CN115447141A - Recycling method for continuous fiber reinforced thermoplastic 3D printing composites - Google Patents
Recycling method for continuous fiber reinforced thermoplastic 3D printing composites Download PDFInfo
- Publication number
- CN115447141A CN115447141A CN202211094740.7A CN202211094740A CN115447141A CN 115447141 A CN115447141 A CN 115447141A CN 202211094740 A CN202211094740 A CN 202211094740A CN 115447141 A CN115447141 A CN 115447141A
- Authority
- CN
- China
- Prior art keywords
- composite material
- clamping plate
- printing
- reinforced thermoplastic
- heating head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 81
- 238000010146 3D printing Methods 0.000 title claims abstract description 28
- 239000011199 continuous fiber reinforced thermoplastic Substances 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000004064 recycling Methods 0.000 title claims description 30
- 239000000835 fiber Substances 0.000 claims abstract description 48
- 238000010438 heat treatment Methods 0.000 claims abstract description 35
- 229920005989 resin Polymers 0.000 claims abstract description 35
- 239000011347 resin Substances 0.000 claims abstract description 35
- 239000011159 matrix material Substances 0.000 claims abstract description 34
- 230000007246 mechanism Effects 0.000 claims abstract description 15
- 238000011084 recovery Methods 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims abstract description 6
- 238000002844 melting Methods 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 239000010937 tungsten Substances 0.000 claims description 5
- 239000002002 slurry Substances 0.000 claims description 4
- 239000000155 melt Substances 0.000 claims description 2
- 239000002699 waste material Substances 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 description 8
- 238000007639 printing Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005485 electric heating Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229920006351 engineering plastic Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229920006258 high performance thermoplastic Polymers 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/357—Recycling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Description
技术领域technical field
本发明属于纤维复合材料回收技术领域,尤其是一种连续纤维增强热塑性3D打印复合材料的回收方法。The invention belongs to the technical field of recycling fiber composite materials, in particular to a method for recycling continuous fiber reinforced thermoplastic 3D printing composite materials.
背景技术Background technique
连续纤维增强的热塑性复合材料以热塑性树脂为基体,具有较高的损伤容限、优异的力学性能、热性能以及耐腐蚀性能,已经成为了复合材料的研究热点,同时广泛应用于航空航天、轨道交通、军工、娱乐休闲等高端领域。传统的连续纤维增强热塑性复合材料的制备方法主要是层压-热压技术,3D打印技术的出现为连续纤维增强热塑性复合材料的成型与加工提供了可以较高程度实现复合材料制品自动化的过程。连续纤维增强热塑性复合材料的3D打印技术不仅具有可成型复杂的复合材料制品、效率高等特点,还可以实现定制化的力学性能。因此,3D打印技术也得到广泛关注与研究。但随着连续纤维增强热塑性复合材料3D打印技术以及复合材料工业的发展,每年都会产生大量的复合材料废弃物,废弃的复合材料制品不仅对自然环境造成了严重的威胁,并且复合材料中大量的纤维尤其昂贵的碳纤维以及一些高性能的热塑性特种工程塑料回收困难,从而使得复合材料的发展遇到了瓶颈。Continuous fiber-reinforced thermoplastic composites are based on thermoplastic resins, which have high damage tolerance, excellent mechanical properties, thermal properties and corrosion resistance, and have become a research hotspot for composite materials. High-end fields such as transportation, military industry, entertainment and leisure. The traditional preparation method of continuous fiber reinforced thermoplastic composites is mainly lamination-hot pressing technology. The emergence of 3D printing technology provides a process for the molding and processing of continuous fiber reinforced thermoplastic composites that can achieve a high degree of automation of composite products. The 3D printing technology of continuous fiber reinforced thermoplastic composites not only has the characteristics of forming complex composite products and high efficiency, but also can realize customized mechanical properties. Therefore, 3D printing technology has also received extensive attention and research. However, with the continuous fiber reinforced thermoplastic composite material 3D printing technology and the development of the composite material industry, a large amount of composite material waste is produced every year. The discarded composite material products not only pose a serious threat to the natural environment, but also a large number of Fibers, especially expensive carbon fibers and some high-performance thermoplastic special engineering plastics are difficult to recycle, which makes the development of composite materials encounter a bottleneck.
常见的复合材料的回收方法主要是热解法、破碎法和焚烧法,三种方法均不符合节能减排的环境要求,也无法实现复合材料中的打印丝的回收以及再利用。因此,开发新型的连续纤维增强热塑性复合材料废弃物的回收方法,降低3D打印技术的成本,实现连续纤维增强热塑性复合材料高效回收,保证回收得到的连续纤维打印丝的性能,减少了废弃的3D打印复合材料制件对环境的污染,实现连续纤维打印丝的循环利用对复合材料工业的可持续发展是至关重要的。The common recycling methods of composite materials are mainly pyrolysis, crushing and incineration. The three methods do not meet the environmental requirements of energy saving and emission reduction, and cannot realize the recycling and reuse of printing filaments in composite materials. Therefore, it is necessary to develop a new recycling method for continuous fiber-reinforced thermoplastic composites waste, reduce the cost of 3D printing technology, realize efficient recycling of continuous fiber-reinforced thermoplastic composites, ensure the performance of recycled continuous fiber printing filaments, and reduce waste 3D printing. Printing composite parts will pollute the environment, and realizing the recycling of continuous fiber printing filament is crucial to the sustainable development of the composite material industry.
目前,连续纤维增强热塑性3D打印复合材料的回收技术主要面临的挑战:新型的回收装置以及回收工艺的开发与研究;回收的纤维打印丝在回收过程中遭到破坏不能满足再打印的要求、传统的热解法和燃烧法在回收过程中会产生大量的有害气体造成二次污染。At present, the main challenges facing the recycling technology of continuous fiber reinforced thermoplastic 3D printing composites are: the development and research of new recycling devices and recycling processes; the recycled fiber printing filaments are damaged during the recycling process and cannot meet the requirements of reprinting The pyrolysis and combustion methods will produce a large amount of harmful gases during the recovery process and cause secondary pollution.
CN201610397940.8公开了一种3D打印连续纤维增强复合材料回收再制造方法,利用热风枪按照复合材料的3D打印路径的反方向运动,将树脂基体加热至熔化,从而抽出纤维。这种方式的热风枪一般是从复合材料的上层开始加热,纤维被剥离后,部分树脂基体停留在复合材料的顶部并重新固化,导致复合材料顶部的树脂基体厚度逐渐增大,纤维的剥离效率逐渐较低,能耗逐渐增大。CN201610397940.8 discloses a method for recycling and remanufacturing 3D printed continuous fiber reinforced composite materials. A heat gun is used to move in the opposite direction of the 3D printing path of the composite material, and the resin matrix is heated to melt to extract the fibers. The heat gun in this way generally starts to heat from the upper layer of the composite material. After the fibers are stripped, part of the resin matrix stays on the top of the composite material and re-solidifies, resulting in a gradual increase in the thickness of the resin matrix on the top of the composite material. The stripping efficiency of the fibers Gradually lower, energy consumption gradually increased.
发明内容Contents of the invention
本发明的目的在于提供一种连续纤维增强热塑性3D打印复合材料的回收方法,提高纤维剥离效率的同时不增加能耗,并且能够回收树脂基体材料。The purpose of the present invention is to provide a recycling method for continuous fiber-reinforced thermoplastic 3D printing composite materials, which can improve the fiber stripping efficiency without increasing energy consumption, and can recycle resin matrix materials.
本发明的目的是这样实现的:连续纤维增强热塑性3D打印复合材料的回收方法,将待回收的复合材料固定于一水平支撑板的底部,在复合材料的下方设置一接料槽;The object of the present invention is achieved in the following way: the recycling method of continuous fiber reinforced thermoplastic 3D printing composite material, the composite material to be recycled is fixed on the bottom of a horizontal support plate, and a receiving tank is arranged below the composite material;
将加热头移动至接触复合材料的下表面,利用机械手臂带动加热头沿着复合材料3D打印的反方向运动,加热头将树脂基体熔化,利用牵引机构将树脂基体熔化区域的纤维剥离,熔化的树脂基体向下掉落至接料槽中。Move the heating head to the lower surface of the composite material, use the mechanical arm to drive the heating head to move in the opposite direction of the 3D printing of the composite material, the heating head will melt the resin matrix, and use the traction mechanism to peel off the fibers in the melting area of the resin matrix, and the melted The resin matrix falls down into the spout.
进一步地,所述牵引机构包括回收辊、成型口模以及导向辊,所述纤维依次经过导向辊和成型口模后缠绕在回收辊上。Further, the traction mechanism includes a recovery roller, a forming die, and a guide roller, and the fiber passes through the guide roller and the forming die in sequence, and then is wound on the recovery roller.
进一步地,待回收的复合材料通过夹持机构固定于水平支撑板的下表面,所述夹持机构包括竖直的第一夹板、竖直的第二夹板、第一固定架和第二固定架,所述第一夹板与第二夹板相互平行,所述第一夹板和第二夹板之间形成夹持腔,所述第一夹板和第二夹板的上端与水平支撑板滑动连接,所述第一固定架上设置有与第一固定架螺纹连接的第一推杆,所述第二固定架上设置有与第二固定架螺纹连接的第二推杆,所述第一推杆的端部与第一夹板接触,所述第二推杆的端部与第二夹板接触;Further, the composite material to be recovered is fixed on the lower surface of the horizontal support plate through a clamping mechanism, and the clamping mechanism includes a vertical first clamping plate, a vertical second clamping plate, a first fixing frame and a second fixing frame , the first clamping plate and the second clamping plate are parallel to each other, a clamping cavity is formed between the first clamping plate and the second clamping plate, the upper ends of the first clamping plate and the second clamping plate are slidably connected with the horizontal support plate, the first clamping plate A fixed frame is provided with a first push rod threaded with the first fixed frame, and the second fixed frame is provided with a second push rod threaded with the second fixed frame, and the end of the first push rod contact with the first splint, and the end of the second push rod is in contact with the second splint;
固定复合材料时,将复合材料放入夹持腔,转动第一推杆和第二推杆,推动第一夹板与第二夹板朝着复合材料移动,直到第一夹板与第二夹板压紧复合材料的两侧面。When fixing the composite material, put the composite material into the clamping cavity, turn the first push rod and the second push rod, push the first splint and the second splint to move towards the composite material, until the first splint and the second splint are pressed together both sides of the material.
进一步地,所述第一夹板与第二夹板的夹持面上设置有防滑凸台。Further, anti-skid bosses are provided on the clamping surfaces of the first clamping plate and the second clamping plate.
进一步地,所述加热头内部设置有钨浆加热器。Further, a tungsten slurry heater is arranged inside the heating head.
进一步地,所述加热头上设置有温度传感器和压力传感器。Further, the heating head is provided with a temperature sensor and a pressure sensor.
进一步地,回收时,将加热头插入复合材料最下层纤维与倒数第二层纤维之间,然后再沿着复合材料3D打印的反方向运动,使最下层纤维外部的树脂基体熔化并将最下层纤维剥离。Further, when recycling, the heating head is inserted between the fibers of the lowest layer of the composite material and the second-to-last layer of fibers, and then moves in the opposite direction of the 3D printing of the composite material to melt the resin matrix outside the fibers of the lowest layer and make the lowermost layer Fiber stripping.
本发明的有益效果是:本发明将待回收的复合材料固定在水平支撑板的下表面,回收时从下至上对待回收复合材料的纤维进行剥离,熔化后的树脂基体材料在重力的作用下滴落到下方的接料槽中,防止树脂基体聚集在待回收复合材料的表面而导致树脂基体的厚度逐渐增加,加热头的功率可以保持稳定,避免能耗增加,同时不影响纤维的剥离效率。此外,部分树脂基体也能够回收再利用,提高了回收效益。The beneficial effects of the present invention are: the present invention fixes the composite material to be recycled on the lower surface of the horizontal support plate, strips the fibers of the composite material to be recycled from bottom to top during recycling, and the melted resin matrix material drops under the action of gravity It falls into the receiving trough below to prevent the resin matrix from accumulating on the surface of the composite material to be recycled and cause the thickness of the resin matrix to gradually increase. The power of the heating head can be kept stable to avoid increased energy consumption without affecting the fiber stripping efficiency. In addition, part of the resin matrix can also be recycled and reused, which improves recycling efficiency.
附图说明Description of drawings
图1是本发明的整体示意图;Fig. 1 is the overall schematic diagram of the present invention;
图2是图1中A-A的剖视示意图;Fig. 2 is a schematic cross-sectional view of A-A in Fig. 1;
图3是本发明的加热头示意图。Fig. 3 is a schematic diagram of the heating head of the present invention.
具体实施方式detailed description
下面结合附图和实施例对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
本发明的连续纤维增强热塑性3D打印复合材料的回收方法,将待回收的复合材料1固定于一水平支撑板2的下表面,在复合材料1的下方设置一接料槽3;In the recycling method of continuous fiber reinforced thermoplastic 3D printing composite materials of the present invention, the composite material 1 to be recycled is fixed on the lower surface of a
将加热头5移动至接触复合材料1的底部,利用机械手臂4带动加热头5沿着复合材料1的3D打印的反方向运动,加热头5将树脂基体熔化,利用牵引机构将树脂基体熔化区域的纤维6剥离,熔化的树脂基体向下掉落至接料槽3中。Move the
如图1所示,水平支撑板2采用具有一定厚度的金属板,安装在支架上,使水平支撑板2位于合适的高度。接料槽3自然放置于水平支撑板2的下方,用于接收滴落的熔化树脂基体。接料槽3采用铝合金等金属材质的槽体,可以承受一定的高温。机械手臂4采用现有常用的机械手即可,能够在一定的范围的三维空间内运动,从而带动加热头5沿着复合材料13D打印的反方向运动。As shown in FIG. 1 , the
加热头5可采用电加热头,内部设置电加热丝,优选的,如图3所示,所述加热头5内部设置有钨浆加热器15。钨浆加热器15通电后产生高温,可将树脂基体熔化。为了便于控制钨浆加热器15的加热温度以用于熔化不同的树脂基体,所述加热头5上设置有温度传感器16。The
牵引机构用于牵引纤维6,使纤维6从复合材料1上剥离下来。牵引机构具体包括回收辊7、成型口模8以及导向辊9,所述纤维6依次经过导向辊9和成型口模8后缠绕在回收辊7上。回收辊7在电机等设备的带动下转动,从而拉动纤维6收卷,提供纤维6剥离的动力。成型口模8内部具有供纤维6穿过的通道以及加热机构,纤维6通过该通道时,残留在纤维6上的树脂基体熔化并被刮掉。成型口模8的下方也可以设置一用于接收树脂基体的容器,被刮掉的树脂基体沿着通道流动至通道口并滴落至容器中,进一步实现了树脂基体的回收。导向辊9用于纤维6的转向,使纤维6沿着设定的方向移动。The pulling mechanism is used to pull the fiber 6 so that the fiber 6 is peeled off from the composite material 1 . The traction mechanism specifically includes a recovery roller 7 , a forming die 8 and a
待回收的复合材料1通过夹持机构固定于水平支撑板2的下表面,如图2所示,所述夹持机构包括竖直的第一夹板9、竖直的第二夹板10、第一固定架11和第二固定架12,所述第一夹板9与第二夹板10相互平行,所述第一夹板9和第二夹板10之间形成夹持腔,所述第一夹板9和第二夹板10的上端与水平支撑板2滑动连接,所述第一固定架11上设置有与第一固定架11螺纹连接的第一推杆13,所述第二固定架12上设置有与第二固定架12螺纹连接的第二推杆14,所述第一推杆13的端部与第一夹板9接触,所述第二推杆14的端部与第二夹板10接触;The composite material 1 to be recycled is fixed on the lower surface of the
固定复合材料1时,将复合材料1放入夹持腔,转动第一推杆13和第二推杆14,推动第一夹板9与第二夹板10朝着复合材料1移动,直到第一夹板9与第二夹板10压紧复合材料1的两侧面。第一推杆13和第二推杆14均为4个,可以保证足够的压紧力。第一夹板9和第二夹板10的上端可以设置燕尾形的滑块,水平支撑板2的下表面可以设置燕尾形的滑槽,滑块与滑槽滑动配合即可。所述第一夹板9与第二夹板10的夹持面上设置有防滑凸台,可以提高复合材料1的稳定性。When fixing the composite material 1, put the composite material 1 into the clamping cavity, turn the
现有技术仅仅采用热风的热量将树脂基体熔化,并未提供促进纤维6剥离的作用力,效率比较低,为了提高剥离效率,回收时,先将加热头5插入复合材料1最下层纤维6与倒数第二层纤维6之间,然后再沿着复合材料1的3D打印的反方向运动,使最下层纤维6外部的树脂基体熔化并将最下层纤维6剥离。最下层纤维6被剥离后,倒数第二层纤维6即成为最下层的纤维6,重复上述方式对其进行剥离。The existing technology only uses the heat of hot air to melt the resin matrix, but does not provide the force to promote the peeling of the fibers 6, and the efficiency is relatively low. In order to improve the peeling efficiency, when recycling, first insert the
加热头5在对树脂基体进行加热的同时,也提供了剥离的作用力,使最下层纤维6与倒数第二层纤维6更快地分离,从而降低了最下层纤维6的剥离阻力,可以实现更快地剥离最下层的纤维6,从而提高了剥离效率。为了便于控制加热头5端部的剥离作用力大小,加热头5的端部还设置有压力传感器17。可根据压力传感器17和温度传感器16的检测结果调节加热温度和剥离作用力的大小,从而控制纤维6的剥离速度。为了降低加热头5进入树脂基体的阻力,加热头5的端部设置为锥形,其厚度从前端到后部逐渐增加。While the
综上,本发明实现了部分树脂基体的回收,提升了废弃连续纤维增强热塑性3D打印复合材料的回收效益,还提高了回收效率,降低了回收成本。In summary, the present invention realizes the recycling of part of the resin matrix, improves the recycling efficiency of waste continuous fiber reinforced thermoplastic 3D printing composite materials, improves the recycling efficiency, and reduces the recycling cost.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211094740.7A CN115447141B (en) | 2022-09-08 | 2022-09-08 | Recycling methods for continuous fiber reinforced thermoplastic 3D printed composites |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202211094740.7A CN115447141B (en) | 2022-09-08 | 2022-09-08 | Recycling methods for continuous fiber reinforced thermoplastic 3D printed composites |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| CN115447141A true CN115447141A (en) | 2022-12-09 |
| CN115447141B CN115447141B (en) | 2024-12-13 |
Family
ID=84302793
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202211094740.7A Active CN115447141B (en) | 2022-09-08 | 2022-09-08 | Recycling methods for continuous fiber reinforced thermoplastic 3D printed composites |
Country Status (1)
| Country | Link |
|---|---|
| CN (1) | CN115447141B (en) |
Citations (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000218258A (en) * | 1999-02-01 | 2000-08-08 | Kunihiko Suzuki | Method for recycling composite material |
| JP2003305723A (en) * | 2002-04-16 | 2003-10-28 | Dainippon Printing Co Ltd | Method for recycling resin / fibrous composite sheet, and recycled material and product obtained by using the same |
| JP2006187764A (en) * | 2004-12-10 | 2006-07-20 | Tokyo Electric Power Co Inc:The | Material recycling method for waste optical fiber cable |
| US20070160822A1 (en) * | 2005-12-21 | 2007-07-12 | Bristow Paul A | Process for improving cycle time in making molded thermoplastic composite sheets |
| CN202114836U (en) * | 2011-07-25 | 2012-01-18 | 程素芹 | Plastic recycle heating device |
| CN102416401A (en) * | 2011-11-07 | 2012-04-18 | 英利集团有限公司 | Process and equipment for recovering photovoltaic component through thermal high-speed centrifugal decomposition |
| CN204196047U (en) * | 2014-08-05 | 2015-03-11 | 成都思维智造科技有限公司 | A kind of waste material recovery device of 3D printer |
| CN104626581A (en) * | 2015-01-19 | 2015-05-20 | 西安交通大学 | Space complex environment oriented multi-degree of freedom 3D printer and printing method |
| CN204773130U (en) * | 2015-06-08 | 2015-11-18 | 韩超 | Plastics recovery unit |
| CN106079436A (en) * | 2016-06-07 | 2016-11-09 | 西安交通大学 | A kind of 3D prints continuous fiber reinforced composite materials and reclaims reproducing method |
| CN106515041A (en) * | 2016-11-10 | 2017-03-22 | 机械科学研究总院先进制造技术研究中心 | Three-dimensional printing forming method of long fiber thermoplastic composite material component |
| CN206589348U (en) * | 2017-03-27 | 2017-10-27 | 陈天润 | A kind of retracting device of small-sized 3D printing plastics |
| CN206644344U (en) * | 2017-04-10 | 2017-11-17 | 桂林航天工业学院 | A kind of waste material recovery device of 3D printer |
| KR20180009832A (en) * | 2016-07-19 | 2018-01-30 | 진광식 | filament winding device, 3D printer filament recycling apparatus using thereof and control system for 3D printer filament recycling apparatus |
| CN107756807A (en) * | 2017-11-29 | 2018-03-06 | 郝文峰 | Printing equipment again is reclaimed in the in-orbit 3D printing of thermoplastic continuous fibers' composite |
| CN108068319A (en) * | 2016-11-10 | 2018-05-25 | 机械科学研究总院先进制造技术研究中心 | A kind of continuous fiber composite material increasing material manufacturing method |
| CN209738093U (en) * | 2019-01-30 | 2019-12-06 | 南昌金轩科技有限公司 | Waste woven bag recovery device |
| CN110920063A (en) * | 2019-12-31 | 2020-03-27 | 西安交通大学 | A method of 3D printing continuous fiber self-reinforced composite materials |
| CN110951110A (en) * | 2019-12-10 | 2020-04-03 | 合肥工业大学 | A method for recycling fiber-reinforced resin matrix composites by laser |
| CN111391168A (en) * | 2020-03-31 | 2020-07-10 | 四川大学 | A kind of injection molding process of thermoplastic composite material |
| CN211518501U (en) * | 2019-09-20 | 2020-09-18 | 杭州德迪智能科技有限公司 | Photocuring 3D printing device |
| KR102159474B1 (en) * | 2020-07-21 | 2020-09-24 | 윤일중 | Apparatus for recovering resin and heating wire in heating sheet of the bidet and method thereof |
| CN111923447A (en) * | 2020-10-09 | 2020-11-13 | 山东国维复合材料科技有限公司 | Fiber thermosetting resin unidirectional tape pre-dipping machine and production process thereof |
| CN212372482U (en) * | 2020-07-22 | 2021-01-19 | 清远市东江环保技术有限公司 | Circuit board recovery unit |
| CN112406106A (en) * | 2020-09-15 | 2021-02-26 | 上海众化智能科技有限公司 | Resin recycling and surface cleaning method and system for SLA three-dimensional printing workpiece |
| CN212844312U (en) * | 2020-09-03 | 2021-03-30 | 徐州金岳锁业有限公司 | Make things convenient for electric lock life-span testing arrangement of centre gripping |
| CN113021886A (en) * | 2021-03-09 | 2021-06-25 | 西安交通大学 | 3D printing spray head structure for realizing continuous fiber self-reinforced composite material supercooling forming |
| CN113752550A (en) * | 2021-08-13 | 2021-12-07 | 西安交通大学 | Continuous fiber reinforced thermoplastic composite high-temperature 3D printer |
-
2022
- 2022-09-08 CN CN202211094740.7A patent/CN115447141B/en active Active
Patent Citations (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2000218258A (en) * | 1999-02-01 | 2000-08-08 | Kunihiko Suzuki | Method for recycling composite material |
| JP2003305723A (en) * | 2002-04-16 | 2003-10-28 | Dainippon Printing Co Ltd | Method for recycling resin / fibrous composite sheet, and recycled material and product obtained by using the same |
| JP2006187764A (en) * | 2004-12-10 | 2006-07-20 | Tokyo Electric Power Co Inc:The | Material recycling method for waste optical fiber cable |
| US20070160822A1 (en) * | 2005-12-21 | 2007-07-12 | Bristow Paul A | Process for improving cycle time in making molded thermoplastic composite sheets |
| CN202114836U (en) * | 2011-07-25 | 2012-01-18 | 程素芹 | Plastic recycle heating device |
| CN102416401A (en) * | 2011-11-07 | 2012-04-18 | 英利集团有限公司 | Process and equipment for recovering photovoltaic component through thermal high-speed centrifugal decomposition |
| CN204196047U (en) * | 2014-08-05 | 2015-03-11 | 成都思维智造科技有限公司 | A kind of waste material recovery device of 3D printer |
| CN104626581A (en) * | 2015-01-19 | 2015-05-20 | 西安交通大学 | Space complex environment oriented multi-degree of freedom 3D printer and printing method |
| CN204773130U (en) * | 2015-06-08 | 2015-11-18 | 韩超 | Plastics recovery unit |
| CN106079436A (en) * | 2016-06-07 | 2016-11-09 | 西安交通大学 | A kind of 3D prints continuous fiber reinforced composite materials and reclaims reproducing method |
| KR20180009832A (en) * | 2016-07-19 | 2018-01-30 | 진광식 | filament winding device, 3D printer filament recycling apparatus using thereof and control system for 3D printer filament recycling apparatus |
| CN106515041A (en) * | 2016-11-10 | 2017-03-22 | 机械科学研究总院先进制造技术研究中心 | Three-dimensional printing forming method of long fiber thermoplastic composite material component |
| CN108068319A (en) * | 2016-11-10 | 2018-05-25 | 机械科学研究总院先进制造技术研究中心 | A kind of continuous fiber composite material increasing material manufacturing method |
| CN206589348U (en) * | 2017-03-27 | 2017-10-27 | 陈天润 | A kind of retracting device of small-sized 3D printing plastics |
| CN206644344U (en) * | 2017-04-10 | 2017-11-17 | 桂林航天工业学院 | A kind of waste material recovery device of 3D printer |
| CN107756807A (en) * | 2017-11-29 | 2018-03-06 | 郝文峰 | Printing equipment again is reclaimed in the in-orbit 3D printing of thermoplastic continuous fibers' composite |
| CN209738093U (en) * | 2019-01-30 | 2019-12-06 | 南昌金轩科技有限公司 | Waste woven bag recovery device |
| CN211518501U (en) * | 2019-09-20 | 2020-09-18 | 杭州德迪智能科技有限公司 | Photocuring 3D printing device |
| CN110951110A (en) * | 2019-12-10 | 2020-04-03 | 合肥工业大学 | A method for recycling fiber-reinforced resin matrix composites by laser |
| CN110920063A (en) * | 2019-12-31 | 2020-03-27 | 西安交通大学 | A method of 3D printing continuous fiber self-reinforced composite materials |
| CN111391168A (en) * | 2020-03-31 | 2020-07-10 | 四川大学 | A kind of injection molding process of thermoplastic composite material |
| KR102159474B1 (en) * | 2020-07-21 | 2020-09-24 | 윤일중 | Apparatus for recovering resin and heating wire in heating sheet of the bidet and method thereof |
| CN212372482U (en) * | 2020-07-22 | 2021-01-19 | 清远市东江环保技术有限公司 | Circuit board recovery unit |
| CN212844312U (en) * | 2020-09-03 | 2021-03-30 | 徐州金岳锁业有限公司 | Make things convenient for electric lock life-span testing arrangement of centre gripping |
| CN112406106A (en) * | 2020-09-15 | 2021-02-26 | 上海众化智能科技有限公司 | Resin recycling and surface cleaning method and system for SLA three-dimensional printing workpiece |
| CN111923447A (en) * | 2020-10-09 | 2020-11-13 | 山东国维复合材料科技有限公司 | Fiber thermosetting resin unidirectional tape pre-dipping machine and production process thereof |
| CN113021886A (en) * | 2021-03-09 | 2021-06-25 | 西安交通大学 | 3D printing spray head structure for realizing continuous fiber self-reinforced composite material supercooling forming |
| CN113752550A (en) * | 2021-08-13 | 2021-12-07 | 西安交通大学 | Continuous fiber reinforced thermoplastic composite high-temperature 3D printer |
Non-Patent Citations (3)
| Title |
|---|
| 刘腾飞;田小永;朱伟军;李涤尘;: "连续碳纤维增强聚乳酸复合材料3D打印及回收再利用机理与性能", 机械工程学报, no. 07, 5 April 2019 (2019-04-05) * |
| 宫晓, 黄玉惠: "废旧塑料回收利用的进展", 塑料工业, no. 02, 28 March 1989 (1989-03-28) * |
| 田小永;刘腾飞;杨春成;李涤尘;: "高性能纤维增强树脂基复合材料3D打印及其应用探索", 航空制造技术, no. 15, 1 August 2016 (2016-08-01) * |
Also Published As
| Publication number | Publication date |
|---|---|
| CN115447141B (en) | 2024-12-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Struzziero et al. | Consolidation of continuous fibre reinforced composites in additive processes: A review | |
| CN106079436B (en) | A kind of 3D printing continuous fiber reinforced composite materials reclaim reproducing method | |
| CN107331802B (en) | Battery case and method for manufacturing same | |
| EP2043832B8 (en) | Method for producing a fibre composite component using a moulding core, and said moulding core | |
| EP0389798A2 (en) | Process for impregnation of glass fiber reinforcement with thermoplastic resins and for producing articles from the impregnated glass fiber | |
| CN105082723B (en) | A kind of fiber-reinforced thermoplastic resin aramid aluminiumlaminates part shaping techniques | |
| CN113370441A (en) | Carbon fiber metal laminate and hot stamping forming method thereof | |
| CN107839260B (en) | Damage repair process and device for carbon fiber reinforced thermoplastic super-hybrid composite laminates | |
| CN115447141A (en) | Recycling method for continuous fiber reinforced thermoplastic 3D printing composites | |
| CN218342706U (en) | Preheating and discharging mechanism of heat energy recovery energy-saving injection molding machine | |
| CN107839259A (en) | A kind of microwave heating fiber pultrusion production system and production method | |
| CN106750506A (en) | A kind of method that two-step thermal processing reclaims carbon fiber | |
| CN103935049B (en) | A kind of building mortion of the laminate based on electro-hydraulic forming and method | |
| CN105313345B (en) | Manufacturing technology for the thermoplastic composite product of the major/minor load-carrying member of aircraft | |
| CN104260340A (en) | External material receiving device of 3D printer and achieving method of external material receiving device | |
| CN207449147U (en) | A kind of hand-held material extrusion equipment | |
| CN103358491B (en) | Demoulding device specially for micro-injection forming instrument | |
| CN211390147U (en) | Composite carbon fiber wire material increase device based on joule heat | |
| CN212385944U (en) | Extrusion head hot oil circulation heating injection molding machine | |
| CN208828172U (en) | A kind of thermal shrinking package machine with separation feeding structure | |
| CN209504745U (en) | A kind of mold of spliced billboard traffic sign boards | |
| CN207337283U (en) | A kind of notebook cover | |
| CN220349099U (en) | A device for making 3D printing consumables from plastic bottles | |
| CN105537559A (en) | Automatic demolding mechanism of pressure casting machine | |
| CN218639027U (en) | Screw rod disassembling machine |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |