CN115993719A - 单非球面透镜设计方法、单非球面透镜 - Google Patents

单非球面透镜设计方法、单非球面透镜 Download PDF

Info

Publication number
CN115993719A
CN115993719A CN202211562382.8A CN202211562382A CN115993719A CN 115993719 A CN115993719 A CN 115993719A CN 202211562382 A CN202211562382 A CN 202211562382A CN 115993719 A CN115993719 A CN 115993719A
Authority
CN
China
Prior art keywords
light
vertex
lens
point
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211562382.8A
Other languages
English (en)
Inventor
林建东
张恒
孙亨利
任玉松
韩晨阳
李进强
李明
任雨杭
秦屹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Whst Co Ltd
Original Assignee
Whst Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Whst Co Ltd filed Critical Whst Co Ltd
Priority to CN202211562382.8A priority Critical patent/CN115993719A/zh
Publication of CN115993719A publication Critical patent/CN115993719A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

本申请提供了一种单非球面透镜设计方法、单非球面透镜,单非球面透镜的光入射面为非球面,光出射面为球面,该方法包括:获取预先设定的光入射面顶点离物点的距离、单非球面透镜的焦距、光出射面顶点离像点的距离和单非球面透镜的中心厚度,确定光入射面顶点处曲率半径的值和光出射面顶点处曲率半径的值,建立使单非球面透镜满足等光程条件的参数关系方程组,计算光入射面的面型离散点,对光入射面的面型离散点进行拟合得到圆锥系数的值和非球面系数,确定光入射面的标准方程,确定高度变化量,根据高度变化量得到函数分布轮廓图,基于函数分布轮廓图,确定单非球面透镜的各项参数。本申请能够有效提高单非球面透镜像差的校正准确度。

Description

单非球面透镜设计方法、单非球面透镜
技术领域
本申请属于光学技术领域,更具体地说,是涉及一种单非球面透镜设计方法、单非球面透镜。
背景技术
由于光学球面透镜存在着固有像差问题,实际应用中往往需要用多个透镜组合构成高性能的光学系统。与单个光学透镜相比,多个透镜组合光路由于存在更多的光学面,光学效率更低并且杂散光抑制更为困难,而且需要更大的体积空间以及更高精度的结构加工和装配工艺,不利于系统小型化和批量生产。
为了用单个透镜代替多个透镜组合并满足相应的光学指标要求,需要采用非球面透镜技术,在非球面透镜设计中,可以通过优化多个参数有效地校正光学系统像差,由于现有商业软件优化算法大多数是一种局部优化算法,需要逐步增加或改变变量、改变各优化操作数的权因子来反复迭代进行优化。该方法需要耗时较长并且对设计者的经验有较高的要求,同时容易因忽略某些参数导致非球面透镜像差的校正不够准确。
发明内容
本申请的目的在于提供一种单非球面透镜设计方法、单非球面透镜,以解决现有技术中单非球面透镜像差的校正不够准确的问题。
本申请实施例的第一方面,提供了一种单非球面透镜设计方法,所述单非球面透镜的光入射面为非球面,光出射面为球面,所述设计方法包括:
获取预先设定的光入射面顶点离物点的距离、单非球面透镜的焦距、光出射面顶点离像点的距离和单非球面透镜的中心厚度;
基于所述光入射面顶点离物点的距离、所述单非球面透镜的焦距、所述光出射面顶点离像点的距离和所述单非球面透镜的中心厚度,确定所述光入射面顶点处曲率半径的值和所述光出射面顶点处曲率半径的值;
根据所述光入射面顶点离物点的距离、所述单非球面透镜的中心厚度、所述光出射面顶点离像点的距离和所述光出射面顶点处曲率半径的值,建立使所述单非球面透镜满足等光程条件的参数关系方程组;
根据所述参数关系方程组计算所述光入射面的面型离散点;对所述光入射面的面型离散点进行拟合得到圆锥系数的值和非球面系数,并基于所述光入射面顶点处曲率半径的值、所述圆锥系数的值和所述非球面系数确定所述光入射面的标准方程;
在确定所述光入射面的标准方程之后,根据光线追踪法确定边缘光线和主光线与像面交点的高度变化量;
根据所述高度变化量得到关于所述光出射面顶点离像点的距离和所述单非球面透镜的中心厚度的函数分布轮廓图;基于所述函数分布轮廓图,确定所述单非球面透镜的各项参数。
本申请实施例的第二方面,提供了一种单非球面透镜,所述单非球面透镜的光入射面为非球面,光出射面为球面,且所述单非球面透镜的各项参数根据本申请实施例第一方面提供的任一项单非球面透镜设计方法得到。
本申请实施例提供的单非球面透镜设计方法、单非球面透镜的有益效果在于:
在本申请实施例中,提出设计一种球面与非球面组合的单非球面透镜,解决了现有技术中非球面透镜设计过程繁琐,设计成本高的问题,简化了透镜设计过程。在对单非球面透镜进行设计时,根据光入射面顶点离物点的距离、单非球面透镜的中心厚度、光出射面顶点离像点的距离和光出射面顶点处曲率半径的值,建立使单非球面透镜满足等光程条件的参数关系方程组,进一步通过参数关系方程组计算光入射面的面型离散点,对面型离散点进行拟合,解决了基于非线性多变量拟合方法的初值敏感问题,得到使单非球面透镜光学性能更优的光入射面的标准方程,提高了非球面透镜轴上球差的校正准确度。本申请根据光线追踪法绘制出函数分布轮廓图,函数分布轮廓图可以更加全面和形象的描绘出轴外彗差变化特性,基于轴外彗差变化特性,确定单非球面透镜的各项参数,不易忽略潜在有效的单非球面透镜的各项参数,提高了非球面透镜轴外彗差的校正准确度。本申请可以有效提高单非球面透镜轴上球差和轴外彗差的校正准确度。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的单非球面透镜设计方法的流程示意图;
图2为本申请实施例提供的单非球面透镜光线传输示意图;
图3为本申请实施例提供的关于d和lb
Figure BDA0003985125240000031
的函数分布轮廓图;
图4为本申请实施例提供的二次计算的关于d和lb的|yb1-yb|的函数分布轮廓图;
图5为本申请实施例提供的二次计算的关于d和lb的|yb2-yb|的函数分布轮廓图;
图6为本申请实施例提供的二次计算的关于d和lb
Figure BDA0003985125240000032
的函数分布轮廓图;
图7为本申请实施例提供的本申请设计的单非球面透镜的点列图、像差曲线和透镜轮廓图;
图8为本申请实施例提供的初级彗差为零的单非球面透镜的点列图、像差曲线和透镜轮廓图;
图9为本申请实施例提供的单非球面系数拟合矢高误差图;
图10为本申请实施例提供的像面离焦均衡不同角度视场成像特性点列图;
图11为本申请实施例提供的轴上点和轴外点理想成像的透镜面型示意图;
图12为本申请实施例提供的由等光程原理计算的轴上点和轴外点理想成像的透镜面型散点图;
图13为本申请实施例提供的综合面型均衡视场的点列图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图通过具体实施例来进行说明。
单非球面透镜的光入射面为非球面,光出射面为球面。
在本实施例中,由于球面透镜存在着固有像差问题,实际应用中往往需要用多个透镜组合构成高性能的光学系统。与单个透镜相比,多个透镜组合光路由于存在更多的光学面,光学效率更低并且杂散光抑制更为困难,需要更大的体积空间以及更高精度的结构加工和装配工艺,不利于系统小型化和批量生产。为了用单个透镜代替多个透镜组合并满足相应的性能指标要求,需要采用非球面透镜技术,非球面透镜能在有效地校正光学像差的同时减小系统体积、降低系统装配难度,但是光入射面和光出射面都为非球面的透镜对实际加工工艺要求较高,精度难以保证。因此,本申请提出设计一种球面与非球面组合的单非球面透镜,以解决现有技术中非球面透镜设计过程繁琐,设计成本高的问题,简化了透镜设计过程。
请参考图1,图1为本申请实施例提供的单非球面透镜设计方法的流程示意图,该方法包括:
S101:获取预先设定的光入射面顶点离物点的距离、单非球面透镜的焦距、光出射面顶点离像点的距离和单非球面透镜的中心厚度。
在本实施例中,根据单非球面透镜的实际的加工生产情况,选定光入射面顶点离物点的距离、焦距、光出射面顶点离像点的距离、中心厚度、折射率,以及单非球面透镜视场范围所对应物点的高度。需要指出的是,为进一步提高非球面透镜像差的校正准确度,在本实施例中,可以考虑在单非球面透镜加工生产之前,按照消除透镜初级彗差的系数约束条件计算单非球面透镜的中心厚度,也可以按照消除初级像散、消除初级场曲或消除初级畸变的系数约束条件计算单非球面透镜的中心厚度,可以将根据约束条件计算得到的中心厚度作为本实施例选定的中心厚度,本实施例对此不作限定。
S102:基于光入射面顶点离物点的距离、单非球面透镜的焦距、光出射面顶点离像点的距离和单非球面透镜的中心厚度,确定光入射面顶点处曲率半径的值和光出射面顶点处曲率半径的值。
在本实施例中,根据单透镜近轴物像位置关系,确定光入射面和光出射面顶点处的曲率半径与光出射面顶点离像点的距离、透镜中心厚度、光入射面顶点离物点的距离和焦距的关系。
S103:根据光入射面顶点离物点的距离、单非球面透镜的中心厚度、光出射面顶点离像点的距离和光出射面顶点处曲率半径的值,建立使单非球面透镜满足等光程条件的参数关系方程组。
在本实施例中,根据费马原理和光学折射定律,当单非球面透镜光轴上的物点经过单非球面透镜的光入射面和光出射面传输到像点的路径满足等光程条件时,即可消除轴上球差,因此,通过构建满足等光程条件的参数关系方程组可以使得轴上球差被校正。
S104:根据参数关系方程组计算光入射面的面型离散点,对光入射面的面型离散点进行拟合得到圆锥系数的值和非球面系数,并基于光入射面顶点处曲率半径的值、圆锥系数的值和非球面系数确定光入射面的标准方程。
在本实施例中,根据参数关系方程组求解得出,从物点入射的光线与光入射面交点到光出射面交点的距离关于入射光线与光出射面交点与光出射面球心的连线与光轴的夹角、光入射面顶点离物点的距离、光出射面顶点离像点的距离、折射率和中心厚度的函数关系式,根据参数关系方程组求解得出的函数关系式计算光入射面的面型离散点。将光入射面的面型离散点转换成数据组进行线性拟合,得到圆锥系数的值。根据最小二乘法对光入射面的面型离散点进行偶次多项式拟合,得到非球面系数。通过拟合得到的光入射面的标准方程可以使单非球面透镜光学性能更优,提高了非球面透镜轴上球差的校正准确度。
在实际应用中,当视场角度和相对孔径较小时,通过校正初级彗差或者优化初级彗差系数可以实现轴外彗差的校正。但是当轴外点的视场角度和孔径高度逐渐增加而远离近轴条件时高级彗差对轴外彗差的影响比重逐渐变大,其优化问题也变得复杂,通过校正初级彗差或者优化初级彗差系数不一定对应于最佳的单非球面透镜的各项参数。因此,针对上述问题本申请提出了下述方法。
S105:在确定光入射面的标准方程之后,根据光线追踪法确定边缘光线和主光线与像面交点的高度变化量。
在本实施例中,边缘光线可以为上光线或下光线,根据光线追踪法确定主光线与像面交点对应的像高、上光线与像面交点对应的像高和下光线与像面交点对应的像高,计算上光线像高与主光线像高的绝对差值加上下光线像高与主光线像高的绝对差值的平均值,平均值为高度变化量。
S106:根据高度变化量得到关于光出射面顶点离像点的距离和单非球面透镜的中心厚度的函数分布轮廓图;基于函数分布轮廓图,确定单非球面透镜的各项参数。
在本实施例中,单非球面透镜的各项参数可以包括:光入射面顶点处曲率半径,光出射面顶点处曲率半径,单非球面透镜的折射率,单非球面透镜的中心厚度,单非球面透镜的焦距,光入射面顶点离物点的距离,光出射面顶点离物点的距离和光入射面的非球面系数等。本实施例改变光出射面顶点离像点的距离和单非球面透镜的中心厚度,重复步骤S102至S105,绘制关于光出射面顶点离像点的距离和单非球面透镜的中心厚度的上光线和下光线与主光线的像高绝对差的平均值的函数分布轮廓图,根据函数分布轮廓图的最小值所对应的光出射面顶点离像点的距离和单非球面透镜的中心厚度,由此确定单非球面镜的各项参数。改变光出射面顶点离像点的距离和单非球面透镜的中心厚度可以通过分别对光出射面顶点离像点的距离以及单非球面透镜的中心厚度均匀间隔取多个离散值,或者中间密集两边稀疏、中间稀疏两边密集等非均匀间隔的方式取多个离散值。上述函数分布轮廓图可以显示为等值/高线分布图,三维高度图或者空间曲面图,在本申请中不作限定。
在本实施例中,基于费马原理和光学折射定律得出消除轴上球差的参数,再根据在光出射面顶点离像点的距离和单非球面透镜的中心厚度的选择范围,通过光线追踪法,得出轴外像点在子午面内的像面交点高度变化量的函数分布轮廓图,根据该选择范围内的最优值来确定单非球面透镜的各项参数。通常彗差是通过透镜的上边缘和下边缘这对光线与像面交点高度的平均值与主光线(轴外物点发出经过光入射面顶点的光线)交点高度之差,但是,本申请采用上边缘光线与像面交点高度的平均值与主光线交点高度之差的绝对值加下边缘光线与像面交点高度的平均值与主光线交点高度之差的绝对值求平均来衡量子午面轴外物点的成像特性,避免上下边缘光线由于像点位置高度分别分布在主光线像点两侧对结果产生的影响,提高了单非球面透镜轴外彗差的校正准确度。
在本申请实施例中,提出设计一种球面与非球面组合的单非球面透镜,解决了现有技术中非球面透镜设计过程繁琐,设计成本高的问题,简化了透镜设计过程。在对单非球面透镜进行设计时,根据光入射面顶点离物点的距离、单非球面透镜的中心厚度、光出射面顶点离像点的距离和光出射面顶点处曲率半径的值,建立使单非球面透镜满足等光程条件的参数关系方程组,进一步通过参数关系方程组计算光入射面的面型离散点,对面型离散点进行拟合,解决了基于非线性多变量拟合方法的初值敏感问题,得到使单非球面透镜光学性能更优的光入射面的标准方程,提高了非球面透镜轴上球差的校正准确度。本申请根据光线追踪法绘制出函数分布轮廓图,函数分布轮廓图可以更加全面和形象的描绘出轴外彗差变化特性,基于轴外彗差变化特性,确定单非球面透镜的各项参数,不易忽略潜在有效的单非球面透镜的各项参数,提高了单非球面透镜轴外彗差的校正准确度。本申请可以有效提高单非球面透镜轴上球差和轴外彗差的校正准确度。
在一种可能的实现方式中,光入射面顶点处曲率半径的值的确定方法为:
Figure BDA0003985125240000081
光出射面顶点处曲率半径的值的确定方法为:
Figure BDA0003985125240000082
其中,r'为光入射面顶点处曲率半径的值,r为光出射面顶点处曲率半径的值,n为单非球面透镜的折射率,d为单非球面透镜的中心厚度,f为单非球面透镜的焦距,la为光入射面顶点离物点的距离,lb为光出射面顶点离物点的距离。
在本实施例中,根据单非球面透镜近轴物像位置关系,确定光入射面顶点处的曲率半径、光出射面顶点处的曲率半与光出射面顶点离物点的距离、光入射面顶点离物点的距离、中心厚度、焦距和折射率的关系。
在一种可能的实现方式中,参数关系方程组为:
Figure BDA0003985125240000091
其中,r为光出射面顶点处曲率半径的值,n为单非球面透镜的折射率,d为单非球面透镜的中心厚度,la为光入射面顶点离物点的距离,lb为光出射面顶点离像点的距离,L0为入射光线与光出射面交点B到像点P′的距离,L1为从物点P入射的光线与光入射面交点A到光出射面交点B的距离,L2为物点P到光入射面交点A的距离,hp为入射光线与光入射面交点A离光轴的距离,θ为入射光线与光出射面交点B与光出射面球心o′的连线与光轴的夹角,α为从物点P入射的光线经过光入射面后光束方向与光轴夹角,u为从物点P入射的光线经过后单非球面透镜折射后出射光束方向与光轴夹角,z2为入射光线与光入射面交点A到像点沿光轴方向的投影距离,z1为入射光线与光出射面交点B到像点沿光轴方向的投影距离。
在本实施例中,该参数关系方程组由当单非球面透镜光轴上的物点经过单非球面透镜的光入射面和光出射面传输到像点的路径满足等光程条件时建立,可以消除轴上球差。
在一种可能的实现方式中,根据参数关系方程组计算光入射面的面型离散点,包括:
将光出射面球心记为o′,入射光线与光出射面交点记为B,线段o′B与单非球面透镜的光轴的夹角记为θ。
对θ进行离散处理,并根据参数关系方程组,计算θ取不同离散值时入射光线与光入射面交点A离光轴的距离hp、入射光线与光入射面交点A到像点沿光轴方向的投影距离z2
根据zp=lb+d-Z2计算θ取不同离散值时光入射面的矢高zp,得到θ取不同离散值时光入射面的面型离散点(zp,hp)。
在本实施例中,根据上述参数关系方程组,求解得出L1关于θ、la、lb、n和d的函数关系,即L1=f(θ,la,lb,n,d)。对θ取N个离散值θi(i=1…N),计算出N个L1值L1i(i=1…N),再由上述方程组依次得出L0i,z1i,z2i,hpi(i=1…N),从而得到关于光入射面的矢高zpi=lb+d-z2i(i=1…N)关系表,即(zpi,hpi)(i=1…N)。
在一种可能的实现方式中,光入射面的标准方程的确定方法为:
Figure BDA0003985125240000101
其中,k为圆锥系数的值,r'为光入射面顶点处曲率半径的值,hp为入射的光线与光入射面交点A离光轴的距离,a4、a6、a8、a10、a12、a14均为标准方程的系数。
在本实施例中,本申请的拟合方法包括但不限于最小二乘法、偏最小二乘法、加权最小二乘法等。引入光入射面顶点处的曲率半径r′将非球面离散点(zpi,hpi)(i=1…N)转换成数据组
Figure BDA0003985125240000102
Figure BDA0003985125240000103
Figure BDA0003985125240000104
把xpi(i=1…N)当作自变量和ypi(i=1…N)当作因变量进行线性拟合确定圆锥系数k的值。可以通过最小二乘法对上述离散点(zpi,hpi)(i=1…N)进行拟合,相对于现有技术中的单非球面透镜设计方法,通过最小二乘法拟合的方式不易受透镜初始参数的影响,能更好地拟合出光入射面的标准方程。
在本实施例中,结合非球面系数和圆锥系数的值确定光入射面的标准方程。
Figure BDA0003985125240000105
Figure BDA0003985125240000111
为求解出标准方程的系数,需要使
Figure BDA0003985125240000112
取得最小值,将其转化为线性最小二乘法求解MN×6a6×1-zpN×1加权平均和的最小值,得出系数矩阵。
其中,线性矩阵为:
Figure BDA0003985125240000113
系数矩阵为:
a6×1=[a4 a6 a8 a10 a12 a14]T
列向量:
zpN×1=[zp1 zp2 … zpN]T
可得:
a6×1=(MN×6 TMN×6)-1MN×6 TzpN×1
另外,需要指出的是,T表示矩阵的转置,在设定光入射面的标准方程时,标准方程的最高阶数可以低于14,如12、10、8、6、4等,标准方程的最高阶数也可以高于14,如16、18、20、22、24等,本领域技术人员可以根据自身需求进行自行设定。
在一种可能的实现方式中,高度变化量的确定方法为:
Figure BDA0003985125240000114
其中,yb为轴外物点Q发出经过光入射面顶点的光线通过单非球面透镜传输与像面的交点Q'的高度,yb1为轴外物点Q发出的光线从单非球面透镜光入射面上边缘A点折射进入单非球面透镜,从光出射面折射出去与像面的交点Q1'的高度,yb2为轴外物点Q发出经过光入射面下边缘的光线通过单非球面透镜传输与像面的交点Q2'的高度。
在本实施例中,yb为主光线对应的像高,yb1为上光线对应的像高,yb2为下光线对应的像高。
在一种可能的实现方式中,根据高度变化量得到关于光出射面顶点离像点的距离和单非球面透镜的中心厚度的函数分布轮廓图,包括:
重新获取光出射面顶点离像点的距离和单非球面透镜的中心厚度,重新确定光入射面顶点处曲率半径的值、光出射面顶点处曲率半径的值、参数关系方程组、圆锥系数的值、非球面系数、光入射面的标准方程,得到高度变化量,绘制出关于光出射面顶点离像点的距离和单非球面透镜的中心厚度的高度变化量的函数分布轮廓图。
在本实施例中,根据光出射面顶点离像点的距离lb和透镜的中心厚度d的可选范围(lbmin~lbmax,dmin~dmax),分别取N1和N2个值,即
Figure BDA0003985125240000121
Figure BDA0003985125240000122
重复上述S102、S103、S104和S105,根据光线追踪法绘出关于d和lb
Figure BDA0003985125240000123
的函数分布轮廓图。
在一种可能的实现方式中,基于函数分布轮廓图,确定单非球面透镜的各项参数,包括:
根据函数分布轮廓图中高度变化量的最小值,确定单非球面透镜的各项参数。
在本实施例中,根据Δy处于最小值的条件确定r′、r、la、d、lb、f及光入射面的非球面系数。
在本实施例中,确定单非球面透镜的各项参数之后,还包括:
基于各项参数,对单非球面透镜进行光学仿真验证,并根据光学仿真验证结果判断单非球面透镜是否满足预设的性能指标。
如不满足要求则回到S101改变初始参数,光入射面顶点离物点的距离、单非球面透镜的焦距、光出射面顶点离像点的距离和单非球面透镜的中心厚度,再进行S102、S103、S104、S105和S106,得到重新确定的单非球面透镜的各项参数,基于重新确定的单非球面透镜的各项参数,对单非球面透镜进行光学仿真验证,根据光学仿真验证结果判断单非球面透镜是否满足要求,直至满足要求则完成单非球面透镜设计。在本实施例中,实施人员可根据实际需要设置预设的性能指标。
在一种可能的实现方式中,确定单非球面透镜的各项参数之后,还包括:
根据ci=w1ai+w2bi对单非球面透镜的各项参数进行修正。
其中,w1为第一预设权重,w2为第二预设权重,ai为轴上物点理想面型拟合后的非球面系数,bi为轴外物点理想面型拟合后的非球面系数,ci为综合预设面型拟合后的非球面系数。
本实施例可以根据轴外物点理想面型拟合后的非球面系数对轴上物点理想面型拟合后的非球面系数进行修正,得到修正后的轴上物点理想面型拟合后的非球面系数,修正后的轴上物点理想面型拟合后的非球面系数为综合面型拟合后的非球面系数。根据轴上物点理想面型和轴外物点理想面型两个理想面型得到对应的拟合后的非球面系数,通过取权重的方式得到优化后的综合面型拟合后的非球面系数,可以解决视场分布的均衡性问题。w1、w2可以根据实际需要确定,并可以进行修改。根据z1=η(h1)确定轴上物点理想面型(面型1),根据z2=ζ(h2)确定轴外物点理想面型(面型2),根据z=w1z1+w2z2=w1η(h1)+w2ζ(h2)确定综合预设面型(综合面型),通过透镜的成像特性或点列图RMS半径比较轴上物点理想面型(面型1)的上半部分面型z1=η(h1),h1>0和下半部分面型z1=η(h1),h1<0,如果轴上物点理想面型(面型1)上半部分面型优于下半部面型,则用轴外物点理想面型(面型2)的下半部分面型z2=ζ(h2),h2<0作为离散点进行非球面系数拟合,反之,如果轴上物点理想面型(面型1)下半部分面型优于上半部面型,则用轴外物点理想面型(面型2)的上半部分面型z2=ζ(h2),h2>0作为离散点进行非球面系数拟合。最后,通过叠加轴上物点理想面型和轴外物点理想面型的权重得到最终视场均衡作用的综合面型。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
以下,对本申请实施例提供的透镜设计方法进行可行性验证。
由于激光雷达光学系统应用的工作光谱范围较窄,其色差要求较低,光学系统采用低色散材料玻璃,如N-BK7、N-PK51等材料,甚至PMMA等塑料材料,都可满足系统的色差要求。对于激光雷达的光路收发系统,属于非成像光学并且收发视场较小,单透镜设计主要考虑校正球差与彗差,球差或者轴上球差问题,由于具有旋转对称性,通过标准的非球面透镜参数优化可以得到很好的校正。对于轴外的彗差问题,当视场角度和相对孔径较小时,通过校正初级彗差或者优化初级彗差系数可以实现轴外彗差的校正,当视场角度或相对孔径变大时,通过校正初级彗差不一定能实现彗差校正,因为其高级彗差对轴外彗差的影响比重增大,校正初级彗差或者初级彗差系数为零的参数不一定对应于最佳的面型参数。由于彗差具有非旋转对称性的特点,其在子午面的影响比在弧矢面的影响大,初级子午彗差是初级弧矢彗差的3倍,有鉴于此,本申请提出基于费马原理和光学折射定律得出消除球差的透镜面型参数,再根据光出射面顶点离像点的距离和透镜的中心厚度的选择范围,通过光线追踪法,得出轴外像点在子午面内的像面交点高度变化量的函数分布轮廓图,根据该选择范围内的最优值来确定透镜面型参数(单非球面透镜的各项参数)。通常彗差是通过透镜的上边缘和下边缘这对光线与像面交点高度的平均值与主光线交点高度之差,但是,本申请采用上边缘光线与像面交点高度的平均值与主光线交点高度之差的绝对值加下边缘光线与像面交点高度的平均值与主光线交点高度之差的绝对值求平均来衡量子午面轴外物点的成像特性,避免上下边缘光线由于像点位置高度分别分布在主光线像点两侧对结果产生的影响。
图2是本申请实施例提供的单非球面透镜光线传输示意图。如图2所示透镜材料的折射率为n,单非球面透镜包括光入射面和光出射面,其中光出射面为球面,光入射面为非球面,光入射面与光阑面重合,光入射面顶点离物点的距离为la,物点的高度为ya,球面半径为r,光出射面顶点离像点的距离为lb,焦距为f,透镜半孔径高度为h,透镜的中心厚度为d,光入射面顶点处的曲率半径为r′,其中r′、r、la、d、lb和f满足单透镜近轴物像位置关系,由给定的la、d、lb和f,可计算确定光入射面顶点处曲率半径的值和光出射面顶点处曲率半径的值。
Figure BDA0003985125240000151
Figure BDA0003985125240000152
透镜光轴上的物点P经过透镜光入射面和光出射面传输到像点P’的路径满足等光程条件使得轴上球差被完全校正。根据上述等光程条件通过r、n、la、d、lb参数联立下述方程组:
Figure BDA0003985125240000153
其中,r为光出射面顶点处曲率半径的值,n为单非球面透镜的折射率,d为单非球面透镜的中心厚度,la为光入射面顶点离物点的距离,lb为光出射面顶点离像点的距离,L0为入射光线与光出射面交点B到像点P′的距离,L1为从物点P入射的光线与光入射面交点A到光出射面交点B的距离,L2为物点P到光入射面交点A的距离,hp为入射光线与光入射面交点A离光轴的距离,θ为入射光线与光出射面交点B与光出射面球心o′的连线与光轴的夹角,α为从物点P入射的光线经过光入射面后光束方向与光轴夹角,u为从物点P入射的光线经过后单非球面透镜折射后出射光束方向与光轴夹角,z2为入射光线与光入射面交点A到像点沿光轴方向的投影距离,z1为入射光线与光出射面交点B到像点沿光轴方向的投影距离。
上述方程组由8个方程组成,其中r、la、n、d、lb是已知参数,L0、L1、L2、hp、θ、α、u、z2、z1是9个待求参数,通过8个方程组可以将L0、L1、L2、hp、α、u、z2、z1转换为由θ表示的参数方程。通过求解上述方程组关系,得出L1关于θ、la、lb、n和d的函数关系,即L1=f(θ,la,lb,n,d)。然后通过数值计算,对θ取N个离散值θi(i=1…N),计算出N个L1值L1i(i=1…N),再由上述方程组依次得出L0i,z1i,z2i,(i=1…N),从而得到关于光入射面的矢高zpi=lb+d-z2i(i=1…N)关系表,即(zpi,hpi)(i=1…N)。引入光入射面顶点处的曲率半径r′将非球面离散点(zpi,hpi)(i=1…N)转换成数据组
Figure BDA0003985125240000161
Figure BDA0003985125240000162
把xpi(i=1…N)当作自变量和ypi(i=1…N)当作因变量进行线性拟合确定圆锥系数k的值。
结合非球面系数和圆锥系数的值确定光入射面的标准方程。
Figure BDA0003985125240000163
为求解出标准方程的系数,a4、a6、a8、a10、a12和a14需要使
Figure BDA0003985125240000164
取得最小值,将其转化为线性最小二乘法求解MN×6a6×1-zpN×1加权平均和的最小值,得出系数矩阵。
其中,线性矩阵为:
Figure BDA0003985125240000171
系数矩阵为:
a6×1=[a4 a6 a8 a10 a12 a14]T
列向量:
zpN×1=[zp1 zp2 … zpN]T
可得:
a6×1=(MN×6 TMN×6)-1MN×6 TzpN×1
上述标准方程的系数a4、a6、a8、a10、a12、a14,可根据数值计算的误差值进行选择,当拟合面型误差为10-7mm以下时,可以达到预定精度,可以减少拟合阶数,即系数最高为14阶a14降低为12阶a12或者10阶a10,甚至更低。当面型误差满足不了精度要求,可提高拟合阶数,将最高阶项变为a16或者更高。通常误差会随着拟合阶数提高而减小,但越到后面阶数提高对精度的影响越小,即提高得越不明显。根据视场或物点高度以及透镜孔径,对轴外物点Q进行严格的光线追踪,轴外物点Q发出经过光入射面顶点的光线(即,主光线)通过透镜传输与像面的交点Q'的高度为yb,轴外物点Q发出的光线从透镜光入射面上边缘A点或称为上光线折射进入透镜,从光出射面折射出去与像面的交点Q1'的高度为yb1,轴外物点Q发出经过光入射面下边缘的光线或称为下光线通过透镜传输与像面的交点Q2'的高度为yb2,计算
Figure BDA0003985125240000172
可根据实际的透镜光学特性,选择不同孔径(不是全孔径)的光线对,比如0.9孔径处的光线对,进行光线追踪计算出Δy。或者选择不同物点高度(不是最大物点高度),比如0.9ya处的光线对,进行光线追踪计算出Δy。上述光线追踪按以下方式进行:由轴上点P到A点的坐标可确定P到A的单位向量
Figure BDA0003985125240000173
再由A点和B点的坐标确定A到B的单位向量
Figure BDA0003985125240000174
通过
Figure BDA0003985125240000175
Figure BDA0003985125240000176
可以计算出A点的法向量
Figure BDA0003985125240000177
而轴外点Q的坐标和A点的坐标可确定Q到A的单位向量
Figure BDA0003985125240000181
即入射矢量,利用折射定律由法向量
Figure BDA0003985125240000182
可计算出进入透镜的折射矢量,由于光出射面为已知球面,从而可求解出该折射矢量与光出射面交点B’以及相应的法向量
Figure BDA0003985125240000183
再由折射定律可得出从透镜出射的单位矢量,从而得出像面交点坐标,下边光线计算类似,不再进行阐述。根据光出射面顶点离像点的距离lb和透镜的中心厚度d的可选范围(lbmin~lbmax,dmin~dmax),分别取N1和N2个值,即
Figure BDA0003985125240000184
Figure BDA0003985125240000185
重复上述S102、S103、S104和S105,根据光线追踪法绘出关于d和lb
Figure BDA0003985125240000186
的函数分布轮廓图。根据Δy处于最小值的条件确定r′、r、la、d、lb、f及光入射面的非球面系数。上述取值和点数划分,可以根据函数分布轮廓图结果和加工公差进行设置,当函数分布轮廓图在某些区域较为集中时,可以缩小lb和d的选择范围(l′bmin~l′bmax,d′min~d′max),并反复多次进行,而计算点数与划分的步长相关,可令lb的划分步长
Figure BDA0003985125240000187
小于或等于lb的公差,d的划分步长
Figure BDA0003985125240000188
小于或等于d的公差来确定计算点数。将单非球面透镜进行光线追踪仿真验证,结果是否满足要求,如不满足要求则回到S101,改变初始参数再进行下述步骤,满足要求则完成透镜设计。
可选地,通过上述步骤完成轴上球差校正以及最大程度减小轴外彗差影响,可以根据透镜光学特性,前后移动像面产生离焦使轴上和轴外成像趋向均衡。
下面以激光雷达发射透镜为例来说明上述设计方法,由于激光雷达发射视场通常较小,设全视场为1°,激光器经过透镜后准直输出,可将物像关系倒过来看,其物距视为无穷远,la=∞,激光发光面离透镜光出射面顶点距离为lb,lb,根据上述公式取la=∞,可计算确定光入射面和光出射面顶点处的曲率半径为:
Figure BDA0003985125240000191
激光工作波长为905nm,选择PMMA塑料作为透镜材料,相应折射率为n=1.4843,透镜焦距f=24.00mm,根据激光器发散角设定数值孔径为0.38,即孔径20.00mm。
lb预设选择范围是:14.0~17.0mm,d预设选择范围是:14.0~17.0mm,分别取N1=66和N2=64个离散值计算关于d和lb
Figure BDA0003985125240000192
的函数分布轮廓图,如图3所示的关于d和lb
Figure BDA0003985125240000193
的函数分布轮廓图。根据图3计算的结果可知,Δy的最小值集中分布在lb的15.0mm至16.5mm区域,d取值范围仍在14.0~17.0mm,因此,重新选择lb预设选择范围是:15.0~16.5mm,d预设选择范围是:14.0~17.0mm,步长为0.01mm,小于加工误差,分别取N1=150和N2=30个离散值计算|yb1-yb|,|yb2-yb|,
Figure BDA0003985125240000194
Figure BDA0003985125240000195
关于d和lb的函数分布轮廓图,如图4、图5、图6所示。
根据图4、图5、图6,Δy所在的最小值区域,选择lb=15.12mm,d=16.88mm,作为初始参数计算得出,r′=14.90mm,r=-33.32mm,通过费马等光程原理结合折射定律,以及数值拟合得出单非球面准直透镜参数,如表1所示。
表1本申请方法得出的单非球面准直透镜参数表
Figure BDA0003985125240000196
为了将本申请(初级彗差系数为0.004222,初级彗差未完全校正)与初级彗差校正的透镜比较,在同样折射率,透镜焦距和数值孔径条件下,实现轴上像差的完全校正以及初级彗差校正,即初级彗差系数为0的单非球面准直透镜参数表,如表2所示。
表2校正初级彗差的单非球面准直透镜参数表
Figure BDA0003985125240000201
参见图7和图8所示的单非球面透镜的点列图、像差曲线和透镜轮廓图。根据上述仿真结果可知,两款透镜均校正了轴上像差,本申请和校正初级彗差的单非球面准直透镜在0°视场的RMS半径分别为0.08μm和0.11μm,几何半径分别为0.10μm和0.15μm,在0.25°视场的RMS半径分别为1.22μm和3.50μm,几何半径分别为2.20μm和8.70μm,在0.5°视场的RMS半径分别为2.52μm和7.14μm,几何半径分别为4.80μm和18.32μm。本申请对于轴外视场的光学特性要优于校正初级彗差的单非球面准直透镜,并且点列图大多分布在艾里环附近或相当(分布在艾里环内的点通常被视为完美成像),根据子午面和弧矢面的像差曲线,可知总体上子午面像差要大于弧矢面的像差,校正初级彗差的单非球面透镜,在孔径较小时,像差特性表现较好,而随着孔径增大而急剧变差,像差曲线呈现单向递增特性,而本申请通过搜寻数值计算来校正边缘像差的方式构造出的透镜特性,在孔径较小和孔径边缘时,像差特性表现较好,朝向孔径中间逐渐变差,显示出初级像差和高级像差的补偿优化作用。
本申请的透镜参数通过取N=2800个点,根据公式(1)~(3)计算得到光入射面的离散点,并且通过上述最小二乘法拟合比较拟合误差在最高阶次为12时达到10-7mm量级范围内满足设计要求,从而得出表1的透镜参数,在最高阶为10和12的非球面系数拟合矢高误差如图9所示。
可选地,由于轴上像点成像具有一定的调节余量,比如均位于艾里环内,因此实际应用中,可以考虑通过离焦的方式使不同视场成像特性趋于均衡,通过前后调节像面0.002mm的距离,如图10所示。
进一步,根据费马原理考虑轴外物点理想成像的条件,光出射面仍为球面,由于轴上点具有旋转对称性,要求光入射面面型参数也是旋转对称型分布,而轴外点由于偏离了光轴的对称轴,要满足理想成像条件,面型必须为非对称性分布,由此可知理论上不存在一种表面形状即满足轴上点理想成像又满足轴外点理想成像,参见图11和图12,由费马原理分别计算轴上点理想成像的面型1,函数为z1=η(h1)和轴外点理想成像的面型2,函数为z2=ζ(h2),计算过程中通过自反馈迭代来实现与光轴处于同一交点这个条件,即ζ(0)=η(0),迭代方式是对于轴外点取一个初始值l′a计算出Δz=ζ(0)-η(0),根据再由反馈值进行下一步的迭代I'a=I'a-φ(Δz)计算,如此反复,直到Δz<ε小于预定误差来实现,其中φ(Δz)为关于Δz变量的函数,如简单的线性函数φ(Δz=k*Δz。该方法与通常的二分法相比,具有不需要指定求解边界,并且迭代步骤随着偏差而变化,当偏差较大时迭代步骤增加,而偏差减小时迭代步骤减小,具有较好的收敛性。
通过比较在面型1时上半部分面型z1=η(h1),>0和下半部分面型z1=η(h1),h1<0,透镜的成像特性或点列图RMS半径,如果上半部分面型优于下半部面型,则用面型2的下半部分面型z2=ζ(h2),h2<0作为离散点进行非球面系数拟合,反之,如果下半部分面型优于上半部面型,则用面型2的上半部分面型z2=ζ(h2),h>0作为离散点进行非球面系数拟合。最后,通过叠加两个面型的权重得到最终视场均衡作用的综合面型,即
z=w1z1+w2z2=w1η(h1)+w2ζ(h2),将通常光学软件不同视场的像差优化权重转换成,轴上理想面型结合自身占有权重组合轴外理想面型结合自身占有权重而得出透镜面型参数,即ci=w1ai+w2bi,其中ai,bi,ci分别为面型1拟合后的非球面系数,面型2拟合后的非球面系数,综合面型的非球面系数,w1为面型1所设的权重,w2为面型2所设的权重。图13为在权重w1=0.95和w2=0.05下得出的综合面型均衡视场的点列图。
特别地,上述标准方程的最高阶数可以低于14,如12、10、8、6、4。
特别地,上述标准方程的最高阶数可以高于14,如16、18、20、22、24。
特别地,上述标准方程可采用非线性多变量拟合方法。
特别地,上述计算得出的透镜参数可根据需求在光学软件上进行特定优化。
进一步,上述计算得出的透镜参数可通过离焦进行优化。
进一步,上述计算得出的透镜参数可通过轴上理想面型与轴外理想面型按权重组合进行视场均衡。
本申请实施例提供了一种单非球面透镜,单非球面透镜的光入射面为非球面,光出射面为球面,且单非球面透镜的各项参数根据本申请实施例第一方面提供的任一项单非球面透镜设计方法得到。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

1.一种单非球面透镜设计方法,其特征在于,所述单非球面透镜的光入射面为非球面,光出射面为球面,所述设计方法包括:
获取预先设定的光入射面顶点离物点的距离、单非球面透镜的焦距、光出射面顶点离像点的距离和单非球面透镜的中心厚度;
基于所述光入射面顶点离物点的距离、所述单非球面透镜的焦距、所述光出射面顶点离像点的距离和所述单非球面透镜的中心厚度,确定所述光入射面顶点处曲率半径的值和所述光出射面顶点处曲率半径的值;
根据所述光入射面顶点离物点的距离、所述单非球面透镜的中心厚度、所述光出射面顶点离像点的距离和所述光出射面顶点处曲率半径的值,建立使所述单非球面透镜满足等光程条件的参数关系方程组;
根据所述参数关系方程组计算所述光入射面的面型离散点,对所述光入射面的面型离散点进行拟合得到圆锥系数的值和非球面系数,并基于所述光入射面顶点处曲率半径的值、所述圆锥系数的值和所述非球面系数确定所述光入射面的标准方程;
在确定所述光入射面的标准方程之后,根据光线追踪法确定边缘光线和主光线与像面交点的高度变化量;
根据所述高度变化量得到关于所述光出射面顶点离像点的距离和所述单非球面透镜的中心厚度的函数分布轮廓图;基于所述函数分布轮廓图,确定所述单非球面透镜的各项参数。
2.如权利要求1所述的单非球面透镜设计方法,其特征在于,所述光入射面顶点处曲率半径的值的确定方法为:
Figure FDA0003985125230000011
所述光出射面顶点处曲率半径的值的确定方法为:
Figure FDA0003985125230000021
其中,r'为光入射面顶点处曲率半径的值,r为光出射面顶点处曲率半径的值,n为单非球面透镜的折射率,d为单非球面透镜的中心厚度,f为单非球面透镜的焦距,la为光入射面顶点离物点的距离,lb为光出射面顶点离物点的距离。
3.如权利要求1所述的单非球面透镜设计方法,其特征在于,所述参数关系方程组为:
Figure FDA0003985125230000022
其中,r为光出射面顶点处曲率半径的值,n为单非球面透镜的折射率,d为单非球面透镜的中心厚度,la为光入射面顶点离物点的距离,lb为光出射面顶点离像点的距离,L0为入射光线与光出射面交点B到像点P′的距离,L1为从物点P入射的光线与光入射面交点A到光出射面交点B的距离,L2为物点P到光入射面交点A的距离,hp为入射光线与光入射面交点A离光轴的距离,θ为入射光线与光出射面交点B与光出射面球心o′的连线与光轴的夹角,α为从物点P入射的光线经过光入射面后光束方向与光轴夹角,u为从物点P入射的光线经过后单非球面透镜折射后出射光束方向与光轴夹角,z2为入射光线与光入射面交点A到像点沿光轴方向的投影距离,z1为入射光线与光出射面交点B到像点沿光轴方向的投影距离。
4.如权利要求1所述的单非球面透镜设计方法,其特征在于,所述根据所述参数关系方程组计算所述光入射面的面型离散点,包括:
将光出射面球心记为o′,入射光线与光出射面交点记为B,线段o′B与所述单非球面透镜的光轴的夹角记为θ;
对θ进行离散处理,并根据所述参数关系方程组,计算θ取不同离散值时入射光线与光入射面交点A离光轴的距离hp、入射光线与光入射面交点A到像点沿光轴方向的投影距离z2
根据zp=lb+d-Z2计算θ取不同离散值时所述光入射面的矢高zp,得到θ取不同离散值时所述光入射面的面型离散点(zp,hp)。
5.如权利要求1所述的单非球面透镜设计方法,其特征在于,所述光入射面的标准方程的确定方法为:
Figure FDA0003985125230000031
其中,k为圆锥系数的值,r'为光入射面顶点处曲率半径的值,hp为入射的光线与光入射面交点A离光轴的距离,a4、a6、a8、a10、a12、a14均为标准方程的系数。
6.如权利要求1所述的单非球面透镜设计方法,其特征在于,所述高度变化量的确定方法为:
Figure FDA0003985125230000032
其中,yb为轴外物点Q发出经过光入射面顶点的光线通过单非球面透镜传输与像面的交点Q'的高度,yb1为轴外物点Q发出的光线从单非球面透镜光入射面上边缘A点折射进入单非球面透镜,从光出射面折射出去与像面的交点Q1'的高度,yb2为轴外物点Q发出经过光入射面下边缘的光线通过单非球面透镜传输与像面的交点Q2'的高度。
7.如权利要求1所述的单非球面透镜设计方法,其特征在于,所述根据所述高度变化量得到关于所述光出射面顶点离像点的距离和所述单非球面透镜的中心厚度的函数分布轮廓图,包括:
重新获取所述光出射面顶点离像点的距离和所述单非球面透镜的中心厚度,重新确定光入射面顶点处曲率半径的值、光出射面顶点处曲率半径的值、参数关系方程组、圆锥系数的值、非球面系数、光入射面的标准方程,得到高度变化量,绘制出关于所述光出射面顶点离像点的距离和所述单非球面透镜的中心厚度的高度变化量的函数分布轮廓图。
8.如权利要求1所述的单非球面透镜设计方法,其特征在于,所述基于所述函数分布轮廓图,确定所述单非球面透镜的各项参数,包括:
根据所述函数分布轮廓图中高度变化量的最小值,确定所述单非球面透镜的各项参数。
9.如权利要求1所述的单非球面透镜设计方法,其特征在于,所述确定所述单非球面透镜的各项参数之后,还包括:
根据ci=w1ai+w2bi对所述单非球面透镜的各项参数进行修正;
其中,w1为第一预设权重,w2为第二预设权重,ai为轴上物点理想面型拟合后的非球面系数,bi为轴外物点理想面型拟合后的非球面系数,ci为综合预设面型拟合后的非球面系数。
10.一种单非球面透镜,其特征在于,所述单非球面透镜的光入射面为非球面,光出射面为球面,且所述单非球面透镜的各项参数根据权利要求1-9任一项所述的单非球面透镜设计方法得到。
CN202211562382.8A 2022-12-07 2022-12-07 单非球面透镜设计方法、单非球面透镜 Pending CN115993719A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211562382.8A CN115993719A (zh) 2022-12-07 2022-12-07 单非球面透镜设计方法、单非球面透镜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211562382.8A CN115993719A (zh) 2022-12-07 2022-12-07 单非球面透镜设计方法、单非球面透镜

Publications (1)

Publication Number Publication Date
CN115993719A true CN115993719A (zh) 2023-04-21

Family

ID=85991461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211562382.8A Pending CN115993719A (zh) 2022-12-07 2022-12-07 单非球面透镜设计方法、单非球面透镜

Country Status (1)

Country Link
CN (1) CN115993719A (zh)

Similar Documents

Publication Publication Date Title
CN113900228B (zh) 光学成像镜头
CN107505689B (zh) 投影镜头系统
WO2020119279A1 (zh) 准直镜头及投影模组
CN111367075B (zh) 以镜间隔为自由参量的平像场三反消像散望远镜设计方法
CN106168700A (zh) 光学成像系统
CN106168699A (zh) 光学成像系统
CN109387938B (zh) 光学系统自由曲面面形公差分布的分析方法
CN106324802A (zh) 光学成像系统
CN106154497A (zh) 光学成像系统
CN108318996B (zh) 准直镜头
CN111240010B (zh) 一种用于自由曲面测量的可变形镜面形设计方法及装置
CN108345094B (zh) 混合表面离轴三反光学系统
US8488237B2 (en) Wide spectral coverage Ross corrected Cassegrain-like telescope
CN108345106B (zh) 混合表面光学系统的设计方法
TWI734356B (zh) 光學成像鏡頭
TWI699575B (zh) 光學成像鏡頭
CN208092311U (zh) 准直镜头
TW201732351A (zh) 光學鏡片組
CN107300750B (zh) 光学成像镜头
WO2024007370A1 (zh) 一种折反射式不动型反摄远变焦系统设计方法
CN115993719A (zh) 单非球面透镜设计方法、单非球面透镜
CN113126270A (zh) 自由曲面离轴三反成像系统
JP6818274B2 (ja) カセグレン式望遠鏡
CN115933020A (zh) 一种透镜像散校正方法、装置、终端及存储介质
CN108873305A (zh) 一种大视场两反式Golay3稀疏孔径望远镜的设计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination