CN115764875A - 一种电力系统惯量和调频备用容量确定方法 - Google Patents

一种电力系统惯量和调频备用容量确定方法 Download PDF

Info

Publication number
CN115764875A
CN115764875A CN202211472643.7A CN202211472643A CN115764875A CN 115764875 A CN115764875 A CN 115764875A CN 202211472643 A CN202211472643 A CN 202211472643A CN 115764875 A CN115764875 A CN 115764875A
Authority
CN
China
Prior art keywords
frequency
inertia
generator set
frequency modulation
reserve capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211472643.7A
Other languages
English (en)
Inventor
刘海涛
朱康凯
仲聪
王宇昊
张效诚
马佳伊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN202211472643.7A priority Critical patent/CN115764875A/zh
Publication of CN115764875A publication Critical patent/CN115764875A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Eletrric Generators (AREA)

Abstract

本发明公开了一种电力系统惯量和调频备用容量确定方法,包括S1、构建电力系统频率响应模型;S2、构建电力系统的系统惯量和调频备用容量相关目标函数和对应约束指标;目标函数包括电力系统遭遇扰动后能维持频率稳定的系统等效惯性时间常数最小以及新能源机组的总调频备用容量最小;S3、通过NSGA‑II算法对新能源机组惯性时间常数等效惯性时间常数和新能源机组总调频备用容量进行寻优;S4、计算得到系统总惯量和系统总调频备用容量。本发明在兼顾新能源机组虚拟惯量最低以及新能源机组调频备用容量最小的同时,引入风光波动不确定性,实现包含新能源机组虚拟惯量及新能源机组调频备用容量的电力系统惯量和调频容量确定。

Description

一种电力系统惯量和调频备用容量确定方法
技术领域
本发明属于电力系统频率稳定分析技术领域,涉及一种电力系统频率稳定分析方法,尤其涉及一种电力系统惯量和调频备用容量确定方法。
背景技术
近年来,以风电和光伏为代表的新能源的快速发展,可再生能源大量并网,并逐步取代传统火电。电力系统中可再生能源占比逐渐增高、电力电子设备占比逐渐增高,“双高”特征愈发明显。可再生能源通过电力电子变流器并网,这些变流设备没有与同步发电机类似的转动惯量,无法为系统提供惯量支撑。因此导致系统惯量水平不断降低。低惯量系统的频率稳定性较差,其在遭遇大功率扰动时,其频率下降迅速,会对系统内发电机造成损害、触发低频减载等,甚至会引发系统奔溃,造成大范围停电。在此基础上有专家学者通过改变电力电子变流器的控制策略,使新能源机组获得类似于转动惯量的虚拟惯量,能够为系统提供惯量支撑。
惯量响应和一次调频是系统频率动态响应的重要环节,系统总惯量水平高低和调频容量的大小与系统的调频能力直接相关。因此,确定系统在遭遇频率扰动时的惯量需求和调频容量需求,是实现系统频率稳定的重要前提。现有技术中,通常仅考虑同步发电机惯量和新能源机组虚拟惯量,未考虑新能源机组调频容量需求和风光出力不确定性,严重影响系统频率的稳定。
发明内容
本发明针对上述现有技术的不足,提供一种电力系统惯量和调频备用容量确定方法,基于系统频率安全约束、新能源机组虚拟惯量可调节约束和调频备用容量约束,考虑风光波动不确定特性,实现对包含新能源机组虚拟惯量和调频备用容量的系统总惯量和调频备用容量的确定。
为实现上述目的,本发明提供一种电力系统惯量和调频备用容量确定方法,所述电力系统包括同步发电机组、风电机组和光伏机组,该方法具有这样的特征:
包括以下步骤:S1、构建电力系统频率响应模型;S2、构建电力系统的系统惯量和调频备用容量相关目标函数和对应约束指标;目标函数包括惯量目标和容量目标;惯量目标为电力系统遭遇扰动后能维持频率稳定的系统等效惯性时间常数最小;容量目标为新能源机组的总调频备用容量最小;约束指标包括频率偏差约束、频率变化率约束、新能源机组等效惯性时间常数可调节约束和调频备用容量约束;S3、根据目标函数和约束指标,通过NSGA-II算法对新能源机组等效惯性时间常数和新能源机组总调频备用容量进行寻优;S4、根据S3得到的新能源机组等效惯性时间常数和新能源机组总调频备用容量,计算得到系统总惯量和系统总调频备用容量。
进一步,本发明提供一种电力系统惯量和调频备用容量确定方法,还可以具有这样的特征:其中,S1中,所述频率响应模型包括系统惯性响应环节、各机组一次调频环节和限幅环节,频率响应模型反映电力系统遭遇扰动后的频率响应过程。所述频率响应模型的频率响应方程为:
Figure BDA0003955023900000021
式中,Hs为系统等效惯性时间常数;D为系统的阻尼系数;Δf(t)为系统频率偏差;t为仿真时的各采样时刻;ΔPL为系统功率扰动;ΔPG为系统遭遇扰动后各机组调频功率增量之和,其计算方式为:
Figure BDA0003955023900000031
式中,i、j、k分别为各同步发电机组、风电机组和光伏机组的编号;
Figure BDA0003955023900000032
Figure BDA0003955023900000033
Figure BDA0003955023900000034
分别为系统遭遇扰动后各同步发电机组、风电机组和光伏机组的功率增量。
进一步,本发明提供一种电力系统惯量和调频备用容量确定方法,还可以具有这样的特征:其中,S2中,所述系统惯量包括同步发电机组转动惯量、风电机组的虚拟惯量和光伏机组的虚拟惯量;系统惯量表示为:
Figure BDA0003955023900000035
式中,HE为系统总惯量;上标G、W、P分别代表同步发电机组、风电机组、光伏机组;i、j、k分别为各同步发电机组、风电机组和光伏机组的编号;
Figure BDA0003955023900000036
Figure BDA0003955023900000037
分别为各同步发电机组、风电机组和光伏机组的额定容量;
Figure BDA0003955023900000038
Figure BDA0003955023900000039
Figure BDA00039550239000000310
分别为各同步发电机组的惯性时间常数、风电机组的等效惯性时间常数和光伏机组的等效惯性时间常数;
所述各同步发电机组的惯性时间常数的计算方式为:
Figure BDA00039550239000000311
式中,ri为同步发电机i的转子半径;mi为同步发电机i的质量;ωi为同步发电机i的转子的角频率;
所述系统等效惯性时间常数Hs为:
Figure BDA0003955023900000041
进一步,本发明提供一种电力系统惯量和调频备用容量确定方法,还可以具有这样的特征:其中,S2中,所述调频备用容量包括同步发电机组调频备用容量、风电机组调频备用容量和光伏机组调频备用容量;
各同步发电机组调频备用容量、风电机组调频备用容量和光伏机组调频备用容量的计算方式分别为:
Figure BDA0003955023900000042
Figure BDA0003955023900000043
Figure BDA0003955023900000044
式中,上标G、W、P分别代表同步发电机组、风电机组、光伏机组;下标 i、j、k分别为各同步发电机组、风电机组和光伏机组的编号;
Figure BDA0003955023900000045
Figure BDA0003955023900000046
分别为各同步发电机组、风电机组和光伏机组的调频备用容量;
Figure BDA0003955023900000047
Figure BDA0003955023900000048
分别为各同步发电机组、风电机组和光伏机组的实际发电功率;
Figure BDA0003955023900000049
Figure BDA00039550239000000410
分别为各同步发电机组、风电机组和光伏机组的调频备用容量的占比。
进一步,本发明提供一种电力系统惯量和调频备用容量确定方法,还可以具有这样的特征:其中,S2中,所述新能源机组总调频备用容量Pr表示为:
Figure BDA0003955023900000051
式中,Nt为24小时的风光波动数据节点数;
Figure BDA0003955023900000052
Figure BDA0003955023900000053
分别为各风电机组和光伏机组在n节点处的调频备用容量。
进一步,本发明提供一种电力系统惯量和调频备用容量确定方法,还可以具有这样的特征:其中,S2中,所述频率偏差约束为:
Δfmin≤Δfm≤Δfmax
式中,Δfmax为频率偏差上限;Δfmin为频率偏差下限;Δfm为频率偏差极值,其计算方式为:
Figure BDA0003955023900000054
Δfm=min(Δft)
式中,Δft为遭遇功率扰动后t时刻的系统频率偏差;Hs为系统等效惯性时间常数;s为拉普拉斯变换的变量;D为系统的阻尼系数;ΔPL为系统功率扰动;ΔPG,t为t时刻的系统各机组调频功率增量之和。
进一步,本发明提供一种电力系统惯量和调频备用容量确定方法,还可以具有这样的特征:其中,S2中,所述频率变化率约束为:
RoCoFmin≤RoCoFm≤RoCoFmax
式中,RoCoFmin为频率变化率下限;RoCoFmax频率变化率上限;RoCoFm为频率变化率极值,其计算方式为:
Figure BDA0003955023900000055
RoCoFm=max(|RoCoFt|);
式中,RoCoFt为t时刻系统频率变化率;Δft和Δft-1分别为遭遇功率扰动后t时刻和t-1时刻的系统频率偏差;τ为计算时的离散处理步长。
进一步,本发明提供一种电力系统惯量和调频备用容量确定方法,还可以具有这样的特征:其中,S2中,所述新能源机组等效惯性时间常数可调节约束为:
Figure BDA0003955023900000061
式中,
Figure BDA0003955023900000062
Figure BDA0003955023900000063
分别为风电机组等效惯性时间常数调节上、下限;
Figure BDA0003955023900000064
为各风电机组等效惯性时间常数;
Figure BDA0003955023900000065
Figure BDA0003955023900000066
分别为光伏机组等效惯性时间常数调节上、下限;
Figure BDA0003955023900000067
为各光伏机组等效惯性时间常数。
进一步,本发明提供一种电力系统惯量和调频备用容量确定方法,还可以具有这样的特征:其中,S2中,所述调频备用容量约束为;
Figure BDA0003955023900000068
式中,
Figure BDA0003955023900000069
Figure BDA00039550239000000610
分别为各同步发电机组、风电机组和光伏机组在t时刻的调频功率增量;
Figure BDA00039550239000000611
Figure BDA00039550239000000612
分别为各同步发电机组、风电机组和光伏机组的调频备用容量。
进一步,本发明提供一种电力系统惯量和调频备用容量确定方法,还可以具有这样的特征:其中,S3的具体寻优方法为:
S3.1、基于S2中的新能源机组虚拟惯量可调节约束和调频备用容量约束生成初始种群,并设置各时段各电机组参数;
S3.2、计算各时段的系统等效惯性时间常数以及各同步发电机组、风电机组和光伏机组的调频备用容量;
S3.3、通过S1构建的电力系统频率响应模型计算遭遇功率扰动时的系统频率偏差和系统频率变化率;
S3.4、根据S2中的频率偏差约束和频率变化率约束对S3.3所得的系统频率偏差和系统频率变化率进行约束判断;若其符合约束,则根据S2的目标函数计算其个体适应度;若其不符合约束,则在附加惩罚函数后计算其个体适应度;
S3.5、若未满足迭代终止条件,则根据个体适应度依次进行快速非支配排序、拥挤度计算、选择、杂交、变异操作,生成新一代种群,并重复S3.2-S3.4,直至满足迭代终止条件;
S3.6、迭代终止后获取最优解集,即得到新能源机组等效惯性时间常数和新能源机组总调频备用容量。
本发明的有益效果在于:本发明综合考虑新能源机组虚拟惯量及新能源机组调频备用容量,提供了一种电力系统惯量和调频备用容量确定方法。具体的,是基于频率安全约束,在风光出力波动场景下,建立考虑新能源机组虚拟惯量和一次调频的电力系统惯量最小以及调频备用容量最低的多目标优化方法。本发明与仅以系统等效惯性时间常数为目标函数的传统方法相比,在兼顾新能源机组虚拟惯量最低以及新能源机组调频备用容量最小的同时,引入风光波动不确定性,实现包含新能源机组虚拟惯量及新能源机组调频备用容量的电力系统惯量和调频备用容量的确定,解决了现有技术中因未考虑新能源机组调频容量需求以及风电、光伏出力不确定性而对系统惯量需求和调频备用容量带来的问题。相较于传统单目标优化方法,本发明可以实现在系统惯量指标相同时,新能源机组的调频备用容量指标更优;在新能源机组的调频备用容量指标相同时,系统惯量指标更优;或者有部分最优解的两项指标均优于传统单目标优化方法。
附图说明
图1是电力系统频率响应模型结构图;
图2是S3的算法流程图;
图3是测试实施例中风光出力波动图;
图4是测试实施例中优化结果的Pareto最优前沿图。
具体实施方式
以下结合附图来说明本发明的具体实施方式。
本发明提供了一种电力系统惯量和调频备用容量确定方法,该电力系统包括同步发电机组、风电机组和光伏机组。
方法包括以下步骤:
S1、构建电力系统频率响应模型。
频率响应模型包括系统惯性响应环节、各机组一次调频环节和限幅环节,频率响应模型反映电力系统遭遇扰动后的频率响应过程。
频率响应模型的频率响应方程为:
Figure BDA0003955023900000081
式中,Hs为系统等效惯性时间常数;D为系统的阻尼系数;Δf(t)为系统频率偏差;t为仿真时的各采样时刻;ΔPL为系统功率扰动;ΔPG为系统遭遇扰动后各机组调频功率增量之和,其计算方式为:
Figure BDA0003955023900000091
式中,上标G、W、P分别代表同步发电机组、风电机组、光伏机组;i、 j、k分别为各同步发电机组、风电机组和光伏机组的编号;
Figure BDA0003955023900000092
Figure BDA0003955023900000093
分别为系统遭遇扰动后各同步发电机组、风电机组和光伏机组的功率增量。
S2、构建电力系统的系统惯量和调频备用容量相关目标函数和对应约束指标。
系统惯量包括同步发电机组转动惯量、风电机组的虚拟惯量和光伏机组的虚拟惯量;系统惯量表示为:
Figure BDA0003955023900000094
式中,HE为系统总惯量;
Figure BDA0003955023900000095
Figure BDA0003955023900000096
分别为各同步发电机组、风电机组和光伏机组的额定容量;
Figure BDA0003955023900000097
Figure BDA0003955023900000098
分别为各同步发电机组的惯性时间常数、风电机组的等效惯性时间常数和光伏机组的等效惯性时间常数;
各同步发电机组的惯性时间常数的计算方式为:
Figure BDA0003955023900000099
式中,ri为同步发电机i的转子半径;mi为同步发电机i的质量;ωi为同步发电机i的转子的角频率;
进一步得到系统等效惯性时间常数为:
Figure BDA0003955023900000101
调频备用容量包括同步发电机组调频备用容量、风电机组调频备用容量和光伏机组调频备用容量。
各同步发电机组调频备用容量、风电机组调频备用容量和光伏机组调频备用容量的计算方式分别为:
Figure BDA0003955023900000102
Figure BDA0003955023900000103
Figure BDA0003955023900000104
式中,
Figure BDA0003955023900000105
Figure BDA0003955023900000106
分别为各同步发电机组、风电机组和光伏机组的调频备用容量;
Figure BDA0003955023900000107
Figure BDA0003955023900000108
分别为各同步发电机组、风电机组和光伏机组的实际发电功率;
Figure BDA0003955023900000109
Figure BDA00039550239000001010
分别为各同步发电机组、风电机组和光伏机组的调频备用容量的占比,
Figure BDA00039550239000001011
选取典型数值,例如5%或6%。
各新能源机组的调频备用容量在不同的风速和光照条件下是不同的,采取以下处理方式对系统中新能源机组总调频备用容量Pr进行表示:
Figure BDA00039550239000001012
式中,Nt为24小时的风光波动数据节点数,以15分钟为采样间隔,故Nt取 96;
Figure BDA0003955023900000111
Figure BDA0003955023900000112
分别为各风电机组和光伏机组在n节点处的调频备用容量。
目标函数包括惯量目标和容量目标;惯量目标为电力系统遭遇扰动后能维持频率稳定的系统等效惯性时间常数Hs最小;容量目标为新能源机组的总调频备用容量Pr最小。
约束指标包括频率偏差约束、频率变化率约束、新能源机组等效惯性时间常数可调节约束和调频备用容量约束。
其中,频率偏差约束为:
Δfmin≤Δfm≤Δfmax
式中,Δfmax为频率偏差上限;Δfmin为频率偏差下限;Δfm为频率偏差极值,其计算方式为:
Figure BDA0003955023900000113
Δfm=min(Δft)
式中,Δft为遭遇功率扰动后t时刻的系统频率偏差;ΔPG,t为t时刻的系统各机组调频功率增量之和。
频率变化率约束为:
RoCoFmin≤RoCoFm≤RoCoFmax
式中,RoCoFmin为频率变化率下限;RoCoFmax频率变化率上限;RoCoFm为频率变化率极值,其计算方式为:
Figure BDA0003955023900000121
RoCoFm=max(|RoCoFt|);
式中,RoCoFt为t时刻系统频率变化率;τ为计算时的离散处理步长。
新能源机组等效惯性时间常数可调节约束为:
Figure BDA0003955023900000122
式中,
Figure BDA0003955023900000123
Figure BDA0003955023900000124
分别为风电机组等效惯性时间常数调节上、下限;
Figure BDA0003955023900000125
为各风电机组等效惯性时间常数;
Figure BDA0003955023900000126
Figure BDA0003955023900000127
分别为光伏机组等效惯性时间常数调节上、下限;
Figure BDA0003955023900000128
为各光伏机组等效惯性时间常数。新能源机组的虚拟惯量是电力电子设备通过参数调节而来,其惯性时间常数在一定范围内可调,故需满足可调节范围限制。
调频备用容量约束为;
Figure BDA0003955023900000129
式中,
Figure BDA00039550239000001210
Figure BDA00039550239000001211
分别为各同步发电机组、风电机组和光伏机组在t时刻的调频功率增量;。
S3、根据目标函数和约束指标,通过NSGA-II算法对新能源机组等效惯性时间常数和新能源机组总调频备用容量进行寻优。
具体寻优方法为:
S3.1、基于S2中的新能源机组虚拟惯量可调节约束和调频备用容量约束生成初始种群,并设置各时段各电机组参数;
S3.2、根据S2中的相应表达式计算各时段的系统等效惯性时间常数Hs以及各同步发电机组、风电机组和光伏机组的调频备用容量
Figure BDA0003955023900000131
Figure BDA0003955023900000132
S3.3、通过S1构建的电力系统频率响应模型计算遭遇功率扰动时的系统频率偏差Δft和系统频率变化率RoCoFt
S3.4、根据S2中的频率偏差约束和频率变化率约束对S3.3所得的系统频率偏差和系统频率变化率进行约束判断;若其符合约束,则根据S2的目标函数计算其个体适应度;若其不符合约束,则在附加惩罚函数后计算其个体适应度;
S3.5、若未满足迭代终止条件,则根据个体适应度依次进行快速非支配排序、拥挤度计算、选择、杂交、变异操作,生成新一代种群,并重复S3.2-S3.4,直至满足迭代终止条件;
S3.6、迭代终止后获取最优解集,即得到新能源机组等效惯性时间常数和新能源机组总调频备用容量Pr
S4、将S3.6所得各个解的新能源机组等效惯性时间常数和新能源机组总调频备用容量Pr,通过S2中的相应表达式,可计算得到各个解的系统总惯量HE和系统总调频备用容量(同步发电机组调频备用容量、风电机组调频备用容量和光伏机组调频备用容量之和)。同时,还可以计算得到系统等效惯性时间常数Hs,以各个解的系统等效惯性时间常数和新能源机组总调频备用容量为坐标,将各个解依次相连,得到Pareto最优前沿。为了验证本发明的有效性,本实施例根据图 1所示的电力系统频率响应模型结构和图2所示的算法流程图,基于MATLAB/Simulink建立模型和算法并进行测试,测试结果如图4所示,具体的:
本测试选用的电力系统以IEEE10机39节点系统为原始模型,并修改第36、 37、38、39母线处的发电机组为光伏机组和风电机组,其出力波动数据如图3 所示。系统功率扰动设为0.06p.u.,一次调频死区设为0.033Hz。频率响应模型单次仿真时间为30s,仿真步长为0.05s。
本发明方法的优化结果及其Pareto最优前沿如图4。同时与传统单目标方法进行对比。单目标方法共设置6组,各组单目标方法的新能源机组的备用容量为恒定值,分别为6%、5.5%、5%、4.5%、4%、3.5%,其优化结果见图4中从左到右依次排列的“×”标点。
选取新能源机组的备用容量为4%的单目标优化结果为目标解,并以此为例,在Pareto最优前沿中分别选取新能源平均备用容量和系统等效惯性时间常数与目标解相同的点,记为A和B。A与目标解的新能源平均备用容量相同,但A的系统等效惯性时间常数小于目标解;B与目标解的系统等效惯性时间常数相同,但B的新能源平均备用容量小于目标解。A、B之间的Pareto最优前沿选段中各点的新能源平均备用容量和系统等效惯性时间常数均小于目标解。选取其余单目标方法的最优解为目标解,也可得出相同结论:本发明方法所求结果至少有一项指标优于传统单目标方法,或者两项指标均优于传统单目标方法。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (10)

1.一种电力系统惯量和调频备用容量确定方法,所述电力系统包括同步发电机组、风电机组和光伏机组,其特征在于:
包括以下步骤:
S1、构建电力系统频率响应模型;
S2、构建电力系统的系统惯量和调频备用容量相关目标函数和对应约束指标;
目标函数包括惯量目标和容量目标;惯量目标为电力系统遭遇扰动后能维持频率稳定的系统等效惯性时间常数最小;容量目标为新能源机组的总调频备用容量最小;
约束指标包括频率偏差约束、频率变化率约束、新能源机组等效惯性时间常数可调节约束和调频备用容量约束;
S3、根据目标函数和约束指标,通过NSGA-II算法对新能源机组等效惯性时间常数和新能源机组总调频备用容量进行寻优;
S4、根据S3得到的新能源机组等效惯性时间常数和新能源机组总调频备用容量,计算得到系统总惯量和系统总调频备用容量。
2.根据权利要求1所述的电力系统惯量和调频备用容量确定方法,其特征在于:
其中,S1中,所述频率响应模型包括系统惯性响应环节、各机组一次调频环节和限幅环节,频率响应模型反映电力系统遭遇扰动后的频率响应过程。
所述频率响应模型的频率响应方程为:
Figure FDA0003955023890000011
式中,Hs为系统等效惯性时间常数;D为系统的阻尼系数;Δf(t)为系统频率偏差;t为仿真时的各采样时刻;ΔPL为系统功率扰动;ΔPG为系统遭遇扰动后各机组调频功率增量之和,其计算方式为:
Figure FDA0003955023890000021
式中,i、j、k分别为各同步发电机组、风电机组和光伏机组的编号;ΔPi G
Figure FDA0003955023890000022
Figure FDA00039550238900000210
分别为系统遭遇扰动后各同步发电机组、风电机组和光伏机组的功率增量。
3.根据权利要求1所述的电力系统惯量和调频备用容量确定方法,其特征在于:
其中,S2中,所述系统惯量包括同步发电机组转动惯量、风电机组的虚拟惯量和光伏机组的虚拟惯量;系统惯量表示为:
Figure FDA0003955023890000023
式中,HE为系统总惯量;上标G、W、P分别代表同步发电机组、风电机组、光伏机组;i、j、k分别为各同步发电机组、风电机组和光伏机组的编号;
Figure FDA0003955023890000024
Figure FDA0003955023890000025
分别为各同步发电机组、风电机组和光伏机组的额定容量;
Figure FDA0003955023890000026
Figure FDA0003955023890000027
Figure FDA0003955023890000028
分别为各同步发电机组的惯性时间常数、风电机组的等效惯性时间常数和光伏机组的等效惯性时间常数;
所述各同步发电机组的惯性时间常数的计算方式为:
Figure FDA0003955023890000029
式中,ri为同步发电机i的转子半径;mi为同步发电机i的质量;ωi为同步发电机i的转子的角频率;
所述系统等效惯性时间常数Hs为:
Figure FDA0003955023890000031
4.根据权利要求1所述的电力系统惯量和调频备用容量确定方法,其特征在于:
其中,S2中,所述调频备用容量包括同步发电机组调频备用容量、风电机组调频备用容量和光伏机组调频备用容量;
各同步发电机组调频备用容量、风电机组调频备用容量和光伏机组调频备用容量的计算方式分别为:
Figure FDA0003955023890000032
Figure FDA0003955023890000033
Figure FDA0003955023890000034
式中,上标G、W、P分别代表同步发电机组、风电机组、光伏机组;下标i、j、k分别为各同步发电机组、风电机组和光伏机组的编号;
Figure FDA0003955023890000035
Figure FDA0003955023890000036
分别为各同步发电机组、风电机组和光伏机组的调频备用容量;Pi G
Figure FDA0003955023890000037
Figure FDA00039550238900000310
分别为各同步发电机组、风电机组和光伏机组的实际发电功率;
Figure FDA00039550238900000311
Figure FDA0003955023890000039
分别为各同步发电机组、风电机组和光伏机组的调频备用容量的占比。
5.根据权利要求4所述的电力系统惯量和调频备用容量确定方法,其特征在于:
其中,S2中,所述新能源机组总调频备用容量Pr表示为:
Figure FDA0003955023890000041
式中,Nt为24小时的风光波动数据节点数;
Figure FDA0003955023890000042
Figure FDA0003955023890000043
分别为各风电机组和光伏机组在n节点处的调频备用容量。
6.根据权利要求1所述的电力系统惯量和调频备用容量确定方法,其特征在于:
其中,S2中,所述频率偏差约束为:
Δfmin≤Δfm≤Δfmax
式中,Δfmax为频率偏差上限;Δfmin为频率偏差下限;Δfm为频率偏差极值,其计算方式为:
Figure FDA0003955023890000044
Δfm=min(Δft)
式中,Δft为遭遇功率扰动后t时刻的系统频率偏差;Hs为系统等效惯性时间常数;s为拉普拉斯变换的变量;D为系统的阻尼系数;ΔPL为系统功率扰动;ΔPG,t为t时刻的系统各机组调频功率增量之和。
7.根据权利要求1所述的电力系统惯量和调频备用容量确定方法,其特征在于:
其中,S2中,所述频率变化率约束为:
RoCoFmin≤RoCoFm≤RoCoFmax
式中,RoCoFmin为频率变化率下限;RoCoFmax频率变化率上限;RoCoFm为频率变化率极值,其计算方式为:
Figure FDA0003955023890000051
RoCoFm=max(|RoCoFt|);
式中,RoCoFt为t时刻系统频率变化率;Δft和Δft-1分别为遭遇功率扰动后t时刻和t-1时刻的系统频率偏差;τ为计算时的离散处理步长。
8.根据权利要求1所述的电力系统惯量和调频备用容量确定方法,其特征在于:
其中,S2中,所述新能源机组等效惯性时间常数可调节约束为:
Figure FDA0003955023890000052
式中,
Figure FDA0003955023890000053
Figure FDA0003955023890000054
分别为风电机组等效惯性时间常数调节上、下限;
Figure FDA0003955023890000055
为各风电机组等效惯性时间常数;
Figure FDA0003955023890000056
Figure FDA0003955023890000057
分别为光伏机组等效惯性时间常数调节上、下限;
Figure FDA0003955023890000058
为各光伏机组等效惯性时间常数。
9.根据权利要求1所述的电力系统惯量和调频备用容量确定方法,其特征在于:
其中,S2中,所述调频备用容量约束为;
Figure FDA0003955023890000061
式中,
Figure FDA0003955023890000062
Figure FDA0003955023890000063
分别为各同步发电机组、风电机组和光伏机组在t时刻的调频功率增量;
Figure FDA0003955023890000064
Figure FDA0003955023890000065
分别为各同步发电机组、风电机组和光伏机组的调频备用容量。
10.根据权利要求1所述的电力系统惯量和调频备用容量确定方法,其特征在于:
其中,S3的具体寻优方法为:
S3.1、基于S2中的新能源机组虚拟惯量可调节约束和调频备用容量约束生成初始种群,并设置各时段各电机组参数;
S3.2、计算各时段的系统等效惯性时间常数以及各同步发电机组、风电机组和光伏机组的调频备用容量;
S3.3、通过S1构建的电力系统频率响应模型计算遭遇功率扰动时的系统频率偏差和系统频率变化率;
S3.4、根据S2中的频率偏差约束和频率变化率约束对S3.3所得的系统频率偏差和系统频率变化率进行约束判断;若其符合约束,则根据S2的目标函数计算其个体适应度;若其不符合约束,则在附加惩罚函数后计算其个体适应度;
S3.5、若未满足迭代终止条件,则根据个体适应度依次进行快速非支配排序、拥挤度计算、选择、杂交、变异操作,生成新一代种群,并重复S3.2-S3.4,直至满足迭代终止条件;
S3.6、迭代终止后获取最优解集,即得到新能源机组等效惯性时间常数和新能源机组总调频备用容量。
CN202211472643.7A 2022-11-17 2022-11-17 一种电力系统惯量和调频备用容量确定方法 Pending CN115764875A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211472643.7A CN115764875A (zh) 2022-11-17 2022-11-17 一种电力系统惯量和调频备用容量确定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211472643.7A CN115764875A (zh) 2022-11-17 2022-11-17 一种电力系统惯量和调频备用容量确定方法

Publications (1)

Publication Number Publication Date
CN115764875A true CN115764875A (zh) 2023-03-07

Family

ID=85335886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211472643.7A Pending CN115764875A (zh) 2022-11-17 2022-11-17 一种电力系统惯量和调频备用容量确定方法

Country Status (1)

Country Link
CN (1) CN115764875A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116979561A (zh) * 2023-09-05 2023-10-31 国网湖南省电力有限公司 风电和储能主动参与电力系统调节的判定方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116979561A (zh) * 2023-09-05 2023-10-31 国网湖南省电力有限公司 风电和储能主动参与电力系统调节的判定方法及系统
CN116979561B (zh) * 2023-09-05 2024-05-10 国网湖南省电力有限公司 风电和储能主动参与电力系统调节的判定方法及系统

Similar Documents

Publication Publication Date Title
CN110071505B (zh) 含大规模风电接入的输电网扩建与储能配置联合规划方法
CN113241803B (zh) 一种基于新能源消纳的储能调度方法及计算机介质
CN110429648B (zh) 考虑风速随机波动的小干扰稳定裕度概率评估方法
CN107785935A (zh) 计及风险及机组组合的电网风电消纳能力评估方法
CN107681664A (zh) 一种基于内点法的分布式电源并网优化潮流计算方法
CN112103941B (zh) 考虑电网灵活性的储能配置双层优化方法
CN115459303A (zh) 电池储能参与电网一次调频的自适应控制方法
CN110323979B (zh) 一种考虑电压稳定的发电机励磁调差系数优化整定方法
CN115764875A (zh) 一种电力系统惯量和调频备用容量确定方法
CN111245032B (zh) 一种计及风电场集电线路降损优化的电压预测控制方法
CN114221351B (zh) 电压无功调节方法、装置、终端及存储介质
CN107947183A (zh) 基于微分进化的含三端snop的配电网自适应优化方法
CN110571794A (zh) 一种适用于双馈风机风电场的暂态模型等值计算方法
CN117808151A (zh) 一种基于粒子群-遗传融合算法的变电站无功优化方法
CN115173433A (zh) 一种平抑风电波动的储能容量优化方法及系统
CN116707023A (zh) 基于源荷相关性聚类的主动配电网分层分区综合优化方法
CN115085260B (zh) 新能源场站聚合模型的振荡模式保真度评价方法
CN114880863B (zh) 分布式可再生能源集群阻抗聚合模型自适应分频降阶方法
CN113746120A (zh) 基于ga的储能系统优化配置方法
CN114204613A (zh) 一种海上风电场接入电力系统的无功补偿方法和系统
CN110264113A (zh) 一种沼气发电机组的负载分配方法、装置及相关设备
CN112396232B (zh) 一种具有阀点效应的电力系统经济调度方法及系统
CN117833374B (zh) 基于随机游走算法的分布式灵活资源集群划分方法
CN109586384B (zh) 一种电网中高可再生能源渗透的最优调节方法及装置
CN109242340B (zh) 一种蓄热电锅炉消纳系统监测数据评价系统及其评价方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination