削加工;而且每个孔不需要安装在机器的旋转中心,一次装夹即可实现多个孔系的加工,灵活可靠;本发明可以减少产品孔深长加工时的震动,功能孔与环形槽一次加工成型,接刀圆弧过度顺滑、加工质量好且生产效率高,而且适用于不同类型大小尺寸功能孔加工;本发明改变了传统思维方式,加工稳定性强,能适应大批量生产而保持其尺寸稳定性,控制指标数据有:功能孔直径保证公差在0/+0.012以内、多个同心孔同心度保证在0.02以内、内孔台阶面与孔心垂直度保证在0.01以内等等,优化技术融合创新的加工方法,是一种创新工艺。It should be noted that the method for machining the functional holes of the hydraulic housing by the five-axis machining center, when in use, the present invention improves the rough turning and finishing turning process strategies, and uses a
其中,还需要补充的是,上述精加工中精车轨迹代码可以采用如下形式:Among them, what needs to be added is that the finishing track code in the above finishing machining can be in the following form:
M660………(机床干涉模式OFF)M660………(Machine Interference Mode OFF)
G0 G91 G28 Z0G0 G91 G28 Z0
T2T02M6T2T02M6
G28G91 Z0.G28G91 Z0.
G90 G53 G0 Y-900……(刀具更换、读取坐标、G90 G53 G0 Y-900……(Tool replacement, read coordinates,
G56移动到安全位置点)G56 move to safe position point)
G91 G28 X0.G91 G28 X0.
G90G90
M43M46………(工作台A、C轴松开)M43M46………(Axis A and C of workbench are loosened)
G0 G90 A0.C0………(工作台旋转角度)G0 G90 A0.C0………(worktable rotation angle)
M51………(开启中心出水)M51………(Open the center outlet)
M44M47………(工作台A、C轴锁紧)M44M47………(table A, C axis locking)
M194………(铣削主轴位置控制OFF)M194………(Milling spindle position control OFF)
G18………(ZX平面选择)G18………(ZX plane selection)
G61.1………(形状补偿)G61.1………(shape compensation)
G90 G0 G43 H2 P1 X0.Y0.Z50………(车削刀具长度不补偿、刀具偏移、车削开始位置、定位)G90 G0 G43 H2 P1 X0.Y0.Z50………(turning tool length without compensation, tool offset, turning start position, positioning)
G10.9X1………(X轴直径指令ON)G10.9X1………(X-axis diameter command ON)
M193………(铣削主轴位置控制ON)M193………(Milling spindle position control ON)
G0 G90 X12.499 Y0G0 G90 X12.499 Y0
Z1.443………(移动到安全位置点)Z1.443………(move to safe position point)
G148 X0.Y0………(环绕加工模式ON)G148 X0.Y0………(Surround processing mode ON)
M01………(选择暂停)M01………(select pause)
G96S150R3………(周速恒定控制)G96S150R3………(constant peripheral speed control)
M764………(以旋转中心为基点,XY轴反转旋转)M764………(with the rotation center as the base point, the XY axis rotates in reverse)
G95 G1 X12.899 F.03……(每转进给)G95 G1 X12.899 F.03...(feed per revolution)
Z-81.643Z-81.643
G2 X13.046 Z-81.82R.25G2 X13.046 Z-81.82R.25
G1 X14.793 Z-82.694G1 X14.793 Z-82.694
G3 X14.939 Z-82.871R.25(精车孔的轮廓轨迹)G3 X14.939 Z-82.871R.25 (contour track of finishing hole)
G1 Z-89.2G1 Z-89.2
G3 X13.439 Z-89.95R.75G3 X13.439 Z-89.95R.75
G1 X12.439G1 X12.439
X12.156 Z-89.809X12.156 Z-89.809
M765………(旋转停止)M765………(rotation stop)
G149………(环绕加工模式OFF)G149………(Surround processing mode OFF)
M9M9
M01………(冷却停止、移动到安全位置点)M01………(cooling stop, move to safe position)
G0Z50.G0Z50.
M194………(铣削主轴位置控制OFF)M194………(Milling spindle position control OFF)
G28G91 Z0G28G91 Z0
G28G91X0………(移动到安全位置点)G28G91X0………(move to safe position)
G90 G53 G0 Y-900.G90 G53 G0 Y-900.
G10.9 X0………(X轴半径指令ON)G10.9 X0………(X-axis radius command ON)
G97 G17 G94………(周速恒定控制OFF、XY平G97 G17 G94………(circumferential speed constant control OFF, XY flat
面选择、每分钟切削进给)face selection, cutting feed per minute)
M662………(机床干涉模式ON)M662………(Machine Interference Mode ON)
M30………(程序结束并回开头)。M30………(end of program and return to the beginning).
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。The above-mentioned embodiments only express several implementation modes of the present invention, and the description thereof is relatively specific and detailed, but should not be construed as limiting the patent scope of the present invention. It should be noted that, for those skilled in the art, several modifications and improvements can be made without departing from the concept of the present invention, and these all belong to the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310276944.0A CN116140940B (en) | 2023-03-21 | 2023-03-21 | A method for machining a hydraulic housing functional hole using a five-axis machining center |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310276944.0A CN116140940B (en) | 2023-03-21 | 2023-03-21 | A method for machining a hydraulic housing functional hole using a five-axis machining center |
Publications (2)
Publication Number | Publication Date |
---|---|
CN116140940A true CN116140940A (en) | 2023-05-23 |
CN116140940B CN116140940B (en) | 2024-11-12 |
Family
ID=86361908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310276944.0A Active CN116140940B (en) | 2023-03-21 | 2023-03-21 | A method for machining a hydraulic housing functional hole using a five-axis machining center |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN116140940B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202571428U (en) * | 2012-04-12 | 2012-12-05 | 哈尔滨汽轮机厂有限责任公司 | Large rake angle inner-cooling type milling cutter |
CN105312641A (en) * | 2014-07-28 | 2016-02-10 | 陕西柴油机重工有限公司 | Method for machining matched surface of machine body |
CN208584032U (en) * | 2018-05-28 | 2019-03-08 | 庆铃汽车(集团)有限公司 | Milling cutter for fine milling the seating surface of connecting rod body |
CN114425683A (en) * | 2021-12-27 | 2022-05-03 | 南京高精船用设备有限公司 | Method for machining taper pin hole |
WO2022161805A1 (en) * | 2021-01-29 | 2022-08-04 | Audi Ag | Machining tool |
-
2023
- 2023-03-21 CN CN202310276944.0A patent/CN116140940B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202571428U (en) * | 2012-04-12 | 2012-12-05 | 哈尔滨汽轮机厂有限责任公司 | Large rake angle inner-cooling type milling cutter |
CN105312641A (en) * | 2014-07-28 | 2016-02-10 | 陕西柴油机重工有限公司 | Method for machining matched surface of machine body |
CN208584032U (en) * | 2018-05-28 | 2019-03-08 | 庆铃汽车(集团)有限公司 | Milling cutter for fine milling the seating surface of connecting rod body |
WO2022161805A1 (en) * | 2021-01-29 | 2022-08-04 | Audi Ag | Machining tool |
CN114425683A (en) * | 2021-12-27 | 2022-05-03 | 南京高精船用设备有限公司 | Method for machining taper pin hole |
Non-Patent Citations (1)
Title |
---|
高永明: "新型硬质合金钻头及钻削技术", 机械工人(冷加工), no. 04, 30 April 2001 (2001-04-30), pages 32 * |
Also Published As
Publication number | Publication date |
---|---|
CN116140940B (en) | 2024-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102806443B (en) | Numerically-controlled processing method of nozzle housing piece | |
CN106843152B (en) | A kind of Bresse normal circle hole numerical-control processing method based on five-axis machine tool on-line measurement | |
CN103406736B (en) | Processing technology of precise assembly of plastic mold of lens cone of digital camera | |
CN102990304B (en) | Spherical surface machining method | |
CN105252233B (en) | A processing method for aero-engine superalloy counterweight blades | |
WO2004089569A1 (en) | Device and method for processing screw rotor, and cutting tool | |
CN111375901B (en) | A method of laser turning and milling compound machining tool | |
Chen et al. | Form error compensation in single-point inclined axis nanogrinding for small aspheric insert | |
CN112222947A (en) | Secondary tool setting method for 3+ 2-axis machine tool machining | |
CN105252051A (en) | Machining method of porous thin-wall fan cases and work-piece locating tool | |
CN102059529A (en) | Excircle processing method of glass mold blank | |
CN116852050A (en) | Five-axis full-direct-drive bridge type gantry machining center and process for machining unmanned aerial vehicle rotary blades | |
CN106312152A (en) | Method for machining thin-walled components | |
CN105538085B (en) | A kind of special-shaped lens processing method based on CAM | |
CN111502998A (en) | Axisymmetric porous disc rotor adapter and numerical control machining method thereof | |
CN104668642A (en) | Surface machining method for obtrusive hollow cylinder and ball end mill | |
CN110238697A (en) | A kind of presetting cutter method of three-axis numerical control milling | |
Liang et al. | Design and fabrication of a new micro ball-end mill with conical flank face | |
CN203636051U (en) | Ball-end mill for single-blade processing and five-axis numerically-controlled machine tool with ball-end mill | |
CN116140940A (en) | Method for machining functional hole of hydraulic shell in five-axis machining center | |
CN102554379B (en) | Electric spark machining device for superhard cutting tools and operation method | |
CN107443026A (en) | Vibration pendulum mirror processing method | |
CN108723725A (en) | A kind of processing method of aerial blade | |
Zhu et al. | Process analysis and parameter optimization of five axis NC machine for machining complex curved surface impellers | |
CN110586994A (en) | Method for milling large ultrahigh-precision sealing plane by inclined cutter shaft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: 518067 Unit 2-102, Chiwan 1st Road, Chiwan Community, Zhaoshang Street, Nanshan District, Shenzhen City, Guangdong Province, China Applicant after: SHENZHEN JUNCHENG PRECISION MANUFACTURING Co.,Ltd. Address before: Unit 2-10, Unit H2, Chiwan 1st Road, Chiwan Community, China Merchants Street, Nanshan District, Shenzhen City, Guangdong Province, 518067 Applicant before: SHENZHEN JUNCHENG PRECISION MANUFACTURING Co.,Ltd. Country or region before: China |
|
GR01 | Patent grant | ||
GR01 | Patent grant |