CN115955825A - 一种逆变器、功率设备及光伏系统 - Google Patents

一种逆变器、功率设备及光伏系统 Download PDF

Info

Publication number
CN115955825A
CN115955825A CN202310089428.7A CN202310089428A CN115955825A CN 115955825 A CN115955825 A CN 115955825A CN 202310089428 A CN202310089428 A CN 202310089428A CN 115955825 A CN115955825 A CN 115955825A
Authority
CN
China
Prior art keywords
cavity
evaporator
air
condenser
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310089428.7A
Other languages
English (en)
Inventor
孙发明
袁博
李泉明
蒙浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Digital Power Technologies Co Ltd
Original Assignee
Huawei Digital Power Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Digital Power Technologies Co Ltd filed Critical Huawei Digital Power Technologies Co Ltd
Priority to CN202310089428.7A priority Critical patent/CN115955825A/zh
Publication of CN115955825A publication Critical patent/CN115955825A/zh
Priority to PCT/CN2023/126838 priority patent/WO2024152652A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/42Conversion of DC power input into AC power output without possibility of reversal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供了一种逆变器、功率设备及光伏系统,用以提高逆变器等功率设备的散热性能,进而提高功率设备的使用可靠性。以功率设备为逆变器为例,其通常可包括壳体和散热装置。壳体可包括第一腔体和第二腔体,第一腔体设置有功率半导体器件。第二腔体具有第一进风口和第一出风口,第二腔体设置有磁性器件。散热装置包括散热器和第一风扇,散热器包括相连接的蒸发器和冷凝器,蒸发器设置于第二腔体,功率半导体器件与蒸发器导热接触,以实现对功率半导体器件的散热。第一风扇设置于第二腔体,第一风扇的进风侧朝向第一进风口,第一风扇的出风侧朝向第一出风口,则蒸发器与磁性器件共用第一风扇,其有利于减小逆变器的占地面积。

Description

一种逆变器、功率设备及光伏系统
技术领域
本申请涉及散热技术领域,尤其涉及到一种逆变器、功率设备及光伏系统。
背景技术
随着逆变器的功率越来越大,逆变器机箱内部的单板、在板元器件以及线缆等结构的发热量也越来越大。由于功率半导体器件等大功率器件都布置在机箱内部,而功率半导体器件的损耗占逆变器总损耗的70%左右,这就使得功率半导体器件的热耗密度较高,传统的风冷散热已无法满足功率持续提升的功率半导体器件的散热需求,这将严重影响功率半导体器件的性能。另外,逆变器机箱主要依靠机箱壁面对外自然散热,然而这种散热方式的散热能力较为有限,导致机箱内部无法实现有效降温,从而影响内部元器件的寿命和可靠性,进而影响到逆变器整体的使用寿命。
因此,如何实现对机箱内部的元器件的有效散热,以提升逆变器的散热性能,已成为当前亟待解决的技术问题。
发明内容
本申请提供了一种逆变器、功率设备及光伏系统,用以提升逆变器等功率设备的散热性能,进而提高功率设备的使用可靠性。
第一方面,本申请提供了一种逆变器,该逆变器可包括壳体和散热装置。其中,壳体包括第一腔体和第二腔体,第一腔体可为防护等级较高的腔体,且第一腔体内可设置有功率半导体器件。第二腔体为通风腔体,且第二腔体具有第一进风口和第一出风口,另外,第二腔体内可设置有磁性器件。散热装置可包括散热器和第一风扇,散热器包括蒸发器和冷凝器,且蒸发器和冷凝器通过两相管路连接。蒸发器可设置于第二腔体,且功率半导体器件可与蒸发器导热接触,则功率半导体器件产生的热量可传导至蒸发器,以使蒸发器内液态的制冷剂蒸发为气态,该气态的制冷剂可经过两相管路中的气体管路进入至冷凝器中重新冷却凝结为液态的制冷剂后,再在重力的作用下通过两相管路中的液体管路回流至蒸发器,从而实现对功率半导体器件的散热。
另外,第一风扇可设置于第二腔体,第一风扇的进风侧朝向第一进风口设置,第一风扇的出风侧可朝向第一出风口设置,从而可在第二腔体内形成第一风道。而蒸发器与磁性器件可共用该第一风扇和第一风道,其可使逆变器的散热能力以及功率密度得到有效的提升,从而可有利于提升逆变器内各器件的性能可靠性,并且还可以使逆变器的占地面积较小。
除了蒸发器可设置于第二腔体内,在本申请一个可能的实现方式中,冷凝器也可设置于第二腔体。并且当逆变器沿重力方向设置时,冷凝器可位于蒸发器的上方,这样可使经冷凝器冷凝为液态的制冷剂在重力的作用下回流至蒸发器,从而无需为制冷剂在蒸发器与冷凝剂之间的循环设置驱动机构,从而可简化散热器的结构。
当逆变器沿重力方向设置时,在具体将冷凝器设置于第二腔体时,可使冷凝器位于第一腔体的上方,此时第二腔体的第一进风口可朝冷凝器到第一腔体的方向开设,则第一出风口可朝第二腔体到第一腔体的方向开设,从而可使第二腔体呈L型腔体结构,并使第一风道为L型风道。采用这样的设置方式,可有利于减小逆变器的占地面积,从而便于逆变器的布置以及维护。
在本申请中,为了降低流经冷凝器的气流温度,可以在第二腔体设置补风口,该补风口可位于冷凝器的朝向第一进风口的一侧。经该补风口进入第二腔体的气流可对由第一进风口到第一出风口方向流动的气流进行降温,另外,还可以使由第一进风口到冷凝器方向流动的气流所受到的阻力有效的降低,从而可以增大流经冷凝器的气流,以提升冷凝器的冷却效果,进而可提升整个逆变器的散热效果。
第二腔体除了可为上述的L型腔体外,还可以为直线型腔体。具体的,可以在将逆变器沿重力方向进行设置,使第二腔体位于第一腔体的上方,此时,第一进风口和第一出风口可相对设置,则第二腔体内形成的第一风道为直线型风道。这样,可以减小气流在第二腔体内流动的阻力,从而使流经冷凝器的气流较大,其可有利于提升冷凝器的冷却效果,进而可提升整个逆变器的散热效果。
在本申请一个可能的实现方式中,壳体还可以包括第三腔体,第三腔体也为通风腔体,其可包括第二进风口和第二出风口。散热装置可包括第二风扇,该第二风扇可设置于第三腔体,且第二风扇的进风侧朝向第二进风口设置,第二风扇的出风侧朝向第二出风口设置,从而可在第三腔体内形成第二风道。另外,冷凝器可设置于第三腔体内,在逆变器沿重力方向设置时,冷凝器可位于蒸发器的上方。通过将冷凝器单独设置于第三腔体,并为冷凝器单独设置第二风扇,可有效的增大流经冷凝器的气流,从而可有利于提升冷凝器的冷却效果。
由于冷凝器设置于第三腔体,蒸发器设置于第二腔体,且在逆变器沿重力方向设置时,冷凝器可位于蒸发器的上方。则由此可知,第三腔体可位于第二腔体的上方,基于此,可使第二进风口和第二出风口相对设置,以使第三腔体为直线型腔体。
另外,在本申请中,不对第三腔体内的第二风扇的数量进行限制,其示例性的可为至少两个。在沿第二进风口到第二出风口的方向上,该至少两个第二风扇可交错设置,从而可使流经冷凝器的气流得到有效的增大。
为了避免由第二腔体的第一出风口流出的被加热的气流进入第三腔体,可以使第三腔体的第二出风口与第二腔体的第一出风口的朝向相同,以使第三腔体的第二进风口与第二腔体的第一出风口的朝向不同。
在本申请一个可能的实现方式中,蒸发器可包括基板和散热翅片。则功率半导体器件可与基板导热接触。另外,散热翅片可设置于基板的背离第一腔体的一侧,也就是说散热翅片可位于第二腔体内。则在气流由第一进风口向第一出风口的方向流经蒸发器时,可以带走散热翅片处的热量,从而实现对蒸发器的散热。这样,可有效的提高散热器的散热能力,进而提高其对功率半导体器件的散热效率。
蒸发器除了可为一体式的结构外,还可以设置为分体式的结构。具体的,可使蒸发器包括第一子蒸发器和第二子蒸发器,第一子蒸发器设置于第一腔体,第二子蒸发器设置于第二腔体,则功率半导体器件可与第二子蒸发器导热接触。另外,第一子蒸发器和第二子蒸发器可分别通过两相管路与同于冷凝器连接。这样,第一腔体内的热空气可对第一子蒸发器内液态的制冷剂进行加热,以使其蒸发为气态,该气态的制冷剂可通过两相管路中的气体管路进入至冷凝器中重新冷却凝结为液态的制冷剂后,再通过两相管路中的液体管路回流至第一子蒸发器,从而实现对第一腔体的散热。另外,第一腔体内的功率半导体器件产生的热量可使第二子蒸发器内液态的制冷剂蒸发为气态,该气态的制冷剂可通过两相管路中的气体管路进入至冷凝器中重新冷却凝结为液态的制冷剂后,再通过两相管路中的液体管路回流至第二子蒸发器,从而实现对功率半导体器件的散热。采用该设置方式,可以有效的提高逆变器的散热效率,从而有利于提升逆变器中各元器件的性能。
为了实现对第一腔体的散热,逆变器还可以包括换热器,换热器可设置于第二腔体,且换热器可设置于第一腔体的第一侧壁。换热器可包括送风口和回风口,第一侧壁可开设有第一通风口和第二通风口,则送风口可通过第一通风口与第一腔体相连通,回风口可通过第二通风口与第一腔体相连通。这样,换热器可通过送风口和第一通风口向第一腔体内送入空气,并使第一腔体内被加热的空气由回风口和第二通风口回到换热器。
由于换热器设置于第一风道内,则在第一风道内的气流流经换热器时,可对换热器内的空气进行降温。也就是说第一腔体内被加热的空气进入换热器后可与第一风道内的气流进行换热,而换热后得到的冷空气可由换热器送入第一腔体,如此循环,即可实现对第一腔体的散热,其可有利于降低第一腔体内各器件失效的风险。
在本申请中,换热器也可以设置为分体形式,具体实施时,可使换热器包括第一子换热器和第二子换热器,第一子换热器设置于第一腔体,第二子换热器设置于第二腔体,且第一子换热器与第二子换热器导热连接,从而通过第一子换热器与第二子换热器之间的换热来实现对第一腔体的散热。
在本申请另一个可能的实现方式中,当换热器设置为分体形式时,第一子换热器可设置于第一腔体,而第二子换热器还可以与冷凝器集成为一体,此时也可以使第一子换热器与第二子换热器导热连接。这样,可使第二子换热器与冷凝器共用一个蒸发器,从而可有效的提升逆变器的集成度,以有利于实现逆变器的小型化设计。
第二方面,本申请还提供一种功率设备,该功率设备可包括壳体和散热装置。其中,壳体包括第一腔体和第二腔体,第一腔体可为防护等级较高的腔体,且第一腔体内可设置有第一待散热器件。第二腔体为通风腔体,且第二腔体具有第一进风口和第一出风口,另外,第二腔体内可设置有第二待散热器件。散热装置可包括散热器和第一风扇,散热器包括蒸发器和冷凝器,且蒸发器和冷凝器通过两相管路连接。蒸发器可设置于第二腔体,且第一待散热器件可与蒸发器导热接触,则第一待散热器件产生的热量可传导至蒸发器,以使蒸发器内液态的制冷剂蒸发为气态,该气态的制冷剂可经过两相管路中的气体管路进入至冷凝器中重新冷却凝结为液态的制冷剂后,再在重力的作用下通过两相管路中的液体管路回流至蒸发器,从而实现对第一待散热器件的散热。
另外,第一风扇可设置于第二腔体,第一风扇的进风侧朝向第一进风口设置,第一风扇的出风侧可朝向第一出风口设置,从而可在第二腔体内形成第一风道。而蒸发器与第二待散热器件可共用该第一风扇和第一风道,其可使功率设备的散热能力以及功率密度得到有效的提升,从而可有利于提升功率设备内各器件的性能可靠性,并且还可以使功率设备的占地面积较小。
第三方面,本申请还提供了一种功率设备,该功率设备可包括壳体和散热装置。其中,壳体包括第一腔体和第二腔体,第一腔体可为防护等级较高的腔体,且第一腔体内可设置有第一待散热器件。第二腔体为通风腔体,且第二腔体具有第一进风口和第一出风口,另外,第二腔体内可设置有换热器。散热装置可包括散热器和第一风扇,散热器包括蒸发器和冷凝器,且蒸发器和冷凝器通过两相管路连接。蒸发器可设置于第二腔体,且第一待散热器件可与蒸发器导热接触,则第一待散热器件产生的热量可传导至蒸发器,以使蒸发器内液态的制冷剂蒸发为气态,该气态的制冷剂可经过两相管路中的气体管路进入至冷凝器中重新冷却凝结为液态的制冷剂后,再在重力的作用下通过两相管路中的液体管路回流至蒸发器,从而实现对第一待散热器件的散热。
另外,第一风扇可设置于第二腔体,第一风扇的进风侧朝向第一进风口设置,第一风扇的出风侧可朝向第一出风口设置,从而可在第二腔体内形成第一风道。而蒸发器与换热器可共用该第一风扇和第一风道,其可使功率设备的散热能力以及功率密度得到有效的提升,从而可有利于提升功率设备内各器件的性能可靠性,并且还可以使功率设备的占地面积较小。
在具体设置换热器时,其可包括送风口和回风口,第一侧壁可开设有第一通风口和第二通风口,则送风口可通过第一通风口与第一腔体相连通,回风口可通过第二通风口与第一腔体相连通。这样,换热器可通过送风口和第一通风口向第一腔体内送入空气,并使第一腔体内被加热的空气由回风口和第二通风口回到换热器。
由于换热器设置于第一风道内,则在第一风道内的气流流经换热器时,可对换热器内的空气进行降温。也就是说第一腔体内被加热的空气进入换热器后可与第一风道内的气流进行换热,而换热后得到的冷空气可由换热器送入第一腔体,如此循环,即可实现对第一腔体的散热。其可有利于降低第一腔体内各器件失效的风险。基于此,磁性器件等待散热器件也可设置于第一腔体,且该待散热器件的性能较佳。
第四方面,本申请还提供了一种光伏系统,该光伏系统可包括电池板以及前述第一方面任一可能的实施方案中的逆变器。其中,电池板可用于将太阳能转化为电能,逆变器则可用于对来自电池板的电流进行功率转换,或者对来自电池板的电压进行功率转换,以使光伏系统的输出功率与外部用电设备的功率相匹配。由于逆变器的散热性能较好,因此该光伏系统的可靠性也得以提升。
第五方面,本申请还提供了一种光伏系统,该光伏系统可包括电池板以及前述第二方面或第三方面的功率设备。其中,电池板可用于将太阳能转化为电能,功率设备则可用于对来自电池板的电流进行功率转换,或者对来自电池板的电压进行功率转换,以使光伏系统的输出功率与外部用电设备的功率相匹配。由于功率设备的散热性能较好,因此该光伏系统的可靠性也得以提升。
第六方面,本申请还提供了一种光伏系统,该光伏系统可包括至少两台功率设备,功率设备可包括壳体和散热装置。其中,壳体包括第一腔体和第二腔体,第一腔体可为防护等级较高的腔体,且第一腔体内可设置有第一待散热器件。第二腔体为通风腔体,且第二腔体具有第一进风口、第一出风口和补风口,另外,第二腔体内可设置有第二待散热器件。散热装置可包括散热器和第一风扇,散热器包括蒸发器和冷凝器,且蒸发器和冷凝器通过两相管路连接。蒸发器可设置于第二腔体,且第一待散热器件可与蒸发器导热接触,则第一待散热器件产生的热量可传导至蒸发器,以使蒸发器内液态的制冷剂蒸发为气态,该气态的制冷剂可经过两相管路中的气体管路进入至冷凝器中重新冷却凝结为液态的制冷剂后,再在重力的作用下通过两相管路中的液体管路回流至蒸发器,从而实现对第一待散热器件的散热。
另外,第一风扇可设置于第二腔体,第一风扇的进风侧朝向第一进风口设置,第一风扇的出风侧可朝向第一出风口设置,从而可在第二腔体内形成第一风道。而蒸发器与第二待散热器件可共用该第一风扇和第一风道,其可使功率设备的散热能力以及功率密度得到有效的提升,从而可有利于提升功率设备内各器件的性能可靠性,并且还可以使功率设备的占地面积较小。
在该光伏系统中,功率设备可沿重力方向设置,此时冷凝器可位于第一腔体的上方,第一进风口可朝冷凝器到第一腔体的方向开设,第一出风口可朝第二腔体到第一腔体的方向开设,补风口位于冷凝器的朝向第一进风口的一侧。则在将至少两台功率设备并排设置时,可在相邻的两台功率设备之间设置风道挡板,且在至少两台功率设备的排列方向上,风道挡板可用于将前一功率设备的补风口与后一功率设备的第一出风口隔开,这样,可有效的避免由后一功率设备的第一出风口流出的气流通过补风口进入前一功率设备,从而可使各个功率设备的散热性能较佳,进而使光伏系统的可靠性得以提升。
附图说明
图1为本申请实施例提供的一种功率设备的侧面剖视图;
图2a为本申请实施例提供的另一种功率设备的侧面剖视图;
图2b为图2a所示的功率设备的右视图;
图3为本申请实施例提供的一种功率设备组的结构示意图;
图4a为本申请实施例提供的另一种功率设备的侧面剖视图;
图4b为图4a所示的功率设备的右视图;
图5a为本申请实施例提供的另一种功率设备的侧面剖视图;
图5b为图5a所示的功率设备的右视图;
图6为本申请实施例提供的另一种功率设备的侧面剖视图;
图7为本申请实施例提供的另一种功率设备的侧面剖视图;
图8为本申请实施例提供的另一种功率设备的侧面剖视图;
图9为本申请实施例提供的另一种功率设备的侧面剖视图;
图10为本申请实施例提供的另一种功率设备的侧面剖视图;
图11为本申请实施例提供的另一种功率设备的侧面剖视图;
图12为本申请实施例提供的另一种功率设备的侧面剖视图;
图13为本申请实施例提供的另一种功率设备的侧面剖视图;
图14为本申请实施例提供的另一种功率设备的侧面剖视图;
图15a为本申请实施例提供的另一种功率设备的侧面剖视图;
图15b为图15a所示的功率设备的右视图;
图15c为图15b中A处的局部结构放大图。
附图标记:
1-壳体;101-第一腔体;1011-第一待散热器件;1012-功率板;1013-第一侧壁;
102-第二腔体;1021-第一进风口;1022-第一出风口;1023-第二待散热器件;
1024-补风口;1025-换热器;10251-第一子换热器;10252-第二子换热器;
103-第三腔体;1031-第二进风口;1032-第二出风口;104-风道挡板;
2-散热器;201-蒸发器;2011-第一子蒸发器;2012-第二子蒸发器;2013-散热翅片;
2014-基板;202-冷凝器;203-两相管路;2031-气体管路;2032-液体管路;
3-第一风扇;4-第二风扇。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式。在图中相同的附图标记表示相同或类似的结构,因而将省略对它们的重复描述。本申请实施例中所描述的表达位置与方向的词,均是以附图为例进行的说明,但根据需要也可以做出改变,所做改变均包含在本申请保护范围内。本申请实施例的附图仅用于示意相对位置关系,其并不代表真实比例。
需要说明的是,在以下描述中阐述了具体细节以便于理解本申请。但是本申请能够以多种不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似推广。因此本申请不受下面公开的具体实施方式的限制。
为了便于对本申请提供的功率设备及光伏系统进行理解,首先对其应用场景进行介绍。光伏系统是利用半导体材料的光伏效应,将太阳能转化为电能的一种发电系统。光伏系统通常可包括电池板和功率设备,其中,电池板可用于将太阳能转化为电能,功率设备则可用于对来自电池板的电流进行功率转换,或者也可用于对来自电池板的电压进行功率转换,以使光伏系统的输出功率与外部用电设备的功率相匹配。示例性地,功率设备包括但不限于为逆变器、整流器或斩波器等。在本申请实施例中,以功率设备为逆变器为例对其具体设置方式进行说明。
随着功率设备的功率越来越大,功率设备机箱内部的单板、在板元器件和线缆等部件的发热量也越来越大,由此导致机箱内部的温度升高,这对于机箱内部设置的元器件非常不利。尤其是对一些热耗密度较高的功率器件,在持续高温的影响下,功率器件的失效风险显著升高。
目前,传统的风冷散热已无法满足功率密度和热耗密度持续升高的功率设备的散热要求,从而导致功率设备的机箱内部无法实现有效降温,因此机箱内部的各类元器件的寿命和可靠性不能得到保障,进而会影响到功率设备整体的使用寿命。
针对上述问题,本申请实施例通过对功率设备的散热方式进行改进,可以实现对功率设备内部的有效散热,从而降低功率设备内部元器件失效的风险,提高功率设备的使用可靠性。下面将结合附图对本申请实施例提供的功率设备进行具体说明。
参考图1,图1为本申请实施例提供的一种功率设备的侧面剖视图,在该实施例中,功率设备可以包括壳体1和散热装置。其中,壳体1可以包括第一腔体101和第二腔体102,第二腔体102可设置于第一腔体101的一侧,且第二腔体102可与第一腔体101固定连接。另外,第一腔体101可以为封闭腔体,第二腔体102可以为通风腔体。这样,功率设备中对于防水、防尘或者防腐蚀等性能要求相对较高的器件可以设置于第一腔体101内,而对于没有这类防护要求或者防护要求相对较低的器件则可以设置于第二腔体102内。
示例性的,第一腔体101内可设置有第一待散热器件1011,该第一待散热器件1011可以为功率器件,其例如可为绝缘栅双极型晶体管(insulated gate bipolartransistor,IGBT)等功率半导体器件。可继续参照图1,功率设备还可以包括设置于第一腔体101内的功率板1012,第一待散热器件1011具体可以设置于功率板1012的朝向第二腔体102的一面。另外,第一待散热器件1011的数量可以为一个或多个,本申请对此不作限制。值得一提的是,功率板1012上除设置有功率器件以外,也可以设置有其它电子元器件,如电容等,这些电子元器件既可以设置于功率板1012的朝向第二腔体102的一面,也可以设置于功率板1012的背向第二腔体102的一面,本申请对此同样不作限制。
可继续参照图1,第二腔体102可具有第一进风口1021和第一出风口1022,在本申请中,可将第二腔体102理解为一个罩体或者管道结构。另外,散热装置可包括散热器2,该散热器2包括蒸发器201、冷凝器202以及用于连接蒸发器201和冷凝器202的两相管路203。其中,两相管路203包括气体管路2031和液体管路2032,蒸发器201内液态的制冷剂受热汽化后通过气体管路2031进入冷凝器202,而经冷凝器202被重新冷凝为液态的制冷剂可在重力的作用下通过液体管路2032回流至蒸发器。
在图1所示的功率设备中,蒸发器201可设置于第二腔体102内,且蒸发器201可与第一腔体101的侧壁相连接。为了便于描述,在本申请以下各实施例中,可将第一腔体101的用于与第二腔体102连接的侧壁称为第一侧壁1013。
为了使第一待散热器件1011产生的热量能够传递给蒸发器201,可以在第一侧壁1013上开设安装孔(图1中未示出),该安装孔由第一腔体101到第二腔体102的方向贯穿第一侧壁1013。这样,可以将第一待散热器件1011安装于该安装孔,并使第一待散热器件1011与蒸发器201导热接触,从而可使第一待散热器件1011产生的热量能够直接传递至蒸发器201,以减小第一待散热器件1011到蒸发器201的导热路径,从而可提高热量由第一待散热器件1011到蒸发器201的传导效率。
可以理解的是,在该实施例中,在将蒸发器201设置于第一侧壁1013时,可以使蒸发器201将上述安装孔封堵,从而可使第一腔体101具有较高的封闭性。另外,当第一待散热器件1011为多个时,可在第一侧壁1013上对应每个第一待散热器件1011的位置分别设置安装孔,以使各个第一待散热器件1011均可以通过对应的安装孔与蒸发器201导热接触。
如图1所示,由于通常情况下,功率设备在使用时其可沿重力方向进行设置,此时,冷凝器202可设置于蒸发器201的上方。这样,第一待散热器件1011产生的热量可使蒸发器201内液态的制冷剂蒸发为气态,该气态的制冷剂可通过两相管路203中的气体管路2031进入至冷凝器202中重新冷却凝结为液态的制冷剂后,再在重力的作用下通过两相管路203中的液体管路2032回流至蒸发器201,从而实现对第一待散热器件1011的散热。
为了能够实现空气在第二腔体102内的流通,散热装置还可以包括第一风扇3。该第一风扇3可用于使空气由第一进风口1021向第一出风口1022的方向流动。具体实施时,可使第一风扇3的进风侧朝向第一进风口1021设置,并使第一风扇3的出风侧朝向第一出风口1022设置,从而可在第二腔体102内形成由第一进风口1021到第一出风口1022方向流动的气流,即在第二腔体102内形成第一风道。在图1所示的实施例中,冷凝器202也可设置于第二腔体102,且冷凝器202靠近第一出风口1022设置。这样,可将冷凝器202置于第一风道中,从而可通过第二腔体102内气流的流动来实现对进入至冷凝器202内的气体的冷却。
可以理解的是,为了能够对冷凝器202进行有效的冷却,第一风扇3既可以设置于冷凝器202的朝向第一进风口1021的一侧,也可以设置于冷凝器202的朝向第一出风口1022的一侧,在本申请中不对其进行具体限定,只要能够在第二腔体102内形成上述的第一风道即可。
由上文对散热器2的介绍可以知道,冷凝器202可设置于蒸发器201的重力方向的上方。则为了减小功率设备的占地面积,在图1所示的实施例中,可将冷凝器202与第一腔体101沿重力方向进行布置。具体实施时,在沿重力方向上,冷凝器202可布置于第一腔体101的上方。
另外,在图1所示的功率设备中,第一侧壁1013可沿重力方向设置。由于蒸发器201设置于第一腔体101的第一侧壁1013,则为了能够将蒸发器201与冷凝器202均置于第一风道中,在一种可能的实现方式中,可以在沿重力方向上,使第二腔体102的第一进风口1021朝冷凝器202到第一腔体101的方向开设,也就是说第一进风口1021朝功率设备的底部方向开设。而第二腔体102的第一出风口1022可朝第二腔体102到第一腔体101的方向开设。从而可使第二腔体102呈L型腔体,并在第二腔体102内形成底进顶出的L型第一风道。
可继续参照图1,在本申请该实施例中,第二腔体102内还可设置有第二待散热器件1023,该第二待散热器件1023可以但不限于为磁性器件,其例如可为电感。该第二待散热器件1023可设置于第一腔体101的第一侧壁1013。另外,在本申请该实施例中,不对第二待散热器件1023与蒸发器201在第二腔体102内的相对位置进行限定。示例性的,第二待散热器件1023与蒸发器201可沿重力方向并排设置或交错设置,例如在图1所示的功率设备中,第二待散热器件1023位于蒸发器201的朝向第一进风口1021的一侧。或者,在重力方向上,第二待散热器件1023与蒸发器201位于同一高度,且二者并排设置或交错设置。
可以理解的是,在将第二待散热器件1023与第一腔体101内的元器件进行电连接时,也可以在第一侧壁1013的与第二待散热器件1023相对应的位置开设通孔,以使第二待散热器件1023通过穿设于通孔的线缆实现与第一腔体101内的元器件的电连接。另外,在将第二待散热器件1023设置于第一侧壁1013时,其可以将上述通孔封堵,以保证第一腔体101的封闭性。
在本申请提供的功率设备中,通过使第一腔体101内的第一待散热器件1011与蒸发器201直接接触,以使第一待散热器件1011产生的热量能够直接传递至蒸发器201,并使蒸发器201内液态的制冷剂蒸发为气态,该气态的制冷剂可通过两相管路203中的气体管路2031进入至冷凝器202中重新冷却凝结为液态后,再在重力的作用下通过两相管路203中的液体管路2032回流至蒸发器201,从而可实现对第一待散热器件1011的散热。另外,由于散热器2、第一风扇3和第二待散热器件1023均设置于第二腔体102内,也就是说散热器2和第二待散热器件1023共用第一风扇3和第一风道,这样可在实现功率设备的有效散热的同时,使整个功率设备的尺寸较小。因此,本申请提供的功率设备的散热能力以及功率密度可得到有效的提升,从而可有利于提升功率设备内各器件的性能可靠性。
参照图2a,图2a为本申请实施例提供的另一种功率设备的侧面剖视图。该功率设备与上述图1所示的功率设备的主要不同在于:在图2a所示的功率设备中,第二腔体102还可以设置有补风口1024,该补风口1024可位于冷凝器202的朝向第一进风口1021的一侧。而图2a中所示的功率设备的其它结构均可参照图1中的功率设备进行设置,在此不进行赘述。
可以理解的是,补风口1024可设置于第二腔体102的任意侧壁面。示例性的,可一并参照图2a和图2b,图2b为图2a所示的功率设备的右视图,其中,补风口1024可设置于第二腔体102的背离第一腔体101的侧壁面,也可以设置于第二腔体102的其它侧壁面。另外,补风口1024可为一个,也可以为至少两个,而当补风口1024为至少两个时,该至少两个补风口1024可均设置于同一个侧壁面,也可以分设于第二腔体102的不同的侧壁面,在本申请中不对其进行具体的限定。
在图2a所示的功率设备中,通过在第二腔体102设置补风口1024,并使该补风口1024位于冷凝器202的朝向第一进风口1021的一侧,可以降低流经冷凝器的气流温度,并且还可以使第一风道内由第一进风口1021到冷凝器202方向流动的气流所受到的阻力有效的降低,从而可以增大流经冷凝器202的气流,以提升冷凝器202的冷却效果,进而可提升整个功率设备的散热效果。
在一些可能的应用场景中,例如在大型的光伏系统中,需要至少两台功率设备同时工作。这时,通常可将该至少两台功率设备并排设置。具体实施时,可参照图3,图3展示了将至少两台图2a所示的功率设备并排设置时的结构示意图。由上文对图2a所示的功率设备的介绍可以知道,该功率设备的第二腔体102的侧壁面设置有补风口1024,则在将至少两台图2a所示的功率设备并排设置时,还可以在相邻两台功率设备之间设置风道挡板104,该风道挡板104可与相邻两台功率设备连接,其示例性的可与相邻两台功率设备的第二腔体102的外侧壁连接。另外,在该至少两台功率设备的排列方向上,该风道挡板用于将前一功率设备的补风口与后一功率设备的第一出风口隔开。这样,可有效的避免由后一功率设备的第一出风口流出的气流通过补风口进入前一功率设备,从而可使各个功率设备的散热性能较佳,进而使光伏系统的可靠性得以提升。
参照图4a,图4a为本申请实施例提供的另一种功率设备的侧面剖视图。在图4a所示的功率设备中,蒸发器201还可以设置有散热翅片2013,该散热翅片2013设置于蒸发器201的基板2014的背离第一腔体101的表面,也就是说散热翅片2013位于第二腔体102内。另外,第一待散热器件1011可与基板2014导热接触。
另外,可参照图4b,图4b为图4a所示的功率设备的右视图。本申请中不对散热翅片2013的数量进行具体限定,其示例性的可为至少两个,且相邻的两个散热翅片2013间隔设置,这样可在两个散热翅片2013之间形成气体流通通道,气流在该气体流通通道内流动的方向可与第一风道内气流的流动方向一致,从而可使第一风道中的气流可由两个散热翅片2013之间的气体流通通道流过,从而有利于提高散热翅片2013与进入至第二腔体102的冷空气的散热效率。而图4a中所示的功率设备的其它结构均可参照图1和/或图2a中的功率设备进行设置,在此不进行赘述。
在图4a所示的功率设备中,通过在蒸发器201上设置散热翅片2013,可以有效的增大蒸发器201的散热面积。又由于蒸发器201设置于第一风道中,也就是说散热翅片2013位于第一风道中,则在气流由第一进风口1021向第一出风口1022的方向流经蒸发器201时,可以带走散热翅片2013处的热量,从而实现对蒸发器的201散热。这样,可有效的提高散热器2的散热能力,进而提高其对第一待散热器件1011的散热效率。
由于第一待散热器件1011设置于第一腔体101内,且第一待散热器件1011产生的热量较多,则其热量的部分会向第一腔体101内扩散,为了能够实现对第一腔体101的有效散热,可参照图5a,图5a为本申请实施例提供的另一种功率设备的侧面剖视图。在图5a所示的功率设备中,还可以包括换热器1025,该换热器1025可以设置于第二腔体102内,也就是说换热器1025设置于第一风道内。另外,换热器1025也可以设置于第一腔体101的第一侧壁1013。
通常情况下,换热器1025可以包括送风口(图5a中未示出)和回风口(图5a中未示出)。则为了能够实现换热器1025与第一腔体101的换热,在具体将换热器1025设置于第一侧壁1013时,可以在第一侧壁1013开设有第一通风口(图5a中未示出)和第二通风口(图5a中未示出)。其中,送风口可通过第一通风口与第一腔体101相连通,回风口可通过第二通风口与第一腔体101相连通。这样,换热器1025可通过送风口和第一通风口向第一腔体101内送入空气,并使第一腔体101内被加热的空气由回风口和第二通风口回到换热器1025。
由于换热器1025设置于第一风道内,则在第一风道内的气流流经换热器1025时,可对换热器1025内的空气进行降温。也就是说第一腔体101内被加热的空气进入换热器1025后可与第一风道内的气流进行换热,而换热后得到的冷空气可由换热器1025送入第一腔体101,如此循环,即可实现对第一腔体101的散热,其可有利于降低第一腔体101内各器件失效的风险。
在图5a所示的功率设备中,不对换热器1025在第一侧壁1013上的设置位置进行具体限定,其示例性的可设置于蒸发器201的朝向第一进风口1021的一侧,或者设置于蒸发器201的朝向第一出风口1022的一侧。另外,可参照图5b,图5b为图5a所示的功率设备的右视图,在该实施例中,换热器1025还可以跨设于蒸发器201,也就是说蒸发器201可位于换热器1025的送风口与回风口之间。这样,在使换热器1025和蒸发器201共用第一风道的同时,还可以使二者的设置空间相重叠,其有利于实现功率设备的尺寸的减小设计。
值得一提的是,图5a和图5b所示的功率设备的其它结构均可参照上述图1至图4b所示的功率设备进行设置,在此不进行赘述。另外,在一些可能的实施例中,当第二腔体102设置有换热器1025时,电感等磁性器件也可设置于第一腔体101内,此时,可将换热器1025看作第二待散热器件1023。
在本申请中,换热器1025除了可采用如图5a和图5b所示的一体式的结构外,还可以采用分体式结构。具体实施时,可参照图6,图6为本申请实施例提供的另一种功率设备的侧面剖视图。在图6所示的功率设备中,换热器1025可包括第一子换热器10251和第二子换热器10252,其中,第一子换热器10251设置于第一腔体101内,第二子换热器10252设置于第二腔体102内,且第一子换热器10251和第二子换热器10252可以但不限于通过热管等高导热元件或者两相管路等导热连接。
另外,第一子换热器10251可设置于第一腔体101内的任意位置,示例性的,在重力方向上,第一子换热器10251可位于第一腔体101的上端。第二子换热器10252可设置于第二腔体102内的任意位置,示例性的,如图6所示,第二子换热器10252可位于冷凝器202的朝向第一出风口1022的一侧;或者,如图7所示,第二子换热器10252可位于蒸发器201与冷凝器202之间;又或者第二子换热器10252可跨设于蒸发器201,以使二者的设置空间相重叠,从而有利于实现功率设备的尺寸的减小设计。
另外,除了换热器1025可设置为分体结构外,在本申请中,也可以将蒸发器201设置为分体结构。具体实施时,可参照图8,图8为本申请实施例提供的另一种功率设备的侧面剖视图。在图8所示的功率设备中,蒸发器201可包括第一子蒸发器2011和第二子蒸发器2012,其中,第一子蒸发器2011设置于第一腔体101内,第二子蒸发器2012设置于第二腔体102内,而第一子蒸发器2011和第二子蒸发器2012可共用一个冷凝器202,也就是说,第一子蒸发器2011和第二子蒸发器2012可分别通过两相管路203与同一个冷凝器202连接,其可有效的提高散热器2的集成化,从而使散热器2占用的空间较小。
可以理解的是,第一子蒸发器2011可设置于第一腔体101的任意位置,示例性的,在重力方向上,第一子蒸发器2011可位于第一腔体101的上端,以使第一子蒸发器2011与冷凝器202之间的距离较近,从而使连接二者的两相管路203的长度较小。另外,第二子蒸发器2012可设置于第二腔体102的任意位置,只要使第一腔体101内的第一待散热器件1011可通过第一侧壁1013上的安装孔与第二子蒸发器2012导热接触即可。
在图8所示的功率设备中,第一腔体101内的热空气可对第一子蒸发器2011内液态的制冷剂进行加热,以使其蒸发为气态,该气态的制冷剂可通过两相管路203中的气体管路2031进入至冷凝器202中重新冷却凝结为液态的制冷剂后,再通过两相管路203中的液体管路2032回流至第一子蒸发器2011,从而实现对第一腔体101的散热。另外,第一腔体101内的第一待散热器件1011产生的热量可使第二子蒸发器2012内液态的制冷剂蒸发为气态,该气态的制冷剂可通过两相管路203中的气体管路2031进入至冷凝器202中重新冷却凝结为液态的制冷剂后,再通过两相管路203中的液体管路2032回流至第二子蒸发器2012,从而实现对第一待散热器件1011的散热。
值得一提的是,在图8所示的功率设备中,第二子蒸发器2012也可以设置有散热翅片,该散热翅片可参照图4a所示的功率设备的蒸发器201的散热翅片2013进行设置,在此不进行赘述。另外,图6至图8所示的功率设备的其它结构均可参照上述图1至图5b所示的功率设备进行设置,在此不进行赘述。
上述各实施例提供的功率设备的第二腔体102均可呈L型结构,从而使第二腔体102内形成的第一风道为L型风道。在本申请其它一些可能的实施例中,第二腔体102的第一进风口1021和第一出风口1022的位置还可相对,从而在第二腔体102内形成直线型的第一风道。
具体实施时,可参照图9,图9为本申请实施例提供的另一种功率设备的侧面剖视图。在图9所示的功率设备中,第一腔体101和第二腔体102可叠置设置。另外,在沿重力方向上,第二腔体102可位于第一腔体101的上方。在本申请中,可将采用叠置方式进行设备的功率设备称为卧式功率设备。
在该实施例中,蒸发器201同样可设置于第一腔体101的第一侧壁1013第一腔体101的第一侧壁1013,只不过在该功率设备中,第一侧壁1013可为第一腔体101的顶壁。而第一腔体101内的第一待散热器件1011同样可通过开设于第一侧壁1013的安装孔与蒸发器201导热接触。
可继续参照图8,冷凝器202可位于蒸发器201的朝向第一出风口1022的一侧。另外,可以理解的是,为了使经冷凝器202重新凝结为液态的制冷剂能够回流至蒸发器201,在重力方向上,冷凝器202可位于蒸发器201的上方。
在图9所示的功率设备中,第一风扇3的进风侧朝向第一进风口1021设置,第一风扇3的出风侧朝向第一出风口1022设置,从而可在第二腔体102内形成由第一进风口1021到第一出风口1022方向流动的气流,即在第二腔体102内形成第一风道。由于在该第一风道中,气流在流动的过程中需要克服的阻力较小,从而可使流经冷凝器202的气流较大,其可有效的提升冷凝器202的冷却效果,进而提升整个功率设备的散热效果。
另外,第二待散热器件1023可设置于冷凝器202的朝向第一进风口1021的一侧。这样,散热器2和第二待散热器件1023可共用第一风扇3和第一风道,其可在实现功率设备的有效散热的同时,使整个功率设备的尺寸较小。因此,本申请提供的功率设备的散热能力以及功率密度可得到有效的提升,从而可有利于提升功率设备内各器件的性能可靠性。
可以理解的是,图9中所示的功率设备的其它结构均可参照图1中所示的功率设备进行设置,只需按照第一腔体101和第二腔体102的排列方向将其适应性的调整一下设置角度即可,在此不进行赘述。
为了提升卧式功率设备的散热效果,可参照图10,在图10所示的功率设备中,蒸发器201的基板2014上可设置有散热翅片2013,该散热翅片2013具体可参照图4a中功率设备的散热翅片2013进行设置,在此不进行赘述。另外,图10中所示的功率设备的其它结构均可参照图4a中所示的功率设备进行设置,只需按照第一腔体101和第二腔体102的排列方向将其适应性的调整一下设置角度即可,在此不进行赘述。
另外,参照图11,图11所示的功率设备中还设置有换热器1025,以通过换热器1025实现对第一腔体101的散热,从而提升整个卧式功率设备的散热效果。值得一提的是,图11所示的功率设备的换热器1025可参照图5a中功率设备的换热器1025进行设置,在此不进行赘述。另外,图11中所示的功率设备的其它结构均可参照图5a中所示的功率设备进行设置,只需按照第一腔体101和第二腔体102的排列方向将其适应性的调整一下设置角度即可,在此不进行赘述。
如上述图6所示的功率设备,其换热器1025可包括第一子换热器10251和第二子换热器10252。基于此,在卧式功率设备中,也可将换热器1025设置为分体式结构,例如在图12中所示的功率设备中,换热器1025可包括第一子换热器10251和第二子换热器10252,第一子换热器10251可设置于第一腔体101内,第二子换热器10252可设置于第二腔体102内,而第一子换热器10251和第二子换热器10252在具体设置时可参照图6所示的功率设备,在此不进行赘述。另外,图12中所示的功率设备的其它结构均可参照图6中所示的功率设备进行设置,只需按照第一腔体101和第二腔体102的排列方向将其适应性的调整一下设置角度即可,在此不进行赘述。
在本申请另外一个可能的实现方式中,当换热器1025包括第一子换热器10251和第二子换热器10252时,还可以将第二子换热器10252集成于冷凝器202中。具体实施时,可参照图13中所示的功率设备,此时可使第二子换热器10252与冷凝器202共用一个蒸发器201,从而可有效的提升功率设备的集成度,以有利于实现功率设备的小型化设计。
在卧式功率设备中,蒸发器201也可以设置为分体结构,如在图14所示的功率设备中,蒸发器201可包括第一子蒸发器2011和第二子蒸发器2012,其中,第一子蒸发器2011设置于第一腔体101内,第二子蒸发器2012设置于第二腔体102内,而第一子蒸发器2011和第二子蒸发器2012可共用一个冷凝器202,也就是说,第一子蒸发器2011和第二子蒸发器2012可分别通过两相管路203与同一个冷凝器202连接,其可有效的提高散热器2的集成化,从而使散热器2占用的空间较小。另外,第一子蒸发器2011在第一腔体101内的具体设置方式,以及第二子蒸发器2012在第二腔体102内的具体设置方式均可参照图8所示的功率设备,在此不进行赘述。另外,图14中所示的功率设备的其它结构均可参照图8中所示的功率设备进行设置,只需按照第一腔体101和第二腔体102的排列方向将其适应性的调整一下设置角度即可,在此不进行赘述。
在上述各功率设备中,均将整个散热器2都设置于第二腔体102内,以使整个散热器2和第二待散热器件1023共用第一风扇3和第一风道。而在本申请其它可能的实施例中,还可以使第二待散热器件1023与散热器2的部分共用第一风扇3和第一风道。具体实施时,可参照图15a,图15a为本申请实施例提供的另一个可能的功率设备的侧面剖视图。图15a所示的功率设备也可包括第一腔体101和第二腔体102,其中,第一腔体101和第二腔体102并排设置。
另外,第一腔体101内可设置有第一待散热器件1011,蒸发器201和第二待散热器件1023设置于第二腔体102内,且蒸发器201和第二待散热器件1023可设置于第一侧壁1013。在该功率设备中,第一侧壁1013可沿重力方向设置。第一待散热器件1011依然可通过贯穿第一侧壁1013的安装孔与蒸发器201导热接触,第二待散热器件1023可通过穿设于通孔的线缆实现与第一腔体101内的元器件的电连接。
第二腔体102可具有第一进风口1021和第一出风口1022,第一风扇3设置于第二腔体102,且第一风扇3的进风侧朝向第一进风口1021设置,第一风扇3的第一出风侧朝向出风口设置,从而可在第二腔体102内形成由第一进风口1021到第一出风口1022方向流动的气流,即在第二腔体102内形成第一风道。
与上述实施例提供的功率设备不同的是,图15a所示的功率设备还包括第三腔体103,冷凝器202可设置于该第三腔体103。可参照图15b,图15b为图15a所示的功率设备的右视图,由于在功率设备沿重力方向设置时,冷凝器202位于蒸发器201的上方,则在该方向上,第三腔体103可位于第二腔体102的上方。另外,第三腔体103可具有第二进风口1031和第二出风口1032。为了能够实现对冷凝器202的冷却,第三腔体103内还可以设置有第二风扇4,该第二风扇4的进风侧朝向第二进风口1031设置,第二风扇4的出风侧朝向第二出风口1032设置,从而可在第三腔体103内形成由第二进风口1031到第二出风口1032方向流动的气流,即在第三腔体103内形成第二风道。
由于在重力方向上,第三腔体103位于第二腔体102的上方,为了避免由第二腔体102排出的热空气进入第三腔体103,可使第一出风口1022和第二进风口1031的朝向不同。示例性的,第一进风口1021可朝向背离第三腔体103的方向开设,第一出风口1022可设置于第二腔体102的任一侧壁面,或者第一出风口1022可设置于第二腔体102的相邻两个侧壁面的连接处。另外,第二进风口1031和第二出风口1032可相对设置,且第二出风口1032可与第一出风口1022的朝向相同。
可继续参照图15b,为了能够有效的提高第一风道内的气流的流通速率,可以使第二腔体102内的第一风扇3为至少两个,该至少两个第一风扇3并排设置,且该至少两个第一风扇3的出风侧和进风侧相同。
另外,第三腔体103内的第二风扇4也可以为至少两个,该至少两个第二风扇4的出风侧和进风侧相同。在一个可能的实现方式中,可参照图15c,图15c为图15b中A处的局部结构放大图。该至少两个第二风扇4可沿第二进风口1031到第二出风口1032的方向交错排列,这样可有效的减小该至少两个第二风扇4在第二腔体102内占用的空间,从而有利于实现功率设备的小型化设计。
图15a中所示的功率设备的其它结构均可参照上述图1至图8中所示的功率设备进行设置,在此不进行赘述。
本申请实施例提供的功率设备,可以在满足功率设备的相关防护性能的设计要求下,可有效的提高散热装置对第一腔体101的散热效率,从而可以降低第一腔体101内部元器件失效的风险,提高功率设备的使用可靠性。另外,由于散热器2的至少部分、第一风扇3和第二待散热器件1023均设置于第二腔体102内,也就是说散热器2的至少部分和第二待散热器件1023共用第一风扇3和第一风道,这样可在实现功率设备的有效散热的同时,使整个功率设备的尺寸较小。因此,本申请提供的功率设备的散热能力以及功率密度可得到有效的提升,从而可有利于提升功率设备内各器件的性能可靠性。
应当理解的是,在本申请各实施例中,第一腔体内所设置的器件并不限于上文中提到的第一待散热器件,同理,第二腔体内所设置的器件也并不限于上文中提到的第二待散热器件,在实际应用中可以根据功率设备的具体类型设置相匹配的器件,此处不再过多赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

1.一种逆变器,其特征在于,包括壳体和散热装置,其中:
所述壳体包括第一腔体和第二腔体,所述第一腔体设置有功率半导体器件,所述第二腔体设置有磁性器件,所述第二腔体具有第一进风口和第一出风口;
所述散热装置包括散热器和第一风扇,所述散热器包括蒸发器和冷凝器,且所述蒸发器和所述冷凝器通过两相管路连接;所述蒸发器设置于第二腔体,且所述功率半导体器件与所述蒸发器导热接触;所述第一风扇设置于所述第二腔体,所述第一风扇的进风侧朝向所述第一进风口设置,所述第一风扇的出风侧朝向所述第一出风口设置。
2.如权利要求1所述的逆变器,其特征在于,所述冷凝器设置于所述第二腔体,所述逆变器沿重力方向设置时,所述冷凝器位于所述蒸发器的上方。
3.如权利要求2所述的逆变器,其特征在于,所述逆变器沿重力方向设置时,所述冷凝器位于所述第一腔体的上方,所述第一进风口朝所述冷凝器到所述第一腔体的方向开设,所述第一出风口朝所述第二腔体到所述第一腔体的方向开设。
4.如权利要求3所述的逆变器,其特征在于,所述第二腔体设置有补风口,所述补风口位于所述冷凝器的朝向所述第一进风口的一侧。
5.如权利要求2所述的逆变器,其特征在于,所述逆变器沿重力方向设置时,所述第二腔体位于所述第一腔体的上方,且所述第一进风口和所述第一出风口相对设置。
6.如权利要求1所述的逆变器,其特征在于,所述壳体还包括第三腔体,所述第三腔体具有第二进风口和第二出风口;所述散热装置还包括第二风扇,所述第二风扇设置于所述第三腔体,且所述第二风扇的进风侧朝向所述第二进风口设置,所述第二风扇的出风侧朝向所述第二出风口设置;
所述冷凝器设置于所述第三腔体,所述逆变器沿重力方向设置时,所述冷凝器位于所述蒸发器的上方。
7.如权利要求6所述的逆变器,其特征在于,所述散热装置包括至少两个所述第二风扇;所述第二进风口和所述第二出风口相对设置,沿所述第二进风口到所述第二出风口的方向上,至少两个所述第二风扇交错设置。
8.如权利要求6或7所述的逆变器,其特征在于,所述第一出风口与所述第二出风口的朝向相同。
9.如权利要求1~8任一项所述的逆变器,其特征在于,所述蒸发器包括基板和散热翅片,所述功率半导体器件与所述基板导热接触,所述散热翅片设置于所述基板的背离所述第一腔体的一侧。
10.如权利要求1~8任一项所述的逆变器,其特征在于,所述蒸发器包括第一子蒸发器和第二子蒸发器,所述第一子蒸发器设置于所述第一腔体,所述第二子蒸发器设置于所述第二腔体,所述功率半导体器件与所述第二子蒸发器导热接触;所述第一子蒸发器和所述第二子蒸发器分别通过所述两相管路与所述冷凝器连接。
11.如权利要求1~8任一项所述的逆变器,其特征在于,所述逆变器还包括换热器,所述换热器设置于所述第二腔体,且所述换热器设置于所述第一腔体的第一侧壁;
所述换热器包括送风口和回风口,所述第一侧壁开设有第一通风口和第二通风口;所述送风口通过所述第一通风口与所述第一腔体相连通,所述回风口通过所述第二通风口与所述第一腔体相连通。
12.如权利要求1~8任一项所述的逆变器,其特征在于,所述功率设备还包括换热器,所述换热器包括第一子换热器和第二子换热器,所述第一子换热器设置于所述第一腔体,所述第二子换热器设置于所述第二腔体或者所述第二子换热器与所述冷凝器集成为一体,所述第一子换热器与所述第二子换热器导热连接。
13.一种功率设备,其特征在于,包括壳体和散热装置,其中:
所述壳体包括第一腔体和第二腔体,所述第一腔体的第一侧壁开设有第一通风口和第二通风口,所述第二腔体具有第一进风口和第一出风口,所述第一腔体设置有第一待散热器件,所述第二腔体设置有第二待散热器件或换热器,所述换热器包括送风口和回风口,所述送风口通过所述第一通风口与所述第一腔体相连通,所述回风口通过所述第二通风口与所述第一腔体相连通;
所述散热装置包括散热器和第一风扇,所述散热器包括蒸发器和冷凝器,且所述蒸发器和所述冷凝器通过两相管路连接;所述蒸发器设置于第二腔体,且所述第一待散热器件与所述蒸发器导热接触;所述第一风扇设置于所述第二腔体,所述第一风扇的进风侧朝向所述第一进风口设置,所述第一风扇的出风侧朝向所述第一出风口设置。
14.一种光伏系统,其特征在于,包括电池板以及如权利要求1~12任一项所述的逆变器或如权利要求13所述的功率设备,所述电池板用于将太阳能转化为电能,所述逆变器或所述功率设备用于对来自所述电池板的电流和/或电压进行转换。
15.一种光伏系统,包括至少两台功率设备,其特征在于,所述功率设备包括壳体和散热装置,其中:
所述壳体包括第一腔体和第二腔体,所述第一腔体设置有第一待散热器件;所述第二腔体具有第一进风口、第一出风口和补风口,所述第二腔体设置有第二待散热器件;
所述散热装置包括散热器和第一风扇,所述散热器设置于第二腔体,所述散热器包括蒸发器和冷凝器,且所述蒸发器和所述冷凝器通过两相管路连接,所述第一待散热器件与所述蒸发器导热接触;所述第一风扇设置于所述第二腔体,所述第一风扇的进风侧朝向所述第一进风口设置,所述第一风扇的出风侧朝向所述第一出风口设置;
所述功率设备沿重力方向设置时,所述冷凝器位于所述第一腔体的上方,所述第一进风口朝所述冷凝器到所述第一腔体的方向开设,所述第一出风口朝所述第二腔体到所述第一腔体的方向开设,所述补风口位于所述冷凝器的朝向所述第一进风口的一侧;
相邻两台所述功率设备之间设置有风道挡板,在至少两台所述功率设备的排列方向上,所述风道挡板用于将前一所述功率设备的所述补风口与后一所述功率设备的所述第一出风口隔开。
CN202310089428.7A 2023-01-17 2023-01-17 一种逆变器、功率设备及光伏系统 Pending CN115955825A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310089428.7A CN115955825A (zh) 2023-01-17 2023-01-17 一种逆变器、功率设备及光伏系统
PCT/CN2023/126838 WO2024152652A1 (zh) 2023-01-17 2023-10-26 一种逆变器、功率设备及光伏系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310089428.7A CN115955825A (zh) 2023-01-17 2023-01-17 一种逆变器、功率设备及光伏系统

Publications (1)

Publication Number Publication Date
CN115955825A true CN115955825A (zh) 2023-04-11

Family

ID=87291302

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310089428.7A Pending CN115955825A (zh) 2023-01-17 2023-01-17 一种逆变器、功率设备及光伏系统

Country Status (2)

Country Link
CN (1) CN115955825A (zh)
WO (1) WO2024152652A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024152652A1 (zh) * 2023-01-17 2024-07-25 华为数字能源技术有限公司 一种逆变器、功率设备及光伏系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209710579U (zh) * 2019-01-16 2019-11-29 阳光电源股份有限公司 逆变器的散热结构
CN212970511U (zh) * 2020-06-19 2021-04-13 阳光电源股份有限公司 一种应用散热装置的电气设备
CN112584678A (zh) * 2020-12-10 2021-03-30 上能电气股份有限公司 一种用于逆变器的相变散热装置及逆变器
CN115397185A (zh) * 2021-05-25 2022-11-25 华为技术有限公司 一种具有散热装置的设备
CN115955825A (zh) * 2023-01-17 2023-04-11 华为数字能源技术有限公司 一种逆变器、功率设备及光伏系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024152652A1 (zh) * 2023-01-17 2024-07-25 华为数字能源技术有限公司 一种逆变器、功率设备及光伏系统

Also Published As

Publication number Publication date
WO2024152652A1 (zh) 2024-07-25

Similar Documents

Publication Publication Date Title
TWI525300B (zh) 功率模組用複合式散熱器組件
TW201724959A (zh) 熱電致冷模組與包含熱電致冷模組的散熱裝置
JP4720688B2 (ja) 電子制御装置の冷却装置
CN113939152B (zh) 水冷散热模组及电子设备
CN115551302A (zh) 散热系统及电子设备
WO2024045981A1 (zh) 一种功率设备及光伏系统
CN115955825A (zh) 一种逆变器、功率设备及光伏系统
CN115891709A (zh) 一种充电设备和充电系统
CN212970511U (zh) 一种应用散热装置的电气设备
CN220156945U (zh) 散热组件、电控盒及空调器
CN218550265U (zh) 电路板散热装置和电子设备
CN117355089A (zh) 功率变换设备与储能设备
CN115701823A (zh) 一种充电设备和充电系统
CN115397185A (zh) 一种具有散热装置的设备
CN213638697U (zh) 一种发热器件冷却装置及电控设备
KR20040061286A (ko) Tec와 히트 파이프 조합의 하이브리드 히트 익스체인저
KR102001029B1 (ko) 펠티에 소자를 이용한 태양광 발전 접속반 다이오드 모듈 방열 모듈
CN221305738U (zh) 逆变器
CN118174515B (zh) 功率变换设备和储能设备
JP3947797B2 (ja) 三次元実装型放熱モジュール
CN217685176U (zh) 电磁灶
TW200820886A (en) Motor controller
CN117641860A (zh) 一种散热装置及功率设备
CN220775629U (zh) 功率变换设备
CN220964643U (zh) 一种电源功率模块

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination