CN115893763A - A zero-discharge and resource-based treatment system and method for high-salt wastewater - Google Patents
A zero-discharge and resource-based treatment system and method for high-salt wastewater Download PDFInfo
- Publication number
- CN115893763A CN115893763A CN202211707258.6A CN202211707258A CN115893763A CN 115893763 A CN115893763 A CN 115893763A CN 202211707258 A CN202211707258 A CN 202211707258A CN 115893763 A CN115893763 A CN 115893763A
- Authority
- CN
- China
- Prior art keywords
- water
- tank
- salinity wastewater
- nanofiltration
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 92
- 238000011282 treatment Methods 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 201
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 64
- 238000001728 nano-filtration Methods 0.000 claims abstract description 60
- 239000012528 membrane Substances 0.000 claims abstract description 40
- 238000004062 sedimentation Methods 0.000 claims abstract description 38
- 238000000909 electrodialysis Methods 0.000 claims abstract description 35
- 238000001704 evaporation Methods 0.000 claims abstract description 29
- 230000003197 catalytic effect Effects 0.000 claims abstract description 28
- 238000002425 crystallisation Methods 0.000 claims abstract description 27
- 230000008025 crystallization Effects 0.000 claims abstract description 27
- 230000003647 oxidation Effects 0.000 claims abstract description 27
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 27
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims abstract description 21
- 150000003839 salts Chemical class 0.000 claims abstract description 18
- 238000004064 recycling Methods 0.000 claims abstract description 15
- 238000001914 filtration Methods 0.000 claims abstract description 13
- 238000000108 ultra-filtration Methods 0.000 claims abstract description 13
- 238000005342 ion exchange Methods 0.000 claims abstract description 12
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Inorganic materials [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 65
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 63
- 238000005345 coagulation Methods 0.000 claims description 50
- 230000015271 coagulation Effects 0.000 claims description 50
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 38
- 239000011780 sodium chloride Substances 0.000 claims description 37
- 239000011347 resin Substances 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 25
- 239000010802 sludge Substances 0.000 claims description 24
- 239000012267 brine Substances 0.000 claims description 23
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 23
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 21
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 20
- 235000011152 sodium sulphate Nutrition 0.000 claims description 19
- 238000001179 sorption measurement Methods 0.000 claims description 19
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 16
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 16
- 229910052791 calcium Inorganic materials 0.000 claims description 16
- 239000011575 calcium Substances 0.000 claims description 16
- 238000005189 flocculation Methods 0.000 claims description 16
- 230000016615 flocculation Effects 0.000 claims description 16
- 229910052749 magnesium Inorganic materials 0.000 claims description 16
- 239000011777 magnesium Substances 0.000 claims description 16
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 14
- -1 ion sodium chloride Chemical class 0.000 claims description 14
- 229910001385 heavy metal Inorganic materials 0.000 claims description 13
- 239000012535 impurity Substances 0.000 claims description 12
- 238000011221 initial treatment Methods 0.000 claims description 11
- 150000002500 ions Chemical class 0.000 claims description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 7
- 239000000084 colloidal system Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 5
- 239000000701 coagulant Substances 0.000 claims description 4
- 238000010992 reflux Methods 0.000 claims 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 2
- 239000008394 flocculating agent Substances 0.000 claims 2
- 229910052760 oxygen Inorganic materials 0.000 claims 2
- 239000001301 oxygen Substances 0.000 claims 2
- 230000008020 evaporation Effects 0.000 abstract description 20
- 238000000926 separation method Methods 0.000 abstract description 8
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000003513 alkali Substances 0.000 abstract description 3
- 239000002253 acid Substances 0.000 abstract 1
- 238000001556 precipitation Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 44
- 238000010979 pH adjustment Methods 0.000 description 13
- 239000005416 organic matter Substances 0.000 description 7
- 239000012071 phase Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000003245 coal Substances 0.000 description 6
- 235000017550 sodium carbonate Nutrition 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000010842 industrial wastewater Substances 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 238000006477 desulfuration reaction Methods 0.000 description 2
- 230000023556 desulfurization Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000000149 chemical water pollutant Substances 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000009938 salting Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- FZUJWWOKDIGOKH-UHFFFAOYSA-N sulfuric acid hydrochloride Chemical compound Cl.OS(O)(=O)=O FZUJWWOKDIGOKH-UHFFFAOYSA-N 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
技术领域technical field
本发明涉及高盐废水处理技术领域,尤其涉及一种高盐废水零排放和资源化处理系统及方法。The invention relates to the technical field of high-salt wastewater treatment, in particular to a high-salt wastewater zero discharge and resource treatment system and method.
背景技术Background technique
目前全国工业取水量占全国取水量的20%,工业废水经传统工艺处理后得到高含盐、难降解的工业废水,随着我国工业的飞速发展,高盐废水的排放量与日剧增。与此同时,环保政策日趋严格,不但各地工业园区废水排污指标限额限量,而且要求煤化工企业、煤炭企业、燃煤电厂等无工业废水外排。因此,在煤化工行业、煤矿矿井水行业、燃煤电厂脱硫废水行业、工业园区污水处理厂、垃圾渗沥液处理厂等推广和开发废水零排放技术是水资源高效利用的必然要求。At present, the national industrial water intake accounts for 20% of the national water intake. Industrial wastewater is treated by traditional processes to obtain high-salt, refractory industrial wastewater. With the rapid development of my country's industry, the discharge of high-salt wastewater is increasing day by day. At the same time, environmental protection policies are becoming increasingly stringent. Not only are there limited quotas for wastewater discharge indicators in industrial parks, but coal chemical companies, coal companies, and coal-fired power plants are required to have no industrial wastewater discharge. Therefore, the promotion and development of zero-discharge wastewater technology in the coal chemical industry, coal mine water industry, desulfurization wastewater industry of coal-fired power plants, industrial park sewage treatment plants, landfill leachate treatment plants, etc. is an inevitable requirement for efficient use of water resources.
目前针对高盐废水零排放和资源化处理的工艺一般为预处理、膜浓缩(用各种类型的膜进行浓缩处理,得到高盐废水和回用水)、纳滤分盐或蒸发结晶分盐的组合工艺。该工艺的主要特点在于通过预处理去除废水中的钙、镁、硅等结垢因子,通过膜浓缩实现废水的减量、盐份的提浓,通过纳滤膜组实现一价盐和二价盐的预分盐,采用蒸发浓缩结晶的方式产生结晶盐或采用热法盐硝联产直接分盐。At present, the processes for zero discharge and resource treatment of high-salt wastewater are generally pretreatment, membrane concentration (concentration treatment with various types of membranes to obtain high-salt wastewater and reuse water), nanofiltration salt separation or evaporation crystallization salt separation Combination process. The main feature of this process is to remove scaling factors such as calcium, magnesium, and silicon in wastewater through pretreatment, reduce the amount of wastewater and increase the concentration of salt through membrane concentration, and realize monovalent salt and divalent salt through nanofiltration membrane group. For salt pre-salting, use evaporation, concentration and crystallization to produce crystallized salt or use thermal salt and nitrate co-production to directly separate salt.
然而,上述工艺存在以下缺点:(1)膜浓缩的过程中,水中的盐份在不断富集,同时有机物也在大量增加,加剧了反渗透膜组的有机污堵,使反渗透膜组的稳定运行周期缩短、影响系统长周期稳定运行和增加系统运维成本;(2)采用常规膜浓缩的操作压力高,且仅能将盐份(TDS)浓缩至约50000mg/L,水的回收率低,能耗较大;(3)反渗透膜浓缩、蒸发结晶的组合工艺分离硫酸钠、氯化钠系统的前端预处理加药成本高、反渗透膜组投资和运行费用大,而产出的氯化钠产品盐的外售经济价值低;(4)当系统运行较差时大量工业盐常被定性为混盐,给企业造成了巨大的废弃物处置费用。However, the above-mentioned process has the following disadvantages: (1) During the process of membrane concentration, the salt in the water is constantly enriched, and the organic matter is also increasing in a large amount, which aggravates the organic fouling of the reverse osmosis membrane group and makes the reverse osmosis membrane group The stable operation period is shortened, affecting the long-term stable operation of the system and increasing the system operation and maintenance costs; (2) The operating pressure of conventional membrane concentration is high, and the salt (TDS) can only be concentrated to about 50000mg/L, and the recovery rate of water (3) The combination process of reverse osmosis membrane concentration and evaporation crystallization to separate sodium sulfate and sodium chloride system requires high front-end pretreatment dosing costs, high investment and operating costs for reverse osmosis membrane groups, and high output (4) When the system is running poorly, a large amount of industrial salt is often characterized as mixed salt, causing huge waste disposal costs to the enterprise.
因此针对上述工艺存在的问题,需采用一种以低成本的方式实现废水中硫酸钠、氯化钠的有效分离,并将氯化钠高盐废水制得具有较高附加值的酸碱作为药剂回用于前端预处理单元,实现高盐废水的深度资源化利用;回收价值较高的无水硫酸钠产品进行资源化外售;同时回收90%以上满足回用要求的蒸发冷凝水,最终实现高盐废水的零排放和资源化处理、循环利用的目标。Therefore, in view of the problems in the above-mentioned process, it is necessary to adopt a low-cost method to effectively separate sodium sulfate and sodium chloride in wastewater, and make acid-base with higher added value from sodium chloride high-salt wastewater as a medicament It is reused in the front-end pretreatment unit to realize the deep resource utilization of high-salt wastewater; the anhydrous sodium sulfate product with high recovery value is sold as a resource; at the same time, more than 90% of the evaporated condensed water that meets the reuse requirements is recovered, and finally realized The goal of zero discharge and resource treatment and recycling of high-salt wastewater.
发明内容Contents of the invention
本发明解决其技术问题所采用的技术方案是:一种高盐废水零排放和资源化处理系统,包括:The technical solution adopted by the present invention to solve the technical problem is: a high-salt wastewater zero-discharge and resource-based treatment system, including:
高效沉淀池装置,用于接入高盐废水进行软化预处理,对高盐废水中的钙、镁、硅、重金属离子、较大悬浮物等杂质进行沉淀,得到一次处理水;The high-efficiency sedimentation tank device is used to connect high-salt wastewater for softening pretreatment, and precipitate impurities such as calcium, magnesium, silicon, heavy metal ions, and larger suspended solids in high-salt wastewater to obtain primary treated water;
高效过滤装置和超滤装置,所述一次处理水依次经过所述高效过滤装置和所述超滤装置,除去所述一次处理水中的较小的悬浮物和胶体得到二次处理水;A high-efficiency filtration device and an ultrafiltration device, the primary treatment water passes through the high-efficiency filtration device and the ultrafiltration device in sequence, and the smaller suspended solids and colloids in the primary treatment water are removed to obtain secondary treatment water;
离子交换装置,用于进一步去除所述二次处理水中残留的钙、镁、重金属获得树脂产水;An ion exchange device for further removing residual calcium, magnesium, and heavy metals in the secondary treatment water to obtain resin produced water;
吹脱装置,用于对所述树脂产水进行去除碱度处理,通过添加盐酸调节所述树脂产水的pH值,并去除其中的碳酸根反应,进而得到脱碳产水;The stripping device is used to remove the alkalinity of the resin produced water, adjust the pH value of the resin produced water by adding hydrochloric acid, and remove the carbonate reaction therein, and then obtain the decarbonized produced water;
高级催化氧化装置,用于对所述脱碳产水进行除COD处理和活性炭吸附处理,去除所述脱碳产水中的有机杂质和色度脱除处理,得到三次处理水;An advanced catalytic oxidation device is used to perform COD removal treatment and activated carbon adsorption treatment on the decarbonized produced water, remove organic impurities and chroma removal treatment in the decarbonized produced water, and obtain tertiary treated water;
纳滤装置,用于对所述三次处理水进行分离提纯,进而生成一价离子氯化钠的纳滤产水和二价离子硫酸钠为主的纳滤浓水;The nanofiltration device is used to separate and purify the three times of treated water, and then generate nanofiltration product water of monovalent ion sodium chloride and nanofiltration concentrated water based on divalent ion sodium sulfate;
提浓电渗析装置,用于接收所述纳滤产水,并将所述纳滤产水高倍浓缩得到高浓度的氯化钠盐水;Concentration electrodialysis device, used to receive the nanofiltration product water, and high-fold concentration of the nanofiltration product water to obtain high-concentration sodium chloride brine;
双极膜电渗析装置,用于对所述氯化钠盐水进行电解制得盐酸、液碱;A bipolar membrane electrodialysis device is used to electrolyze the sodium chloride brine to obtain hydrochloric acid and liquid caustic soda;
其中,所述双极膜电渗析装置制得的盐酸、液碱通过管道回流至所述高效沉淀池装置、所述吹脱装置中循环利用。Wherein, the hydrochloric acid and liquid caustic soda produced by the bipolar membrane electrodialysis device are returned to the high-efficiency sedimentation tank device and the stripping device through pipelines for recycling.
作为优选,所述高效沉淀池装置包括一级混凝池、二级混凝池、絮凝池、沉淀池、pH调节池、污泥回流泵,所述高盐废水依次经过一级混凝池、二级混凝池、絮凝池、沉淀池,在所述沉淀池内所述高盐废水分层形成水相和活性污泥,所述水相进入所述pH调节池后形成所述一次处理水,所述活性污泥通过污泥回流泵回流至一级混凝池。Preferably, the high-efficiency sedimentation tank device includes a primary coagulation tank, a secondary coagulation tank, a flocculation tank, a sedimentation tank, a pH adjustment tank, and a sludge return pump, and the high-salt wastewater passes through the primary coagulation tank, Secondary coagulation tank, flocculation tank, sedimentation tank, the high-salt wastewater in the sedimentation tank is layered to form water phase and activated sludge, and the water phase enters the pH adjustment tank to form the primary treatment water, The activated sludge is returned to the primary coagulation tank through the sludge return pump.
作为优选,所述一级混凝池中投加所述双极膜电渗析装置产出的液碱,所述二级混凝池中投加碳酸钠、所述絮凝池中投加絮凝剂、助凝剂,所述pH调节池中投加所述双极膜电渗析装置产出的盐酸。As preferably, the liquid caustic soda produced by the bipolar membrane electrodialysis device is added in the first-stage coagulation tank, sodium carbonate is added in the secondary coagulation tank, flocculant is added in the described coagulation tank, As a coagulation aid, the hydrochloric acid produced by the bipolar membrane electrodialysis device is added to the pH adjustment tank.
作为优选,所述高级催化氧化装置包括高级催化氧化塔、活性炭吸附塔,所述脱碳产水依次经过高级催化氧化塔、活性炭吸附塔,通过所述高级催化氧化塔和所述活性炭吸附塔使得所述脱碳产水的COD去除率为35%~45%。As a preference, the advanced catalytic oxidation device includes an advanced catalytic oxidation tower and an activated carbon adsorption tower, and the decarburized water passes through the advanced catalytic oxidation tower and the activated carbon adsorption tower in turn, and the advanced catalytic oxidation tower and the activated carbon adsorption tower make The COD removal rate of the decarbonized water is 35%-45%.
作为优选,还包括蒸发结晶装置,所述蒸发结晶装置用于将所述纳滤浓水蒸发结晶产出无水硫酸钠。Preferably, an evaporative crystallization device is also included, and the evaporative crystallization device is used for evaporative crystallization of the nanofiltration concentrated water to produce anhydrous sodium sulfate.
还公开了一种高盐废水零排放和资源化处理方法,包括:Also disclosed is a zero-discharge and resource-based treatment method for high-salt wastewater, including:
S1、高效沉淀池接入高盐废水进行软化预处理,对高盐废水中的钙、镁、硅、重金属离子、较大悬浮物等杂质进行沉淀,得到一次处理水;S1. The high-efficiency sedimentation tank is connected to the high-salt wastewater for softening pretreatment, and precipitates impurities such as calcium, magnesium, silicon, heavy metal ions, and larger suspended solids in the high-salt wastewater to obtain primary treated water;
S2、所述一次处理水依次经过高效过滤装置和超滤装置,除去所述一次处理水中的较小的悬浮物和胶体得到二次处理水;S2, the primary treatment water passes through a high-efficiency filtration device and an ultrafiltration device successively to remove smaller suspended matter and colloids in the primary treatment water to obtain secondary treatment water;
S3、通过离子交换装置去除所述二次处理水中残留的钙、镁、重金属获得树脂产水;S3. Removing calcium, magnesium and heavy metals remaining in the secondary treatment water through an ion exchange device to obtain resin produced water;
S4、吹脱装置对所述树脂产水进行去除碱度处理,通过添加盐酸调节所述树脂产水的pH值,并去除其中的碳酸根反应,进而得到脱碳产水;S4. The stripping device performs alkalinity removal treatment on the resin product water, adjusts the pH value of the resin product water by adding hydrochloric acid, and removes the carbonate reaction therein, and then obtains the decarbonized product water;
S5、通过高级催化氧化装置对所述脱碳产水进行除COD处理和活性炭吸附处理,去除所述脱碳产水中的有机杂质和色度脱除处理,得到三次处理水;S5. Perform COD removal treatment and activated carbon adsorption treatment on the decarbonized product water through an advanced catalytic oxidation device to remove organic impurities and chroma removal treatment in the decarbonized product water to obtain tertiary treated water;
S6、对所述三次处理水进行分离提纯,进而生成一价离子氯化钠的纳滤产水和二价离子硫酸钠为主的纳滤浓水;S6. Separating and purifying the tertiary treated water to generate nanofiltration product water of monovalent ion sodium chloride and nanofiltration concentrated water mainly of divalent ion sodium sulfate;
S7、将所述纳滤产水高倍浓缩得到高浓度的氯化钠盐水;S7. High-fold concentration of the nanofiltration product water to obtain high-concentration sodium chloride brine;
S8、对所述氯化钠盐水进行电解制得盐酸、液碱;S8. Electrolyzing the sodium chloride brine to obtain hydrochloric acid and liquid caustic soda;
在S8中制得的盐酸、液碱通过管道回流至所述高效沉淀池装置、所述吹脱装置中循环利用。The hydrochloric acid and liquid caustic soda produced in S8 are returned to the high-efficiency sedimentation tank device and the stripping device through pipelines for recycling.
作为优选,在S1中高效废水依次通过一级混凝池、二级混凝池、絮凝池、沉淀池、pH调节池,并在所述沉淀池内所述高盐废水分层形成水相和活性污泥,所述水相进入所述pH调节池后形成所述一次处理水,所述活性污泥通过污泥回流泵回流至一级混凝池。As a preference, in S1, the high-efficiency wastewater passes through the primary coagulation tank, the secondary coagulation tank, the flocculation tank, the sedimentation tank, and the pH adjustment tank in sequence, and the high-salt wastewater in the sedimentation tank is stratified to form an aqueous phase and an active sludge, the water phase enters the pH adjustment tank to form the primary treatment water, and the activated sludge is returned to the primary coagulation tank through the sludge return pump.
作为优选,在S1中所述一级混凝池中投加步骤S8中产出的液碱,所述二级混凝池中投加碳酸钠、所述絮凝池中投加絮凝剂、助凝剂,所述pH调节池中投加步骤S8中产出的盐酸。As preferably, the liquid caustic soda produced in step S8 is added to the primary coagulation tank in S1, sodium carbonate is added to the secondary coagulation tank, flocculant is added to the coagulation aid in the coagulation tank Agent, the hydrochloric acid produced in step S8 is added to the pH adjustment tank.
作为优选,在S5中,所述脱碳产水依次经过高级催化氧化塔、活性炭吸附塔,通过所述高级催化氧化塔和所述活性炭吸附塔去除所述脱碳产水中的有机质和色度。Preferably, in S5, the decarbonized product water passes through the advanced catalytic oxidation tower and the activated carbon adsorption tower in sequence, and the organic matter and chroma in the decarbonized product water are removed through the advanced catalytic oxidation tower and the activated carbon adsorption tower.
作为优选,还包括S9、通过发结晶装置用于将所述纳滤浓水蒸发结晶产出无水硫酸钠。Preferably, it also includes S9, which is used for evaporating and crystallizing the nanofiltration concentrated water to produce anhydrous sodium sulfate through a crystallization device.
本发明的有益效果:Beneficial effects of the present invention:
实现了高盐废水的氯化钠和硫酸钠的有效分离、高倍浓缩,并将高浓度氯化钠高盐废水制得较高附加值的酸碱作为系统自用药剂回用于前端系统,获得高市场价值的无水硫酸钠产品和满足回用要求的蒸发冷凝水,节省了高浓度氯化钠盐水通过蒸发结晶得到氯化钠产品的装置投资和运行费用;最大程度实现高盐废水深度资源化和获得高市场价值的产品,最终实现高盐废水的零排放和资源化处理目标。The effective separation and high-fold concentration of sodium chloride and sodium sulfate in high-salt wastewater have been realized, and the high-value-added acid-base produced from high-concentration sodium chloride and high-salt wastewater can be reused in the front-end system as the self-use agent of the system to obtain high-quality Anhydrous sodium sulfate products with market value and evaporative condensed water that meet the requirements of reuse save the investment and operating costs of equipment to obtain sodium chloride products through evaporation and crystallization of high-concentration sodium chloride brine; realize the deep resource utilization of high-salt wastewater to the greatest extent And obtain products with high market value, and finally achieve the goal of zero discharge and resource treatment of high-salt wastewater.
附图说明Description of drawings
图1为本发明的示意图;Fig. 1 is a schematic diagram of the present invention;
图2为本发明图1中A部分的局部放大图;Fig. 2 is the partially enlarged view of part A in Fig. 1 of the present invention;
图3本发明蒸发冷凝水降温装置。Fig. 3 The evaporative condensed water cooling device of the present invention.
图中:In the picture:
1、高效沉淀池;101、一级混凝池;102、二级混凝池;103、絮凝池;104、沉淀池;105、pH调节池;2、高效过滤器;3、超滤装置;4、离子交换装置;5、吹脱装置;6、高级催化氧化装置;7、纳滤装置;8、提浓电渗析装置;9、双级膜电渗析装置;10、蒸发结晶装置;11、蒸发原水罐;12、蒸发原水泵;13、换热器;14、冷凝水泵;15、冷凝水罐;16、回用水池。1. High-efficiency sedimentation tank; 101. Primary coagulation tank; 102. Secondary coagulation tank; 103. Flocculation tank; 104. Sedimentation tank; 105. pH adjustment tank; 2. High-efficiency filter; 3. Ultrafiltration device; 4. Ion exchange device; 5. Stripping device; 6. Advanced catalytic oxidation device; 7. Nanofiltration device; 8. Concentration electrodialysis device; 9. Two-stage membrane electrodialysis device; 10. Evaporation crystallization device; 11. Evaporation raw water tank; 12. Evaporation raw water pump; 13. Heat exchanger; 14. Condensate water pump; 15. Condensate water tank; 16. Reuse water pool.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. The components of the embodiments of the invention generally described and illustrated in the figures herein may be arranged and designed in a variety of different configurations.
以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following detailed description of the embodiments of the invention provided in the accompanying drawings is not intended to limit the scope of the claimed invention, but merely represents selected embodiments of the invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
本发明一种高盐废水零排放和资源化处理系统,请参阅图1-3,包括对接入高盐废水去除钙、镁、硅结垢离子的高效沉淀池装置1、对软化后的高盐废水进行过滤处理的高效过滤装置2及超滤装置3、对过滤后的高盐废水进一步软化的离子交换装置4、对进一步软化后的高盐废水去除残留碱度的吹脱装置5、对去除碱度后的高盐废水降低有机物的高级催化氧化装置6、对去除有机物后的高盐废水进行预分盐提纯的纳滤装置7、对纳滤产水侧的高盐废水进行浓缩的提浓电渗析装置8、对纳滤产水浓缩的高浓度氯化钠盐水进行制酸碱的双极膜电渗析装置9、对纳滤浓水的硫酸钠盐水进行制备硫酸钠结晶盐的蒸发结晶装置10;A high-salt wastewater zero-discharge and resource-based treatment system of the present invention, please refer to Figure 1-3, includes a high-efficiency sedimentation tank device for removing calcium, magnesium, and silicon scaling ions connected to high-salt wastewater. High-
高效沉淀池装置1、高效过滤装置2、超滤装置3、离子交换装置4、吹脱装置5、高级催化氧化装置6按高盐废水的处理工序依次连接,纳滤装置7产水侧依次连接提浓电渗析装置8、双极膜电渗析装置9,纳滤装置7浓水侧连接蒸发结晶装置10。High-efficiency
其中,高效沉淀池装置1,用于接入高盐废水进行软化预处理,对高盐废水中的钙、镁、硅、重金属离子、较大悬浮物等杂质进行沉淀,得到一次处理水;Among them, the high-efficiency
高效过滤装置2和超滤装置3,一次处理水依次经过高效过滤装置2和超滤装置3,除去一次处理水中的较小的悬浮物和胶体得到二次处理水;The high-
离子交换装置4,用于去除二次处理水中残留的钙、镁、重金属获得树脂产水;The
吹脱装置5,用于对树脂产水进行去除碱度处理,通过添加盐酸调节树脂产水的pH值,并去除其中的碳酸根反应,进而得到脱碳产水;The stripping
高级催化氧化装置6,用于对脱碳产水进行除COD处理和活性炭吸附处理,去除脱碳产水中的有机杂质和色度脱除处理,得到三次处理水;The advanced
纳滤装置7,用于对三次处理水进行分离提纯,进而生成一价离子氯化钠的纳滤产水和二价离子硫酸钠为主的纳滤浓水;The
提浓电渗析装置8,用于接收纳滤产水,并将纳滤产水高倍浓缩得到高浓度的氯化钠盐水;
双极膜电渗析装置9,用于对氯化钠盐水进行电解制得盐酸、液碱;双极膜电渗析装置9制得的盐酸、液碱通过管道回流至高效沉淀池104、吹脱装置5中循环利用。The bipolar
蒸发结晶装置10,通过采用机械蒸汽在压缩工艺或多效蒸发结晶工艺对纳滤浓水硫酸钠盐水进行浓缩结晶得到工业级硫酸钠盐。最终实现了高盐废水的氯化钠和硫酸钠的有效分离、高倍浓缩,并将高浓度氯化钠高盐废水制得较高附加值的酸碱作为系统自用药剂回用于前端系统,最大程度实现高盐废水深度资源化和获得高市场价值的产品,最终实现高盐废水的零排放和资源化处理目标。The evaporation and
在本实施例中,高效沉淀池104装置1包括一级混凝池101、二级混凝池102、絮凝池103、沉淀池104、pH调节池105、污泥回流泵,高盐废水依次经过一级混凝池101、二级混凝池102、絮凝池103、沉淀池104,在沉淀池104内高盐废水分层形成水相和活性污泥,水相进入pH调节池105后形成一次处理水,活性污泥通过污泥回流泵回流至一级混凝池101,使得活性污泥在一级混凝池101、二级混凝池102、絮凝池103、沉淀池104循环流动,而活性污泥在一级混凝池101、二级混凝池102、絮凝池103、沉淀池104循环流动过程中活性污泥能够加快一级混凝池101、二级混凝池102和絮凝池103中反应和絮凝的速度。In this embodiment, the high-
在本实施例中,一级混凝池101中投加双极膜电渗析装置9产出的液碱,二级混凝池102中投加碳酸钠、絮凝池103中投加絮凝剂、助凝剂,pH调节池105中投加双极膜电渗析装置9产出的盐酸,通过对双极膜电渗析装置9产出的盐酸和纯碱合理利用,最大程度实现高盐废水深度资源化和获得高市场价值的产品,最终实现高盐废水的零排放和资源化处理目标,进而大大减小高盐废水的处理成本。In this embodiment, the liquid caustic soda produced by the bipolar
在本实施例中,纳滤装置7采用硫酸根截留率高于97%的纳滤膜,纳滤浓水内的硫酸根含量不小于50000mg/L,通过硫酸根截留率高于97%的纳滤膜使得纳滤装置7的中的一价离子氯化钠和二价离子硫酸钠分离更加完全。In the present embodiment, the
作为优选,提浓电渗析装置8将纳滤产水的盐水浓缩至TDS浓度为150000~200000mg/L,得到高浓度氯化钠盐水。Preferably, the
作为优选,高级催化氧化装置6包括高级催化氧化塔、活性炭吸附塔,脱碳产水依次经过高级催化氧化塔、活性炭吸附塔,通过高级催化氧化塔和活性炭吸附塔脱碳产水的COD去除率为35%~45%,进而有效去除脱碳产水中的有机质和色渍。Preferably, the advanced
作为优选,吹脱装置5中,通过添加盐酸调节树脂产水的pH值,使其pH值在4~6,需要说明的是,吹脱装置5中所需的盐酸来自于双极膜电渗析装置9,通过将双极膜电渗析装置9生产出的盐酸与树脂产水中的碳酸根反应生成二氧化碳和水,最后在通过脱碳风机将二氧化碳吹出,进而达到树脂产水脱碳去碱的效果。As preferably, in the stripping
在本实施例中,高效过滤装置2采用纤维滤料过滤器,出水浊度≤3NTU。In this embodiment, the high-
在本实施例中,离子交换装置4采用树脂填料,出水硬度≤5mg/L。In this embodiment, the
在本实施例中,还包括蒸发结晶装置10,蒸发结晶装置10采用MVR蒸发结晶或多效蒸发结晶技术将纳滤浓水蒸发结晶产出无水硫酸钠,通过回收价值较高的无水硫酸钠产品进行资源化外售,最终实现高盐废水的零排放和资源化处理、循环利用的目标。In this embodiment, an
更优的,在蒸发结晶装置10在制取无水硫酸钠的过程中还会生产还会生产水蒸气,在本发明中通过对水蒸气进行冷凝回收,进而最大程度实现高盐废水深度资源化和获得高市场价值的产品,最终实现高盐废水的零排放和资源化处理目标;具体的,蒸发结晶装置10中设有蒸发冷凝水降温装置;蒸发冷凝水降温装置包括蒸发原水罐11、蒸发原水泵12、换热器13、冷凝水罐15、冷凝水泵14、蒸发结晶器、回用水池16;蒸发原水罐11通过原水管道与蒸发原水泵12入口端连接,换热器13冷媒进口端通过原水进水管道与蒸发原水泵12出口端与连接,换热器13冷媒出口端通过原水出水管道与蒸发结晶器连接,换热器13热媒进口端通过冷凝水进水管道与蒸发冷凝水泵14出口端连接,换热器13热媒出口端通过冷凝水出水管道与回用水池16连接。More preferably, in the process of preparing anhydrous sodium sulfate in the evaporation and
进一步具体地,原水出水管通过换热器13后分支一路原水回流管道回流循环至蒸发原水罐11,保证运行时冷媒稳定地大流量、蒸发冷凝水出水温度不超温。More specifically, the raw water outlet pipe passes through the
在本发明中还公开了一种高盐废水零排放和资源化处理方法,包括:The present invention also discloses a high-salt wastewater zero-discharge and resource-based treatment method, including:
还公开了一种高盐废水零排放和资源化处理方法,包括:Also disclosed is a zero-discharge and resource-based treatment method for high-salt wastewater, including:
S1、高效沉淀池接入高盐废水进行软化预处理,对高盐废水中的钙、镁、硅、重金属离子、较大悬浮物等杂质进行沉淀,得到一次处理水;S1. The high-efficiency sedimentation tank is connected to the high-salt wastewater for softening pretreatment, and precipitates impurities such as calcium, magnesium, silicon, heavy metal ions, and larger suspended solids in the high-salt wastewater to obtain primary treated water;
S2、一次处理水依次经过高效过滤装置和超滤装置,除去一次处理水中的较小的悬浮物和胶体得到二次处理水;S2, the primary treatment water passes through the high-efficiency filtration device and the ultrafiltration device successively to remove the smaller suspended solids and colloids in the primary treatment water to obtain the secondary treatment water;
S3、通过离子交换装置去除所述二次处理水中残留的钙、镁、重金属获得树脂产水;S3. Removing calcium, magnesium and heavy metals remaining in the secondary treatment water through an ion exchange device to obtain resin produced water;
S4、吹脱装置对所述树脂产水进行去除碱度处理,通过添加盐酸调节所述树脂产水的pH值,并去除其中的碳酸根反应,进而得到脱碳产水;S4. The stripping device performs alkalinity removal treatment on the resin product water, adjusts the pH value of the resin product water by adding hydrochloric acid, and removes the carbonate reaction therein, and then obtains the decarbonized product water;
S5、通过高级催化氧化装置对脱碳产水进行除COD处理和活性炭吸附处理,去除脱碳产水中的有机杂质和色度脱除处理,得到三次处理水;S5. Perform COD removal treatment and activated carbon adsorption treatment on the decarbonized product water through the advanced catalytic oxidation device, remove organic impurities and chroma removal treatment in the decarbonized product water, and obtain tertiary treated water;
S6、对三次处理水进行分离提纯,进而生成一价离子氯化钠的纳滤产水和二价离子硫酸钠为主的纳滤浓水;S6. Separating and purifying the water treated three times, and then generating nanofiltration product water of monovalent ion sodium chloride and nanofiltration concentrated water mainly of divalent ion sodium sulfate;
S7、将纳滤产水高倍浓缩得到高浓度的氯化钠盐水;S7, high-fold concentration of nanofiltration product water to obtain high-concentration sodium chloride brine;
S8、对氯化钠盐水进行电解制得盐酸、液碱;S8, electrolyzing sodium chloride brine to obtain hydrochloric acid and liquid caustic soda;
在S8中制得的盐酸、液碱通过管道回流至所述高效沉淀池、所述吹脱装置中循环利用。The hydrochloric acid and liquid caustic soda produced in S8 are returned to the high-efficiency sedimentation tank and the stripping device through pipelines for recycling.
作为优选,在S1中高效废水依次通过一级混凝池、二级混凝池、絮凝池、沉淀池、pH调节池,并在沉淀池内高盐废水分层形成水相和活性污泥,水相进入所述pH调节池后形成一次处理水,活性污泥通过污泥回流泵回流至一级混凝池。As a preference, in S1, the high-efficiency wastewater passes through the primary coagulation tank, the secondary coagulation tank, the flocculation tank, the sedimentation tank, and the pH adjustment tank in sequence, and the high-salt wastewater in the sedimentation tank is stratified to form water phase and activated sludge. Phase enters the pH adjustment tank to form primary treatment water, and the activated sludge returns to the primary coagulation tank through the sludge return pump.
作为优选,在S1中所述一级混凝池中投加步骤S8中产出的液碱,二级混凝池中投加碳酸钠,絮凝池中投加絮凝剂、助凝剂,pH调节池中投加步骤S8中产出的盐酸。As preferably, the liquid caustic soda produced in step S8 is added to the primary coagulation tank described in S1, sodium carbonate is added to the secondary coagulation tank, flocculant and coagulant are added to the coagulation tank, and the pH is adjusted Add the hydrochloric acid produced in step S8 in the pool.
作为优选,在S5中,脱碳产水依次经过高级催化氧化塔、活性炭吸附塔,通过高级催化氧化塔和活性炭吸附塔去除脱碳产水中的有机质和色度。Preferably, in S5, the decarbonized product water passes through the advanced catalytic oxidation tower and the activated carbon adsorption tower in sequence, and the organic matter and chroma in the decarbonized product water are removed through the advanced catalytic oxidation tower and the activated carbon adsorption tower.
作为优选,还包括S9、通过发结晶装置用于将纳滤浓水蒸发结晶产出无水硫酸钠。Preferably, it also includes S9, which is used for evaporating and crystallizing the nanofiltration concentrated water to produce anhydrous sodium sulfate through a crystallization device.
实施例效果如下:Embodiment effect is as follows:
(1)煤化工废水行业、燃煤电厂电厂脱硫废水行业、煤矿矿井水行业、印染废水行业、造纸废水行业等所产生的高盐废水水质复杂、波动大,待均质均量缓存后进入高效沉淀池装置进行软化处理,本实施例中出水的钙浓度低至28mg/L、镁浓度低至7mg/L、硅浓度低至15mg/L。(1) The high-salt wastewater produced by coal chemical wastewater industry, coal-fired power plant desulfurization wastewater industry, coal mine water industry, printing and dyeing wastewater industry, papermaking wastewater industry, etc. has complex water quality and large fluctuations. The settling tank device is used for softening treatment. In this embodiment, the concentration of calcium in the effluent is as low as 28 mg/L, the concentration of magnesium is as low as 7 mg/L, and the concentration of silicon is as low as 15 mg/L.
(2)软化处理后的高盐废水进入纤维束过滤器装置,本实施例中出水浊度为3NTU;产水进入超滤装置进一步过滤;(2) The high-salt wastewater after softening treatment enters the fiber bundle filter device, and the effluent turbidity is 3NTU in this embodiment; the produced water enters the ultrafiltration device for further filtration;
(3)过滤处理后的高盐废水输送至离子交换装置,进一步去除钙、镁、重金属离子,本实施例中出水总硬(以碳酸钙计)低至5mg/L;(3) The filtered high-salt wastewater is transported to an ion exchange device to further remove calcium, magnesium, and heavy metal ions. In this embodiment, the total hardness of the effluent (in terms of calcium carbonate) is as low as 5 mg/L;
(4)将树脂产水输送至吹脱装置进行去除碱度处理,本实施例中脱碳产水碱度为49mg/L;(4) Transport the resin produced water to the stripping device for alkalinity removal treatment. In this embodiment, the alkalinity of the decarburized produced water is 49 mg/L;
(5)将脱碳产水输送至高级催化氧化装置进行COD和色度脱除处理,本实施例中对有机物的去除率为40%、出水色度<10度,得到氧化产水;(5) Transport the decarbonized product water to an advanced catalytic oxidation device for COD and chroma removal treatment. In this embodiment, the removal rate of organic matter is 40%, and the effluent color is less than 10 degrees to obtain oxidized product water;
(6)将氧化产水送至纳滤装置对盐水分离提纯,利用纳滤装置1对不同离子的选择透过性,将高盐废水分为以一价离子为主的纳滤产水——氯化钠含盐水,以二价离子为主的纳滤浓水——硫酸钠含盐水;本实施例中的膜操作压力约34bar,回收率为80%,进入纳滤装置的高盐废水主要水质指标如下表所示:(6) Send the oxidized water to the nanofiltration device to separate and purify the brine, and use the selective permeability of the
实施例中纳滤膜对硫酸根的截留率约97%,对氯离子的截留率约-0.6%,即高盐废水经过纳滤装置后,一价离子氯离子得到了富集而二价离子硫酸根仅有3%透过,大部分硫酸根被截留在了纳滤浓水侧的硫酸钠含盐水中,通过此方式完成了对高盐废水中硫酸钠和氯化钠的高效分离,得到了硫酸钠和氯化钠两种不同离子态的含盐水,两股含盐水的主要指标如下表所示:In the embodiment, the interception rate of the nanofiltration membrane to the sulfate radical is about 97%, and the interception rate to the chloride ion is about -0.6%, that is, after the high-salt wastewater passes through the nanofiltration device, the monovalent ion chloride ion is enriched and the divalent ion Only 3% of sulfate radicals permeated, and most of the sulfate radicals were trapped in the sodium sulfate brine on the concentrated water side of the nanofiltration. In this way, the high-efficiency separation of sodium sulfate and sodium chloride in high-salt wastewater was completed, and obtained Sodium sulfate and sodium chloride are two different ionic states of brine, and the main indicators of the two brines are shown in the following table:
(7)纳滤产水的氯化钠含盐水输送至提浓电渗析装置,实现高盐废水的提浓减量。本实施例中提浓电渗析膜组选用的均相离子交换膜;本实施例中通过提浓电渗析装置后的高盐废水量从80m3/h、TDS约49900mg/L浓缩减量至约10m3/h、200000mg/L;(7) The sodium chloride-containing brine of the nanofiltration water is sent to the electrodialysis device for concentration enrichment to realize concentration reduction of high-salt wastewater. In this embodiment, the homogeneous ion exchange membrane selected for the concentration electrodialysis membrane group; in this embodiment, the amount of high-salt wastewater after passing through the concentration electrodialysis device is reduced from 80m 3 /h, TDS about 49900mg/L to about 10m 3 /h, 200000mg/L;
(8)高浓度氯化钠盐水输送至双极膜电渗析浓缩制得较高附加值的盐酸、液碱;本实施例中双极膜电渗析膜组选用阴离子交换膜、阳离子交换膜、中间催化膜,将浓度为200000mg/L的氯化钠盐转化为质量浓度约8%的氢氧化钠、质量浓度约7%的盐酸;(8) The high-concentration sodium chloride brine is transported to the bipolar membrane electrodialysis concentration to obtain higher value-added hydrochloric acid and liquid caustic soda; The catalytic membrane converts the sodium chloride salt with a concentration of 200000mg/L into sodium hydroxide with a mass concentration of about 8% and hydrochloric acid with a mass concentration of about 7%;
(9)纳滤浓水输送至MVR蒸发结晶装置,获得满足回用要求的蒸发冷凝水和工业级的无水硫酸钠产品,硫酸钠结晶盐品质满足《GB/T6009-2014工业无水硫酸钠》Ⅱ类一等品标准(纯度98%);(9) The nanofiltration concentrated water is transported to the MVR evaporation and crystallization device to obtain evaporation condensate meeting the reuse requirements and industrial-grade anhydrous sodium sulfate products. The quality of sodium sulfate crystalline salt meets the requirements of "GB/T6009-2014 Industrial Anhydrous Sodium Sulfate 》Class II first-class product standard (purity 98%);
(10)进一步地,双极膜电渗析电解制得的液碱输送至高效沉淀池一级混凝池、蒸发结晶装置,制得的盐酸输送至pH调节池、吹脱装置、纳滤装置。(10) Further, the liquid caustic soda produced by bipolar membrane electrodialysis electrolysis is transported to the first-stage coagulation tank of the high-efficiency sedimentation tank and the evaporation crystallization device, and the obtained hydrochloric acid is transported to the pH adjustment tank, the stripping device, and the nanofiltration device.
以上公开的仅为本发明的几个具体实施例,但是本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。The above disclosures are only a few specific embodiments of the present invention, but the present invention is not limited thereto, and any changes conceivable by those skilled in the art shall fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211707258.6A CN115893763A (en) | 2022-12-27 | 2022-12-27 | A zero-discharge and resource-based treatment system and method for high-salt wastewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211707258.6A CN115893763A (en) | 2022-12-27 | 2022-12-27 | A zero-discharge and resource-based treatment system and method for high-salt wastewater |
Publications (1)
Publication Number | Publication Date |
---|---|
CN115893763A true CN115893763A (en) | 2023-04-04 |
Family
ID=86482379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211707258.6A Pending CN115893763A (en) | 2022-12-27 | 2022-12-27 | A zero-discharge and resource-based treatment system and method for high-salt wastewater |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115893763A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116375277A (en) * | 2023-04-13 | 2023-07-04 | 邢台旭阳科技有限公司 | A treatment method and treatment system for coking high-salt wastewater |
CN116969484A (en) * | 2023-08-03 | 2023-10-31 | 海澜智云科技有限公司 | A method, equipment and system for recycling industrial waste salt into resources |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107235590A (en) * | 2017-05-17 | 2017-10-10 | 中国石油化工股份有限公司 | The handling process that a kind of zero-emission of containing wastewater from catalyst and recycling are recycled |
CN207061952U (en) * | 2017-06-21 | 2018-03-02 | 陕西航天机电环境工程设计院有限责任公司 | For the multiple spot internal circulation system in coagulating sedimentation water treatment technology |
CN210915710U (en) * | 2019-09-29 | 2020-07-03 | 中国电子系统工程第二建设有限公司 | Zero-emission and recycling treatment system for coal coking high-salinity wastewater |
CN113562924A (en) * | 2021-08-31 | 2021-10-29 | 中冶北方(大连)工程技术有限公司 | Treatment system and method for resource utilization of high-salinity wastewater in ferrous metallurgy |
CN114057342A (en) * | 2022-01-14 | 2022-02-18 | 北京清创人和生态工程技术有限公司 | Method and system for recycling miscellaneous salt resources |
WO2022109765A1 (en) * | 2020-11-24 | 2022-06-02 | 万华化学集团股份有限公司 | Method for advanced treatment and reuse of vinyl chloride high-salt wastewater |
-
2022
- 2022-12-27 CN CN202211707258.6A patent/CN115893763A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107235590A (en) * | 2017-05-17 | 2017-10-10 | 中国石油化工股份有限公司 | The handling process that a kind of zero-emission of containing wastewater from catalyst and recycling are recycled |
CN207061952U (en) * | 2017-06-21 | 2018-03-02 | 陕西航天机电环境工程设计院有限责任公司 | For the multiple spot internal circulation system in coagulating sedimentation water treatment technology |
CN210915710U (en) * | 2019-09-29 | 2020-07-03 | 中国电子系统工程第二建设有限公司 | Zero-emission and recycling treatment system for coal coking high-salinity wastewater |
WO2022109765A1 (en) * | 2020-11-24 | 2022-06-02 | 万华化学集团股份有限公司 | Method for advanced treatment and reuse of vinyl chloride high-salt wastewater |
CN113562924A (en) * | 2021-08-31 | 2021-10-29 | 中冶北方(大连)工程技术有限公司 | Treatment system and method for resource utilization of high-salinity wastewater in ferrous metallurgy |
CN114057342A (en) * | 2022-01-14 | 2022-02-18 | 北京清创人和生态工程技术有限公司 | Method and system for recycling miscellaneous salt resources |
Non-Patent Citations (2)
Title |
---|
北京首钢国际工程技术有限公司编: "《冶金工程设计研究与创新》", 28 February 2013, 冶金工业出版社, pages: 317 * |
朱艳旭;李孟;杨卫;包宇飞;: "钢铁综合废水物化处理工艺的优化试验研究", 武汉理工大学学报, no. 03, 30 March 2016 (2016-03-30) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116375277A (en) * | 2023-04-13 | 2023-07-04 | 邢台旭阳科技有限公司 | A treatment method and treatment system for coking high-salt wastewater |
CN116969484A (en) * | 2023-08-03 | 2023-10-31 | 海澜智云科技有限公司 | A method, equipment and system for recycling industrial waste salt into resources |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108249646B (en) | Power plant desulfurization wastewater zero-emission treatment process and device capable of recycling resources | |
CN108529802B (en) | Zero-discharge process for discharging high-salt-content wastewater in titanium dioxide production | |
CN105645439B (en) | A kind of system and its technique that potassium sulfate is prepared using high saliferous industrial wastewater | |
CN203878018U (en) | Desulfurization wastewater recycling and zero-discharge system | |
CN206156936U (en) | High salt waste water zero release processing system | |
CN214088118U (en) | Power plant concentrated wastewater zero-emission treatment device | |
CN115893763A (en) | A zero-discharge and resource-based treatment system and method for high-salt wastewater | |
CN103373786A (en) | Method for treating reverse osmosis concentrate | |
CN110950474A (en) | Phenol-cyanogen wastewater resource zero-discharge method and process | |
CN108178408A (en) | A kind of device and method of desulfurization wastewater processing | |
CN116639853B (en) | System and method for realizing zero discharge of wastewater and recovery of salt and nitrate | |
CN112174445A (en) | Zero-emission treatment method for high-concentration brine in metallurgical industry | |
CN105481160B (en) | Method and device for preparing industrial salt by strong brine with zero discharge | |
CN111268859A (en) | Method for simultaneously preparing hydrochloric acid and sodium hydroxide by utilizing reverse osmosis strong brine | |
CN108793569A (en) | A kind of high ammonia nitrogen, high organic matter desulfurization wastewater dish tubular type film processing system and method | |
CN205222913U (en) | Recovery system of zero release of high salt waste water and high -purity sodium chloride | |
CN217868499U (en) | Combined system suitable for realizing zero emission of mine drainage water | |
CN218146261U (en) | A Carbon Neutral Zero Discharge Industrial Water Treatment System | |
CN112225374A (en) | Nanofiltration preposed low-chloride mine water treatment system and process thereof | |
CN104016510B (en) | The Application way of a kind of thermal power plant reverse osmosis concentrated water and municipal effluent interaction process | |
CN218478625U (en) | A system to realize zero discharge and resource utilization of coking wastewater | |
CN116947256A (en) | Zero discharge method and system for desulfurization wastewater based on heavy media magnetic particle filtration technology | |
CN106430771B (en) | salt separation system and salt separation method | |
CN111170538A (en) | Desulfurization wastewater treatment process and treatment system | |
CN215102627U (en) | Zero-salt-release treatment system for desulfurization waste water of sodium chloride and gypsum co-production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |