CN115637944A - Flow measuring device - Google Patents
Flow measuring device Download PDFInfo
- Publication number
- CN115637944A CN115637944A CN202111644294.8A CN202111644294A CN115637944A CN 115637944 A CN115637944 A CN 115637944A CN 202111644294 A CN202111644294 A CN 202111644294A CN 115637944 A CN115637944 A CN 115637944A
- Authority
- CN
- China
- Prior art keywords
- tank
- connection port
- pipe
- contactor
- detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 claims abstract description 88
- 239000002002 slurry Substances 0.000 claims abstract 5
- 238000005259 measurement Methods 0.000 claims description 38
- 238000005553 drilling Methods 0.000 abstract description 14
- 230000008859 change Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 description 9
- 238000003466 welding Methods 0.000 description 6
- 238000005192 partition Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
技术领域technical field
本发明涉及钻井技术领域,尤其涉及一种流量测量装置。The invention relates to the technical field of drilling, in particular to a flow measuring device.
背景技术Background technique
目前国内对溢流、井涌等钻井复杂情况的监测,一般都是人工采用钻井参数仪和综合录井仪定时观测记录,进而判断是否出现溢流或井漏等事故。这种判断方法自动化程度较低,误差较大,且判断延迟性较长。另一种采用安装在高架槽上的超声波或红外线液位传感器测量手段,通过监测高度变化,进而计算出一个相对变化量,无法计算绝对数值,且超声波在现场会受到振动影响,红外线会受到光线等影响,导致计算出的数值不一定准确。At present, domestic monitoring of complex drilling conditions such as overflows and well kicks is generally done manually using drilling parameter meters and comprehensive logging tools to regularly observe and record, and then judge whether there are accidents such as overflows or lost circulation. This judgment method has a low degree of automation, a large error, and a long delay in judgment. The other method uses ultrasonic or infrared liquid level sensors installed on the elevated tank to measure the height change, and then calculates a relative change. The absolute value cannot be calculated, and the ultrasonic wave will be affected by vibration on site, and the infrared light will be affected by light. and other influences, resulting in the calculated value may not be accurate.
现有的一些技术材料中,为准确测量钻井出口泥浆流量,选取电磁流量计作的手段,但实际应用过程中,由于电磁流量计的测量原理要求管内前后通过液体必须处于满管的状态才能进行准确测量,而真实情况下,泥浆内充满泥沙,钻井出口处的泥浆并不会一直保持满管的情况,导致电磁流量计测量产生偏差。另外,当泥浆流量较大时,固定管径下的电磁流量计会对流体通过产生抑制作用,从而造成泥浆的回流。由于电磁流量计对实际出口的流量及压力有较为苛刻的要求,不适用于实际现场的使用。In some existing technical materials, in order to accurately measure the mud flow at the drilling outlet, the electromagnetic flowmeter is selected as the means. However, in the actual application process, because the measurement principle of the electromagnetic flowmeter requires that the liquid passing through the pipe must be in a state of full pipe. Accurate measurement, but in the real situation, the mud is full of sand, and the mud at the drilling outlet will not always keep the full pipe, resulting in deviations in the measurement of the electromagnetic flowmeter. In addition, when the mud flow rate is large, the electromagnetic flowmeter under the fixed pipe diameter will inhibit the passage of the fluid, thereby causing the backflow of the mud. Since the electromagnetic flowmeter has strict requirements on the actual outlet flow and pressure, it is not suitable for actual on-site use.
发明内容Contents of the invention
本发明的目的在于提供一种流量测量装置,能在钻井现场的真实环境中准确测量钻井出口处的泥浆流量。The purpose of the present invention is to provide a flow measuring device, which can accurately measure the mud flow at the drilling outlet in the real environment of the drilling site.
为达此目的,本发明采用以下技术方案:For reaching this purpose, the present invention adopts following technical scheme:
一种流量测量装置,包括:A flow measuring device comprising:
排液管;drain pipe;
测量罐,测量罐设置有进液口和出液口,进液口与排液管连通,出液口处设置有第一电磁阀;A measuring tank, the measuring tank is provided with a liquid inlet and a liquid outlet, the liquid inlet is connected to the discharge pipe, and the liquid outlet is provided with a first electromagnetic valve;
测量组件,测量组件设置于测量罐内,用于测量测量罐内泥浆高度。The measuring component is arranged in the measuring tank and is used for measuring the mud height in the measuring tank.
可选地,测量组件包括:Optionally, the measurement components include:
滑动电阻器,滑动电阻器设置于测量罐内,且滑动电阻器沿竖直方向延伸;a sliding resistor, the sliding resistor is arranged in the measuring tank, and the sliding resistor extends along the vertical direction;
浮杆,浮杆设置于测量罐内,浮杆沿竖直方向延伸且能沿竖直方向移动,浮杆的第一端设置有接触器,接触器与滑动电阻器电连接,当浮杆沿竖直方向移动时,接触器于滑动电阻器上滑动;Floating rod, the floating rod is arranged in the measuring tank, the floating rod extends along the vertical direction and can move along the vertical direction, the first end of the floating rod is provided with a contactor, the contactor is electrically connected with the sliding resistor, when the floating rod moves along the When moving vertically, the contactor slides on the sliding resistor;
检测器,检测器设置于测量罐内,检测器分别与滑动电阻器和接触器电连接,检测器能检测滑动电阻器与接触器之间的电阻信息。The detector is arranged in the measuring tank, the detector is respectively electrically connected with the sliding resistor and the contactor, and the detector can detect the resistance information between the sliding resistor and the contactor.
可选地,测量罐沿竖直方向从上到下依次设置有上罐腔体和下罐腔体,滑动电阻器和检测器均设置于上罐腔体内,浮杆设置于下罐腔体内且浮杆的第一端穿设上罐腔体与接触器连接,进液口和出液口均与下罐腔体连通。Optionally, the measuring tank is provided with an upper tank cavity and a lower tank cavity in sequence from top to bottom in the vertical direction, the sliding resistor and the detector are all arranged in the upper tank cavity, the floating rod is arranged in the lower tank cavity and The first end of the floating rod is pierced through the cavity of the upper tank to connect with the contactor, and the liquid inlet and outlet are both connected to the cavity of the lower tank.
可选地,测量组件还包括处理器,处理器与检测器电连接,处理器能接收检测器检测到的滑动电阻器与接触器之间的电阻信息并根据电阻信息计算测量罐内的液体高度和排液管内的泥浆流量。Optionally, the measurement component further includes a processor, the processor is electrically connected to the detector, and the processor can receive the resistance information detected by the detector between the sliding resistor and the contactor and calculate the liquid height in the measurement tank according to the resistance information and mud flow in the discharge pipe.
可选地,测量组件还包括设置于测量罐内的过滤管,过滤管上设置有多个过滤孔,过滤管沿竖直方向延伸,过滤管内设置浮杆。Optionally, the measurement assembly further includes a filter tube disposed in the measurement tank, the filter tube is provided with a plurality of filter holes, the filter tube extends vertically, and a floating rod is arranged in the filter tube.
可选地,浮杆的第二端设置有浮球,浮球设置于过滤管内。Optionally, a floating ball is arranged at the second end of the floating rod, and the floating ball is arranged in the filter tube.
可选地,测量罐的底部形状为锥形,出液口开设于测量罐的底部的锥形端部上。Optionally, the shape of the bottom of the measuring tank is conical, and the liquid outlet is opened on the conical end of the bottom of the measuring tank.
可选地,还包括进液管,排液管上设置有第一连接口,进液管的第一端与第一连接口连通,进液管的第二端与进液口连通,进液管上设置有第二电磁阀。Optionally, it also includes a liquid inlet pipe, the liquid discharge pipe is provided with a first connection port, the first end of the liquid inlet pipe is connected with the first connection port, the second end of the liquid inlet pipe is connected with the liquid inlet port, and the liquid inlet pipe is connected with the first connection port. The tube is provided with a second solenoid valve.
可选地,还包括第三电磁阀,第三电磁阀设置于排液管上。Optionally, a third solenoid valve is also included, and the third solenoid valve is arranged on the discharge pipe.
可选地,还包括安全管,排液管上设置有第二连接口和第三连接口,第一连接口设置于第二连接口与第三连接口之间,第三电磁阀设置于第一连接口与第三连接口之间,安全管的第一端与第二连接口连通,安全管的第二端与第三连接口连通,安全管上设置有第四电磁阀。Optionally, it also includes a safety pipe, the discharge pipe is provided with a second connection port and a third connection port, the first connection port is provided between the second connection port and the third connection port, and the third electromagnetic valve is provided at the third connection port. Between the first connection port and the third connection port, the first end of the safety pipe communicates with the second connection port, the second end of the safety pipe communicates with the third connection port, and the safety pipe is provided with a fourth solenoid valve.
有益效果:Beneficial effect:
本发明提供的流量测量装置,排液管内的泥浆经进液口流入测量罐内,当第一电磁阀关闭时,测量罐内的泥浆高度上升,测量组件测量泥浆于测量罐内的高度,根据测量的高度随时间的变化计算泥浆于排液管内的流量。当液体测量组件测量的泥浆于测量罐内的高度达到一定数值时,打开第一电磁阀,将泥浆于出液口排出测量罐。该流量测量装置能在钻井现场的真实环境中准确测量钻井出口处的泥浆流量。In the flow measuring device provided by the present invention, the mud in the discharge pipe flows into the measuring tank through the liquid inlet, when the first electromagnetic valve is closed, the height of the mud in the measuring tank rises, and the measuring component measures the height of the mud in the measuring tank, according to The measured height changes with time to calculate the flow rate of mud in the discharge pipe. When the height of the mud measured by the liquid measuring component in the measuring tank reaches a certain value, the first electromagnetic valve is opened to discharge the mud out of the measuring tank through the liquid outlet. The flow measuring device can accurately measure the mud flow at the drilling outlet in the real environment of the drilling site.
附图说明Description of drawings
图1是本发明提供的流量测量装置的安装连接示意图;Fig. 1 is the installation connection schematic diagram of the flow measuring device provided by the present invention;
图2是本发明提供的测量罐内部结构示意图;Fig. 2 is a schematic diagram of the internal structure of the measuring tank provided by the present invention;
图3是本发明提供的测量罐工作过程示意图;Fig. 3 is a schematic diagram of the working process of the measuring tank provided by the present invention;
图4是本发明提供的流量测量装置测量过程中的测量方法流程图;Fig. 4 is the flow chart of the measuring method in the measuring process of the flow measuring device provided by the present invention;
图5是本发明提供的流量测量装置工作流程图。Fig. 5 is a working flow diagram of the flow measurement device provided by the present invention.
图中:In the picture:
100、排液管;110、第一连接口;120、第三电磁阀;130、第二连接口;140、第三连接口;100. Drain pipe; 110. First connection port; 120. Third solenoid valve; 130. Second connection port; 140. Third connection port;
200、测量罐;210、上罐腔体;220、下罐腔体;221、进液口;222、出液口;230、隔板;200, measuring tank; 210, upper tank cavity; 220, lower tank cavity; 221, liquid inlet; 222, liquid outlet; 230, partition;
300、出液管;310、第一电磁阀;300, the liquid outlet pipe; 310, the first electromagnetic valve;
410、滑动电阻器;420、浮杆;430、接触器;440、检测器;450、处理器;460、过滤管;470、浮球;480、第一导线;490、第二导线;410, sliding resistor; 420, floating rod; 430, contactor; 440, detector; 450, processor; 460, filter tube; 470, floating ball; 480, first wire; 490, second wire;
500、进液管;510、第二电磁阀;500, liquid inlet pipe; 510, second electromagnetic valve;
600、安全管;610、第四电磁阀;600, safety pipe; 610, the fourth solenoid valve;
700、泥浆池;800、井口。700, mud pool; 800, wellhead.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部结构。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, but not to limit the present invention. In addition, it should be noted that, for the convenience of description, only some structures related to the present invention are shown in the drawings but not all structures.
在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。In the description of the present invention, unless otherwise clearly specified and limited, the terms "connected", "connected" and "fixed" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention in specific situations.
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。In the present invention, unless otherwise clearly specified and limited, a first feature being "on" or "under" a second feature may include direct contact between the first and second features, and may also include the first and second features Not in direct contact but through another characteristic contact between them. Moreover, "above", "above" and "above" the first feature on the second feature include that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is horizontally higher than the second feature. "Below", "beneath" and "under" the first feature to the second feature include that the first feature is directly below and obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
在本实施例的描述中,术语“上”、“下”、“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。In the description of this embodiment, the terms "up", "down", "right", and other orientations or positional relationships are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of description and simplification of operations, rather than indicating Or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as limiting the invention. In addition, the terms "first" and "second" are only used to distinguish in description, and have no special meaning.
实施例一Embodiment one
参照图1所示,本实施例提供了一种流量测量装置,包括排液管100、测量罐200、第一电磁阀310和测量组件,测量罐200设置有进液口221和出液口222,进液口221与排液管100连通,出液口222处设置有第一电磁阀310,测量组件设置于测量罐200内,用于测量测量罐200内泥浆高度。Referring to Fig. 1, the present embodiment provides a flow measuring device, including a
在本实施例中,排液管100内的泥浆经进液口221流入测量罐200内,当第一电磁阀310关闭时,测量罐200内的泥浆高度上升,测量组件测量泥浆于测量罐200内的高度,根据测量的高度随时间的变化计算泥浆于排液管100内的流量。当液体测量组件测量的泥浆于测量罐200内的高度达到一定数值时,打开第一电磁阀310,将泥浆于出液口222排出测量罐200。该流量测量装置能在钻井现场的真实环境中准确测量钻井出口处的泥浆流量。In this embodiment, the mud in the
于本实施例中,该流量测量装置还包括泥浆池700,排液管100的第一端与井口800处的泥浆排出管道连通,钻井内的泥浆经泥浆排出管道流入排液管100内,排液管100的第二端与泥浆池700连通,钻井内的泥浆依次经泥浆排出管道流和排液管100流入至泥浆池700内。In this embodiment, the flow measuring device also includes a
进一步地,出液口222与泥浆池700连通,当打开第一电磁阀310时,测量罐200内的泥浆经出液口222流入至泥浆池700内。Further, the
进一步地,该流量测量装置还包括出液管300,出液管300的第一端与出液口222连通,出液管300的第二端与泥浆池700连通。具体地,出液管300的第一端可以通过焊接的方式与出液口222连接,出液管300的第一端与出液口222的连接方式还可以是其他形式的,在此不再做详细赘述;出液管300的第二端可以通过焊接的方式与泥浆池700连接,出液管300的第二端与泥浆池700的连接方式还可以是其他形式的,在此不再做详细赘述。进一步地,第一电磁阀310设置于出液管300上。Further, the flow measuring device further includes a
进一步地,该流量测量装置还包括进液管500,排液管100上设置有第一连接口110,进液管500的第一端与第一连接口110连通,进液管500的第二端与进液口221连通,进液管500上设置有第二电磁阀510。具体地,进液管500的第一端可以通过焊接的方式与第一连接口110连接,进液管500的第一端与第一连接口110的连接方式还可以是其他形式的,在此不再做详细赘述;进液管500的第二端可以通过焊接的方式与进液口221连接,进液管500的第二端与进液口221的连接方式还可以是其他形式的,在此不再做详细赘述。在本实施例中,排液管100通过进液管500与测量罐200连通,当需要检测泥浆于排液管100内的流量时,关闭第一电磁阀310,打开第二电磁阀510。Further, the flow measurement device also includes a
该流量测量装置还包括第三电磁阀120,第三电磁阀120设置于排液管100上。具体地,第三电磁阀120设置于第一连接口110与泥浆池700之间。在本实施例中,当需要检测泥浆于排液管100内的流量时,关闭第一电磁阀310和第三电磁阀120,打开第二电磁阀510。The flow measuring device further includes a
进一步地,该流量测量装置还包括安全管600,排液管100上设置有第二连接口130和第三连接口140,第一连接口110设置于第二连接口130与第三连接口140之间,第三电磁阀120设置于第一连接口110与第三连接口140之间,安全管600的第一端与第二连接口130连通,安全管600的第二端与第三连接口140连通,安全管600上设置有第四电磁阀610。具体地,第二连接口130和第三连接口140沿排液管100的第一端至第二端的方向依次设置,安全管600的第一端可以通过焊接的方式与第二连接口130连接,安全管600的第一端与第二连接口130的连接方式还可以是其他形式的,在此不再做详细赘述;安全管600的第二端可以通过焊接的方式与第三连接口140连接,安全管600的第二端与第三连接口140的连接方式还可以是其他形式的,在此不再做详细赘述。在本实施例中,当第一电磁阀310、第二电磁阀510或第三电磁阀120出现故障无法开启时,第四电磁阀610开启,排液管100内的泥浆可以通过安全管600流入至泥浆池700中,有效防止意外情况发生。Further, the flow measuring device further includes a
于本实施例中,参照图2至图3所示,测量组件包括滑动电阻器410、浮杆420、接触器430和检测器440,滑动电阻器410、浮杆420、接触器430和检测器440均设置于测量罐200内,滑动电阻器410沿竖直方向延伸,浮杆420设置于测量罐200内,浮杆420沿竖直方向延伸且能沿竖直方向移动,浮杆420的第一端设置有接触器430,接触器430与滑动电阻器410电连接,当浮杆420沿竖直方向移动时,接触器430于滑动电阻器410上滑动;检测器440分别与滑动电阻器410和接触器430电连接,检测器440能检测滑动电阻器410与接触器430之间的电阻信息。具体地,浮杆420的第一端向一侧弯曲并安装接触器430,检测器440通过第一导线480与接触器430电连接,滑动电阻器410的底部设置有连接部,检测器440通过第二导线490与滑动电阻器410的连接部电连接。In this embodiment, with reference to Figures 2 to 3, the measurement assembly includes a sliding
具体地,检测器440发出恒流电信号,经过第一导线480流出,通过接触器430流入至滑动电阻器410,并从滑动电阻器410底端连接的第二导线490流回检测器440。进一步地,横流电信号可以但不限于1-10mA内任一电流信号,优选地,横流电信号可以为2mA、5mA或6mA。当浮杆420随测量罐200内的泥浆液位上下浮动时,滑动电阻器410接入检测器440中的阻值也随之成线性的变化,根据欧姆定律,检测器440接收到的电压可根据公式V=I*R得出,其中,I为恒流电信号,R为滑动电阻器410接入检测器440中的电阻,故V与R成正比,检测器440检测滑动电阻器410与接触器430之间的电阻信息即为检测器440接收到的电压电信号,检测器440通过接收到的电压电信号强弱并根据已标定好的对应关系,来判断接触器430在滑动电阻器410上的所处位置,得知浮杆420的高度状态,进而得到测量罐200内泥浆的高度,且检测器440接收到的电压电信号的数值大小与液位高度成正比例关系,进而可以通过计算得到测量罐200内泥浆的高度,且测量罐200的横截面面积可以是是恒定的,配合计时可以计算得到排液管100内的泥浆流量。Specifically, the
进一步地,测量组件还包括处理器450,处理器450与检测器440电连接,处理器450能接收检测器440检测到的滑动电阻器410与接触器430之间的电阻信息并根据电阻信息计算测量罐200内泥浆的高度和排液管100内的泥浆流量。在本实施例中,检测器440中有信号放大器、滤波器电压跟随器以及等电气组件,检测器440接收到的电压电信号经过一系列信号放大及滤波处理后得到的模拟量传送至处理器450,处理器450中的ADC转换芯片将处理后的模拟量转换成数字量,并通过处理器450精确计算出测量罐200内的泥浆实际高度。且处理器450能记录单位时间内检测器440传输的电压电信号,测量罐200的横截面面积是恒定的,因此处理器450通过计算能得到排液管100内的泥浆流量。进一步地,单位时间可以为但不限于0.1s-2s内的任意值。优选地,单位时间为0.5s或1s。Further, the measurement component also includes a
在本实施例中,打开第二电磁阀510,关闭第一电磁阀310、第三电磁阀120和第四电磁阀610,泥浆从进液管500流入至测量罐200内,测量罐200内的泥浆液面上升,带动浮杆420朝上移动,电阻器与接触器430之间的电阻变大,处理器450接收检测器440检测到的滑动电阻器410与接触器430之间的电阻信息并处理得到测量罐200内的泥浆实际高度和排液管100内的泥浆流量。进一步地,第一电磁阀310、第二电磁阀510、第三电磁阀120和第四电磁阀610均与处理器450电连接,处理器450能控制第一电磁阀310、第二电磁阀510、第三电磁阀120和第四电磁阀610的开闭,当处理器450计算出测量罐200内的泥浆高度达到满罐状态时,打开第一电磁阀310,测量罐200内的泥浆液面下降,带动浮杆420朝下移动,电阻器与接触器430之间的电阻变小,直至处理器450计算出测量罐200内的泥浆高度达到排空状态时,关闭第一电磁阀310,继续测量计算测量罐200内的泥浆高度和排液管100内的泥浆流量。具体地,满罐状态即接触器430滑动至滑动电阻器410的最高位置,电阻器与接触器430之间的电阻达到所允许的最大值;排空状态即接触器430滑动至滑动电阻器410的最低位置,电阻器与接触器430之间的电阻达到所允许的最小值。In this embodiment, the
进一步地,测量组件还包括设置于测量罐200内的过滤管460,过滤管460上设置有多个过滤孔,过滤管460沿竖直方向延伸,过滤管460内设置浮杆420。具体地,过滤孔沿过滤管460长度方向间隔设置多组,每组过滤孔绕过滤管460的周向间隔设置有多个,相邻的各组过滤孔交错设置,使过滤孔布满个过滤管460,有效防止泥浆的大块颗粒进入过滤管460内,之后无法顺利排出,从而对浮杆420高度产生影响。Further, the measurement assembly further includes a
进一步地,浮杆420的第二端设置有浮球470,浮球470设置于过滤管460内。具体地,过滤管460内径与浮球470的直径相等,且浮球470于过滤管460内能随测量罐200内泥浆液面的升降自由的上下浮动,有效保证浮杆420沿竖直方向上下浮动。Further, a floating
进一步地,测量罐200沿竖直方向从上到下依次设置有上罐腔体210和下罐腔体220,滑动电阻器410、检测器440和处理器450均设置于上罐腔体210内,过滤管460、浮球470和浮杆420均设置于下罐腔体220内,且浮杆420的第一端穿设上罐腔体210与接触器430连接,进液口221和出液口222均与下罐腔体220连通。具体地,过滤管460的第一端与隔板230抵接,上罐腔体210和下罐腔体220之间的隔板230上设置有通孔,浮杆420插接于通孔内,且与通孔滑动连接。进一步地,通孔设置于隔板230的中心处。在本实施例中,将测量罐200内的空间分割成上罐腔体210和下罐腔体220,将滑动电阻器410、检测器440和接触器430等电气元件设置于上罐腔体210内,从而使上罐腔体210内的电气元件接触不到泥浆,有效防止上罐腔体210内的电气元件损坏,保证该流量测量装置的安全运行,防止触电等危险情况的发生。Further, the measuring
进一步地,下罐腔体220的底部设置有支撑板,过滤管460的第二端抵接于支撑板上。Further, the bottom of the
进一步地,测量罐200的底部形状为锥形,出液口222开设于测量罐200的底部的锥形端部上。在本实施例中,出液口222设置于测量罐200的底部的锥形端部上,当第一电磁阀310打开时,有效保证测量罐200内的泥浆能够在重力作用下顺利排出。Further, the shape of the bottom of the measuring
示例性地,该流量测量装置在使用前调节测量初始状态。Exemplarily, the flow measurement device adjusts the measurement initial state before use.
具体地,接触器430位于滑动电阻器410的最低位置,浮球470位于过滤管460内的最低位置,即电阻器与接触器430之间的电阻达到所允许的最小值,此时处理器450接收到检测器440的电阻信号识别为空罐信号;接触器430位于滑动电阻器410的最高位置,浮球470位于过滤管460内的最高位置,即电阻器与接触器430之间的电阻达到所允许的最大值,此时处理器450接收到检测器440的电阻信号识别为满罐信号。Specifically, the
示例性地,参照图4至图5所示,该流量测量装置测量过程中的测量方法具体包括如下步骤:Exemplarily, referring to Fig. 4 to Fig. 5, the measurement method in the measurement process of the flow measurement device specifically includes the following steps:
S100、处理器450发出测量信号并同时开启计时功能,处理器450控制第一电磁阀310、第三电磁阀120和第四电磁阀610关闭,第二电磁阀510打开。S100, the
具体地,处理器450控制第一电磁阀310、第三电磁阀120和第四电磁阀610关闭,第二电磁阀510打开后,排液管100内的泥浆经进液管500流入至测量罐200内,测量罐200内泥浆液面上升,带动浮球470于过滤管460内向上移动,浮球470推动浮杆420于隔板230中心孔内滑动,进而带动接触器430向上移动,接触器430与滑动电阻器410之间的电阻变大,当接触器430与滑动电阻器410之间的电阻变大时,处理器450内的计时器开始计时。Specifically, the
S200、处理器450计算测量罐200内泥浆高度和单位时间内排液管100内的泥浆流量。S200, the
具体地,处理器450设定计算流量的单位时间为ΔT,当接触器430在ΔT时间内上升Δh距离时,单位时间内排液管100内的泥浆流量Q=(S×Δh)/ΔT,其中S为下罐腔体220截面面积。在本实施例中,随测量时间的推移,该流量测量装置能实时测量排液管100内的泥浆流量。Specifically, the
S300、当处理器450接收到满罐信号时,处理器450发出复位信号并控制第一电磁阀310打开,处理器450停止计时功能。S300. When the
具体地,当处理器450接收到满罐信号时,接触器430位于滑动电阻器410的最高位置,浮球470位于过滤管460内的最高位置,测量罐200内的泥浆经出液口222排出。Specifically, when the
S400、当处理器450接收到空罐信号时,处理器450发出测量信号并控制第一电磁阀310关闭,处理器450开启计时功能。S400. When the
具体地,当处理器450接收到空罐信号时,处理器450内的计时器停止计时,接触器430位于滑动电阻器410的最低位置,浮球470位于过滤管460内的最低位置。Specifically, when the
S500、重复步骤S200、S300和S400。S500. Repeat steps S200, S300 and S400.
在本实施例中,重复步骤S200、S300和S400以使该流量测量装置持续实时测量排液管100内的泥浆流量。In this embodiment, steps S200 , S300 and S400 are repeated so that the flow measuring device continuously measures the mud flow in the
进一步地,当停止测量或准备对该流量测量装置进行维护时,可以控制处理器450关闭第二电磁阀510,打开第三电磁阀120,使泥浆经排液管100流入至泥浆池700内。Furthermore, when the measurement is stopped or the flow measurement device is ready for maintenance, the
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,能够进行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Apparently, the above-mentioned embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. Various obvious changes, readjustments, and substitutions will occur to those skilled in the art without departing from the scope of the present invention. It is not necessary and impossible to exhaustively list all the implementation manners here. All modifications, equivalent replacements and improvements made within the spirit and principles of the present invention shall be included within the protection scope of the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111644294.8A CN115637944B (en) | 2021-12-29 | 2021-12-29 | Flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111644294.8A CN115637944B (en) | 2021-12-29 | 2021-12-29 | Flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115637944A true CN115637944A (en) | 2023-01-24 |
CN115637944B CN115637944B (en) | 2024-10-29 |
Family
ID=84940472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111644294.8A Active CN115637944B (en) | 2021-12-29 | 2021-12-29 | Flow measuring device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN115637944B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119534209A (en) * | 2025-01-23 | 2025-02-28 | 上海鲁源控制设备有限公司 | A weighing type on-line device for measuring slurry density |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200273126Y1 (en) * | 2002-02-07 | 2002-04-20 | 한준희 | Measuring instrument of water level and flux |
CN202596620U (en) * | 2012-05-18 | 2012-12-12 | 西南石油大学 | Novel floating ball type slurry outlet flow detection meter |
CN205714163U (en) * | 2016-05-09 | 2016-11-23 | 中国石油天然气集团公司 | Fine and close oil measurement device |
CN207907955U (en) * | 2018-03-29 | 2018-09-25 | 成都市计量检定测试院 | A kind of micro-flowmeter based on line array CCD |
CN109403894A (en) * | 2018-11-16 | 2019-03-01 | 中国石油集团川庆钻探工程有限公司 | Early overflow and leakage monitoring system for well drilling |
CN110593789A (en) * | 2019-10-28 | 2019-12-20 | 中国石油化工股份有限公司 | A Wellhead Control Device and Working Method for Annulus Suppressed Wells |
CN210051411U (en) * | 2019-06-27 | 2020-02-11 | 伏雨豪 | Oil field measurement detection device based on GPRS transmission |
CN210487017U (en) * | 2019-08-31 | 2020-05-08 | 中国石油集团川庆钻探工程有限公司 | Circulating tank mud liquid level monitoring device |
CN210598875U (en) * | 2019-10-25 | 2020-05-22 | 中石化石油工程技术服务有限公司 | Metering device for drilling fluid continuous irrigation during tripping-in and tripping-out of drilling well |
CN211060976U (en) * | 2019-11-08 | 2020-07-21 | 中铝中州铝业有限公司 | Discontinuous type medicament flow measuring device |
-
2021
- 2021-12-29 CN CN202111644294.8A patent/CN115637944B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR200273126Y1 (en) * | 2002-02-07 | 2002-04-20 | 한준희 | Measuring instrument of water level and flux |
CN202596620U (en) * | 2012-05-18 | 2012-12-12 | 西南石油大学 | Novel floating ball type slurry outlet flow detection meter |
CN205714163U (en) * | 2016-05-09 | 2016-11-23 | 中国石油天然气集团公司 | Fine and close oil measurement device |
CN207907955U (en) * | 2018-03-29 | 2018-09-25 | 成都市计量检定测试院 | A kind of micro-flowmeter based on line array CCD |
CN109403894A (en) * | 2018-11-16 | 2019-03-01 | 中国石油集团川庆钻探工程有限公司 | Early overflow and leakage monitoring system for well drilling |
CN210051411U (en) * | 2019-06-27 | 2020-02-11 | 伏雨豪 | Oil field measurement detection device based on GPRS transmission |
CN210487017U (en) * | 2019-08-31 | 2020-05-08 | 中国石油集团川庆钻探工程有限公司 | Circulating tank mud liquid level monitoring device |
CN210598875U (en) * | 2019-10-25 | 2020-05-22 | 中石化石油工程技术服务有限公司 | Metering device for drilling fluid continuous irrigation during tripping-in and tripping-out of drilling well |
CN110593789A (en) * | 2019-10-28 | 2019-12-20 | 中国石油化工股份有限公司 | A Wellhead Control Device and Working Method for Annulus Suppressed Wells |
CN211060976U (en) * | 2019-11-08 | 2020-07-21 | 中铝中州铝业有限公司 | Discontinuous type medicament flow measuring device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119534209A (en) * | 2025-01-23 | 2025-02-28 | 上海鲁源控制设备有限公司 | A weighing type on-line device for measuring slurry density |
Also Published As
Publication number | Publication date |
---|---|
CN115637944B (en) | 2024-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1970990B (en) | Method for measuring return flow in petroleum drilling and device therefor | |
CN214952912U (en) | High-precision pavement water seepage measuring device | |
CN108333078A (en) | Fully-automatic on-line sampling formula slurry density measurement device | |
CN104596596B (en) | A kind of positive displacement micro liquid flowmeter and its application method | |
CN105756665A (en) | Rotational flow floating type oil well measurement device and method | |
CN109990857A (en) | Self-excitation type flux of moisture measuring device | |
CN105651349A (en) | Drilling fluid flow quantitative detection while drilling system and application thereof | |
CN115637944A (en) | Flow measuring device | |
CN110658105A (en) | Drilling fluid parameter measuring device and control method thereof | |
CN115248071B (en) | A flow detection system and maintenance method thereof | |
CN108226001A (en) | A kind of bicyclic method automatic test device and bicyclic water injection test method | |
KR101854733B1 (en) | Flow rate measuring device for pipe and flow rate measuring system including the same | |
CN104763408B (en) | A kind of high precision petroleum three-phase automatic metering device and its metering method | |
KR102440636B1 (en) | Autonomous sluice gate system | |
CN117516650B (en) | Intelligent sewage flow measuring device and early warning communication system | |
CN205532576U (en) | Floating oil well metering device of whirl | |
CN216198061U (en) | Well drilling overflow leakage monitoring device | |
CN110965986A (en) | Device and method for measuring three-phase flow of oil field production well produced liquid | |
CN212867529U (en) | Drilling fluid outlet flow measuring device | |
CN110542373B (en) | Utilize foil gage deflection to detect device of wasing stifled needle of separation waste liquid needle | |
CN109839154B (en) | Oil well metering system and method | |
KR20190048889A (en) | measurement unit of milking quantity and measuring method using the same | |
CN113390663A (en) | Liquid collection method and device for variable spray test | |
CN220690182U (en) | Vertical crude oil flow metering device | |
CN216246633U (en) | River course flow test water level early warning device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |