CN115615937A - 高品质因数光子晶体传感器、其制备方法及传感检测方法 - Google Patents

高品质因数光子晶体传感器、其制备方法及传感检测方法 Download PDF

Info

Publication number
CN115615937A
CN115615937A CN202211546356.6A CN202211546356A CN115615937A CN 115615937 A CN115615937 A CN 115615937A CN 202211546356 A CN202211546356 A CN 202211546356A CN 115615937 A CN115615937 A CN 115615937A
Authority
CN
China
Prior art keywords
photonic crystal
crystal sensor
quality factor
sensing
photonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211546356.6A
Other languages
English (en)
Other versions
CN115615937B (zh
Inventor
高丽
曹欣怡
董奇奥
赵慧娟
肖依博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202211546356.6A priority Critical patent/CN115615937B/zh
Publication of CN115615937A publication Critical patent/CN115615937A/zh
Application granted granted Critical
Publication of CN115615937B publication Critical patent/CN115615937B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/002Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials
    • G02B1/005Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of materials engineered to provide properties not available in nature, e.g. metamaterials made of photonic crystals or photonic band gap materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Plasma & Fusion (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

高品质因数光子晶体传感器、其制备方法及传感检测方法,结合了软纳米压印技术和刻蚀工艺,制备了厘米级高品质因数的光子晶体,同时该结构具有高分辨率、高灵敏度的优点;该方法极大地优化了工艺过程,提高生产效率,降低了工艺成本;厘米级高品质因数光子晶体传感器用于传感不同折射率溶液,实现最高灵敏度为1703nm/RIU。

Description

高品质因数光子晶体传感器、其制备方法及传感检测方法
技术领域
本发明属于光学传感领域,具体涉及一种高品质因数光子晶体传感器、其制备方法及传感检测方法。
背景技术
光学传感技术在现代生物医学、材料和环境监测应用中至关重要,因为它们提供了快速、可靠、高灵敏度的方法来检测和区分各种样品中的目标物体。基于表面等离子体共振(SPR)的光学传感器是常用技术之一,其等离子体共振频率(或共振角度)会因金属薄膜相邻介质的折射率的变化而改变,引起消光光谱的移动从而实现传感机制。但通常受到等离子体光学损耗的强烈影响,导致等离激元传感器的品质因子一般都比较低,对等离激元在光学传感器上的应用产生了限制。
近年来,介质超表面已成为新型传感技术的强大平台。介质超表面光学传感器提供了低的固有光学吸收损耗,因此具有高质量因子共振,并大大增强了电场和磁场的共振。于是具有低损耗共振的高折射率介质纳米结构可成为纳米等离子体的有效替代品。介质纳米具有强光-物质相互作用的特点,并且可以通过合理调整其几何参数来实现不同的功能。利用其优异的光学调制和结构多样性实现了多种重要分析物的高灵敏和选择性检测,极大地简化了检测过程。
在纳米尺度上制造高精度的光学元件极具挑战性。可以采用无掩膜直接写入技术,例如电子束光刻(EBL)、聚焦离子束(FIB)或扫描探针光刻法等。但直接写入法的缺点是生产效率低、成本高且无法实现大面积样品。此外,极紫外光刻和干涉光刻也可实现元件制备,但掩膜昂贵。
具有高品质因数光子晶体的制备,现有的报道(如Kühne J, Wang J, Weber T,et al. Fabrication robustness in BIC metasurfaces[J]. Nanophotonics, 2021, 10(17): 4305-4312.)多采用电子束光刻技术,如制备倾斜椭圆结构、不对称双杆结构、分裂环结构等。实现了高品质因子光子晶体,其在传感方面应用取得了大量研究成果。但是,EBL方法的生产效率低、成本高且无法实现大面积样品。因为EBL操作复杂且对于小区域的长时间曝光导致其生产效率低,增加了样品的成本。EBL技术是顺序处理,这限制了向大面积或大量样品的放大,阻止了大规模制造应用和广泛使用。
通过光子晶体制备的元件可用于传感应用,灵敏度是衡量传感性能的一个标准。据报道(如Špačková B, Wrobel P, Bocková M, et al. Optical biosensors based onplasmonic nanostructures: a review[J]. Proceedings of the IEEE, 2016, 104(12): 2380-2408.),SPR传感器因其具有欧姆损耗,所以其品质因数不高,传感性能较差。而具有BIC响应的全介质超表面光子晶体具有更高的品质因数和灵敏度,从而表现出更好的传感性能。
发明内容
针对目前在纳米尺度上制造高精度的光学传感元件中,遇到的高成本、制备方法复杂、生产效率低、小规模制备等问题,本发明提出了一种全新的解决方案,为一种高品质因数光子晶体传感器、其制备方法及传感检测方法。采用软纳米压印技术和刻蚀工艺相结合的方法,制备了具有高品质因数的大面积光子晶体,同时该结构具有高分辨率、低成本、大面积、制备方法简单等突出优点并可应用于传感中。
高品质因数光子晶体传感器,包括透明衬底及光子晶体,所述光子晶体分布在所述透明衬底表面,所述光子晶体具有高品质因数;所述光子晶体能够响应传感时产生的折射率变化。
进一步地,所述透明衬底为蓝宝石衬底。
进一步地,所述光子晶体为周期排列,单个结构的高度值在10nm~100nm范围内,直径尺寸值在100nm~400nm范围内,间隔值在300nm~400nm范围内。
进一步地,所述光子晶体具有用于传感时的高品质因数Q为136。
进一步地,传感时产生的折射率变化产生响应转化为透射光谱图,在400nm-1200nm波段,折射率变化响应在透射光谱图中体现。
高品质因数光子晶体传感器的制备方法,包括以下步骤:
步骤1,根据光子晶体结构的尺寸、结构形貌以及排布方式设计结构模板印章;
步骤2,在洗净的透明衬底表面进行蒸镀,在衬底上沉积厚度在100nm~500nm的非晶硅层;
步骤3,将完成蒸镀后的衬底表面清洗干净,并在表面旋涂一层SU8光刻胶;
步骤4,采用纳米压印技术将所设计的结构模板印章的图案转移到光刻胶表面;
步骤5,采用刻蚀工艺将凹陷部分的薄光刻胶残留物去除,暴露出硅层;
步骤6,采用刻蚀工艺刻蚀暴露出的硅层,刻蚀厚度为10nm~100nm;
步骤7,采用刻蚀工艺除掉剩余光刻胶,此时透明衬底的表面只有制备好的光子晶体结构。
高品质因数光子晶体传感器的传感检测方法,包括如下步骤:
步骤1,将所述厘米级高品质因数光子晶体传感器置于不同溶液中;
步骤2,UV-3600光谱仪通过不同折射率溶液对厘米级高品质因数光子晶体传感器的信号进行检测,得到相应的透射光谱数据。
本发明达到的有益效果为:(1)本发明结合了软纳米压印技术和刻蚀工艺,制备了厘米级高品质因数的光子晶体,同时该结构具有100纳米的高分辨率、高灵敏度的优点。(2)该方法极大地优化了工艺过程,提高生产效率,降低了工艺成本。(3)传感器器件能实现大面积的制备,做到厘米级别。(4)厘米级高品质因数光子晶体传感器用于传感不同折射率溶液,实现的最高灵敏度为1703nm/RIU。
附图说明
图1为本发明实施例中所用蓝宝石衬底结构示意图。
图2为本发明实施例中软纳米压印及反应离子刻蚀技术的流程示意图。
图3为本发明实施例中制备的光子晶体SEM俯视图。
图4为本发明实施例中制备的光子晶体样品展示图。
图5为本发明实施例中具有高灵敏度的透射光谱图。
具体实施方式
下面结合说明书附图对本发明的技术方案做进一步的详细说明。
厘米级高品质因数光子晶体传感器,包括了透明衬底及光子晶体,光子晶体分布在透明衬底表面,光子晶体具有高品质因数;光子晶体能够响应所述传感时产生的折射率变化。
透明衬底为工艺兼容性、材料兼容性以及透光性能均良好的蓝宝石衬底。
光子晶体为周期排列,单个结构的高度值在10nm~100nm范围内,直径尺寸值在100nm~400nm范围内,间隔值在300nm~400nm范围内。
光子晶体具有用于传感时的高品质因数为136。
传感时产生的折射率变化产生响应转化为透射光谱图,在400nm-1200nm波段,折射率变化响应会在透射光谱图中体现。
本实施案例提供一种厘米级高品质因数光子晶体的制备及传感方法,包括如下步骤:
1)根据光子晶体结构的尺寸、结构形貌以及排布方式等设计结构模板印章,在本实施案例中,设计了单个硅基微纳结构的高度为50nm,直径尺寸为360nm,相互之间的间隔为400nm,设计获得该微纳结构的对应结构模板印章,并使用聚二甲基硅氧烷PDMS材料制成。
2)将蓝宝石衬底清洗干净,通过等离子体增强化学气相沉积(PECVD)法,使用硅烷(气体流量6sccm)和氢气(气体流量20sccm),温度控制在260℃,压强30Pa,射频功率20W,时间为45分钟,蒸镀一层100nm厚度的硅薄膜。
3)将完成蒸镀后的衬底表面清洗干净,并在表面旋涂一层SU8光刻胶,其参数为前转500r/s,后转3000r/s,旋涂30s,这样形成厚度为2µm厚度的光刻胶。
4)采用软纳米压印技术将所设计的结构模板印章的图案转移到光刻胶表面。在旋涂仪上以3000 rpm的速度在衬底上旋涂一层SU8光刻胶,样品在65℃热台加热60 S,然后在95℃热台加热60 S。然后取出样品并冷却。在压印过程中,力是均匀的,以确保结构被完全复制。
5)用O2气体等离子体(气体流量50sccm,功率30W)刻蚀一定厚度的SU8光刻胶,通过刻蚀可以将印章压印后的薄光刻胶残留物去除,并暴露出硅层。
6)使用CHF3和SF6气体的混合物(气体流量比例为100/10 sccm,功率100 W)进行140 S刻蚀暴露出的硅层,刻蚀深度为50nm。
7)用O2气体等离子体(气体流速100sccm,功率100W)进行180 S去除掉剩余SU8光刻胶,即可得到光子晶体结构。
8)将样品置于不同折射率溶液中(如去离子水n=1.332、丙酮n=1.359、异丙醇n=1.378、环己烷n=1.427)。
9)使用UV-3600光谱仪采集其相应的透射光谱数据。
分析透射光谱图中随着折射率变化引起的偏移量,并作相应计算得最高灵敏度达1703nm/RIU(S=
Figure 245159DEST_PATH_IMAGE002
,S:灵敏度,
Figure 834404DEST_PATH_IMAGE004
:共振峰波长偏移量,
Figure 614141DEST_PATH_IMAGE006
:折射率变化量)。
以上所述仅为本发明的较佳实施方式,本发明的保护范围并不以上述实施方式为限,但凡本领域普通技术人员根据本发明所揭示内容所作的等效修饰或变化,皆应纳入权利要求书中记载的保护范围内。

Claims (8)

1.高品质因数光子晶体传感器,其特征在于:包括透明衬底及光子晶体,所述光子晶体分布在所述透明衬底表面,所述光子晶体具有高品质因数;所述光子晶体能够响应传感时产生的折射率变化。
2.根据权利要求1所述的高品质因数光子晶体传感器,其特征在于:所述透明衬底为蓝宝石衬底。
3.根据权利要求1所述的高品质因数光子晶体传感器,其特征在于:所述光子晶体为周期排列,单个结构的高度值在10nm~100nm范围内,直径尺寸值在100nm~400nm范围内,间隔值在300nm~400nm范围内。
4.根据权利要求1所述的高品质因数光子晶体传感器,其特征在于:所述光子晶体具有用于传感时的高品质因数Q为136。
5.根据权利要求1所述的高品质因数光子晶体传感器,其特征在于:传感时产生的折射率变化产生响应转化为透射光谱图,在400nm-1200nm波段,折射率变化响应在透射光谱图中体现。
6.高品质因数光子晶体传感器的制备方法,其特征在于:包括以下步骤:
步骤1,根据光子晶体结构的尺寸、结构形貌以及排布方式设计结构模板印章;
步骤2,在洗净的透明衬底表面进行蒸镀,在衬底上沉积厚度在100nm~500nm的非晶硅层;
步骤3,将完成蒸镀后的衬底表面清洗干净,并在表面旋涂一层SU8光刻胶;
步骤4,采用纳米压印技术将所设计的结构模板印章的图案转移到光刻胶表面;
步骤5,采用刻蚀工艺将凹陷部分的薄光刻胶残留物去除,暴露出硅层;
步骤6,采用刻蚀工艺刻蚀暴露出的硅层,刻蚀厚度为10nm~100nm;
步骤7,采用刻蚀工艺除掉剩余光刻胶,此时透明衬底的表面只有制备好的光子晶体结构。
7.根据权利要求6所述的高品质因数光子晶体传感器的制备方法,其特征在于:步骤2中,通过等离子体增强化学气相沉积法PECVD,使用气体流量6sccm的硅烷和气体流量20sccm的氢气,温度控制在260℃,压强30Pa,射频功率20W,进行蒸镀操作。
8.高品质因数光子晶体传感器的传感检测方法,其特征在于:包括如下步骤:
步骤1,将所述厘米级高品质因数光子晶体传感器置于不同溶液中;
步骤2,UV-3600光谱仪通过不同折射率溶液对厘米级高品质因数光子晶体传感器的信号进行检测,得到相应的透射光谱数据。
CN202211546356.6A 2022-12-05 2022-12-05 高品质因数光子晶体传感器、其制备方法及传感检测方法 Active CN115615937B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211546356.6A CN115615937B (zh) 2022-12-05 2022-12-05 高品质因数光子晶体传感器、其制备方法及传感检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211546356.6A CN115615937B (zh) 2022-12-05 2022-12-05 高品质因数光子晶体传感器、其制备方法及传感检测方法

Publications (2)

Publication Number Publication Date
CN115615937A true CN115615937A (zh) 2023-01-17
CN115615937B CN115615937B (zh) 2023-03-07

Family

ID=84880366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211546356.6A Active CN115615937B (zh) 2022-12-05 2022-12-05 高品质因数光子晶体传感器、其制备方法及传感检测方法

Country Status (1)

Country Link
CN (1) CN115615937B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190211A (zh) * 2023-04-25 2023-05-30 南京邮电大学 基于纳米微腔结构衬底转移二维材料的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021593A (zh) * 2007-03-16 2007-08-22 清华大学 可集成的光子晶体双波导反向耦合式流体折射率传感器
US20080226217A1 (en) * 2007-01-09 2008-09-18 Onur Kilic Photonic crystal structure sensor
US20090153843A1 (en) * 2007-12-12 2009-06-18 Tsinghua University Refractive-index sensor
CN102768381A (zh) * 2012-07-04 2012-11-07 南京大学 微纳结构d形光纤及制备方法与应用
CN114280697A (zh) * 2021-11-29 2022-04-05 南京邮电大学 一种mof集成型光子晶体微腔传感器及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080226217A1 (en) * 2007-01-09 2008-09-18 Onur Kilic Photonic crystal structure sensor
CN101021593A (zh) * 2007-03-16 2007-08-22 清华大学 可集成的光子晶体双波导反向耦合式流体折射率传感器
US20090153843A1 (en) * 2007-12-12 2009-06-18 Tsinghua University Refractive-index sensor
CN102768381A (zh) * 2012-07-04 2012-11-07 南京大学 微纳结构d形光纤及制备方法与应用
CN114280697A (zh) * 2021-11-29 2022-04-05 南京邮电大学 一种mof集成型光子晶体微腔传感器及制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAQUAN YANG ET AL: "Design of simultaneous high-Q and high-sensitivity photonic crystal refractive index sensors", 《OPT.SOC.AM.B》 *
S. ROMANO ET AL: "Optical sensors based on photonic crystal: a new route", 《OPTICAL SENSORS》 *
杨玉洁: "一维光子晶体波导与微腔的控光特性及传感应用研究", 《中国优秀硕士学位论文全文数据库基础科技辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116190211A (zh) * 2023-04-25 2023-05-30 南京邮电大学 基于纳米微腔结构衬底转移二维材料的方法

Also Published As

Publication number Publication date
CN115615937B (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN111029416B (zh) 一种圆偏振光探测器件及其制备方法
Hsu et al. Generally applicable self-masked dry etching technique for nanotip array fabrication
KR101878600B1 (ko) 광학 바이오센서를 위한 주기적 금속 나노 패턴의 제조 방법
US20170090077A1 (en) Improved plasmonic structures and devices
CN111505767B (zh) 基于氧化硅掩膜的铌酸锂光子芯片制备方法
CN115615937B (zh) 高品质因数光子晶体传感器、其制备方法及传感检测方法
WO2011037323A2 (ko) 광배향막 제조용 자외선 고투과 이중 선 격자 편광판 및 이의 제조방법
WO2002037146A1 (en) Anti-reflective structures
CN101692151B (zh) 一种基于软模板纳米压印技术的硅纳米线制作方法
CN108169171B (zh) 一种基于表面等离子激元共振的折射率测试及其制作方法
CN112255716B (zh) 基于结构对称性破缺的高效光吸收装置及制备方法和应用
CN103226215A (zh) 具有宽度周期性渐变表面的全息光栅制备方法
CN111220821A (zh) 一种金刚石afm探针系统及制作方法
CN103809376A (zh) 一种无机相变光刻胶和基于无机相变光刻胶的光刻工艺
Xu et al. Biomimetic moth-eye anti-reflective poly-(methyl methacrylate) nanostructural coating
CN105261671A (zh) 一种采用激光直写制备薄膜降反结构的方法
JP2015500507A (ja) 偏光分離素子
Virganavičius et al. Patterning of diamond like carbon films for sensor applications using silicon containing thermoplastic resist (SiPol) as a hard mask
US7524773B2 (en) Anti-reflective substrate and the manufacturing method thereof
CN211785623U (zh) 一种金刚石afm探针系统
CN113064227B (zh) 一种正弦光栅的制备方法
US10481096B2 (en) Method of detecting single molecules
CN111025439B (zh) 一种可图形化的宽波段吸收器及其制备方法
Visser et al. Investigations of sol-gel ZnO films nanostructured by reactive ion beam etching for broadband anti-reflection
Ovchinnikov et al. Self‐Organization‐Based Fabrication of Stable Noble‐Metal Nanostructures on Large‐Area Dielectric Substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant