CN115364863B - 一种双功能催化剂、制备方法及在甲醇合成及其重整制氢中的应用 - Google Patents

一种双功能催化剂、制备方法及在甲醇合成及其重整制氢中的应用 Download PDF

Info

Publication number
CN115364863B
CN115364863B CN202110540957.5A CN202110540957A CN115364863B CN 115364863 B CN115364863 B CN 115364863B CN 202110540957 A CN202110540957 A CN 202110540957A CN 115364863 B CN115364863 B CN 115364863B
Authority
CN
China
Prior art keywords
catalyst
copper
methanol
zinc
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110540957.5A
Other languages
English (en)
Other versions
CN115364863A (zh
Inventor
叶闰平
刘健
陈艳平
曹泽中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN202110540957.5A priority Critical patent/CN115364863B/zh
Publication of CN115364863A publication Critical patent/CN115364863A/zh
Application granted granted Critical
Publication of CN115364863B publication Critical patent/CN115364863B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/041Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41
    • B01J29/042Mesoporous materials having base exchange properties, e.g. Si/Al-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/044Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • C01B3/326Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种双功能催化剂、制备方法以及在甲醇合成及其重整制氢中的应用,所述催化剂包括活性组分和载体;所述活性组分包括活性元素;所述活性元素包括铜、锌;所述载体选自分子筛、无机氧化物中的至少一种。本发明的双功能催化剂,既可以用于二氧化碳加氢合成甲醇,也可以用于甲醇与水蒸气重整制氢反应,从而有效实现氢气的大规模存储、运输及制取,具有良好的应用前景。

Description

一种双功能催化剂、制备方法及在甲醇合成及其重整制氢中 的应用
技术领域
本发明涉及一种双功能催化剂、制备方法及催化剂在甲醇合成及其重整制氢中的应用,属于催化材料领域。
背景技术
氢气的燃烧值高而且产物清洁无污染,氢能一直是二十一世纪急需的能源,但其缺点是无法大量收集,难以存储和大规模运输。当前的存储运输技术主要是氢气加压或低温液化后再利用交通工具运输,也有利用固体或液体材料来吸收封存氢气再运输,但是仍然存在装量不多、不容易再次释放和运输安全等问题,因此科学家一直在寻找吸收存储和运输氢气的最佳方法,让氢气成为便捷可靠的燃料。
众所周知,甲醇作为常温常压下的液体燃料,是较好的储氢、运氢的载体,可安全高效经济便捷储运。其原理是利用可再生能源发电制取绿氢,再和二氧化碳(CO2)反应生成方便储运的绿色甲醇,输送到远方的甲醇和水发生重整反应再产氢,同时生成的CO2也可以回收利用,整个过程零碳排放,最终达到储氢、运氢目的(图1)。以甲醇作为高密度储氢材料,每吨甲醇与水重整可制出超过180公斤氢气,较之高压或低温液态储氢方式具有更高的储氢能量密度。因此,利用甲醇作为储氢和运氢的载体具有重要意义,然而要实现这一过程,需要使用高效的合成甲醇及其重整制氢的催化剂。当前,虽然应用于CO2加氢合成甲醇以及甲醇与水蒸气重整制氢的催化剂都主要是铜基、铟基和钯基催化剂[ChemicalReviews,2020,120,7984-8034;Applied Catalysis B:Environmental,2010,99,43-57],但是同一催化剂既可以用于二氧化碳加氢合成甲醇,也可以用于甲醇与水蒸气重整制氢反应仍然较少报道,主要是因为两者反应的条件和机理不一样。比如钯基催化剂虽然可以较好地用于CO2加氢合成甲醇,但其在甲醇与水蒸气重整制氢反应中低温条件下催化活性不高,并且容易产生大量的一氧化碳(CO)副产物,可使燃料电池电极发生中毒[CN 110075889A]。镍基催化剂虽然对甲醇与水蒸气重整制氢具有较好的性能,但其对于CO2加氢反应却主要生成甲烷。
因此,如何开发一种可以同时应用于甲醇合成及其重整制氢的廉价高效双功能催化剂仍然是利用甲醇作为储氢和运氢载体体系中亟待解决的核心问题之一。
发明内容
本发明的目的是提出一种制备廉价高效双功能铜基催化剂及其制备方法。该制备方法过程简单、易操作,且不会引入碱金属杂质、含氯化合物以及贵金属,所述催化剂廉价易得,并且对CO2加氢合成甲醇以及甲醇与水蒸气重整制氢都具有较好的催化性能,用于解决现有技术制备的催化剂不能兼得甲醇合成及其重整制氢两个方面的性能等问题,具有潜在的学术价值和工业应用前景。
根据本发明的一个方面,提供了一种双功能催化剂,所述双功能催化剂包括活性组分和载体;所述活性组分包括活性元素;所述活性元素包括铜、锌;
所述载体选自分子筛、无机氧化物中的至少一种。
所述铜元素以单质、氧化物的形式存在于催化剂中;
所述锌元素以氧化物的形式存在于催化剂中。
所述铜的负载量为所述双功能催化剂质量的3~35wt%,以铜元素的负载量计算;
优选地,所述铜的负载量为5~25wt%;
所述锌的负载量为所述双功能催化剂质量的1~15wt%;以锌元素的负载量计算;
优选地,所述锌的负载量为2~8wt%;
所述载体的质量为所述双功能催化剂质量的为50~96wt%;
优选地,所述载体的负载量为67~93wt%;
所述分子筛选自KIT-6、SBA-15、SBA-16、MCM-41、HZSM-5、SAPO-34中的至少一种;
所述无机氧化物选自SiO2、MgO、Al2O3、CeO2、ZrO2、La2O3中的至少一种。
可选地,所述双功能催化剂的比表面积为20~450m2/g,平均孔径为4~30nm,孔容为0.15~0.95cm3/g,铜的比表面积2~10m2/g,铜的分散度3~20%。
根据本发明的另一个方面,提供了一种上述双功能催化剂的制备方法,该方法包括如下步骤:
将含有可溶性铜盐、可溶性锌盐、尿素、水的溶液与氨水、载体混合形成混合物,经老化、蒸氨、洗涤、干燥、焙烧后得到催化剂。
其中氨水与铜锌金属离子发生络合反应,生成铜氨和锌氨溶液,其进一步与后续载体作用从而分散固定金属离子在载体上,而尿素起到沉淀剂作用,有利于金属盐进一步分散沉淀在载体上。
所述可溶性铜盐选自硝酸铜、乙酸铜、硫酸铜和氯化铜中至少一种;
所述可溶性锌盐选自硝酸锌、乙酸锌、硫酸锌和氯化锌中的至少一种;
可选地,所述可溶性铜盐、可溶性锌盐、尿素、氨水、水和载体的摩尔比为1~14:0.5~7:10~80:40~420:800~2000:10~35。
进一步可选地,所述可溶性铜盐、可溶性锌盐、尿素、氨水、水和载体的摩尔比上限可独立选自10:5:60:340:1600:25、12:6:70:380:1800:30、14:7:80:420:2000:35;所述硝酸铜、硝酸锌、尿素、氨水、水和载体的摩尔比下限可独立选自1:0.5:10:40:800:10、2:1:20:80:1000:15、4:2:30:120:1200:20、2:1:17:40:1600:30。
可选地,所述氨水的质量浓度为10~28wt%。
进一步可选地,所述氨水的质量浓度上限可独立选自20wt%、22wt%、24wt%、26wt%、28wt%;所述氨水的质量浓度下限可独立选自10wt%、12wt%、14wt%、16wt%、18wt%。
其中含有可溶性铜盐、可溶性锌盐、尿素、水的溶液与氨水的混合步骤还包括搅拌,所述搅拌时间为10min~1h,在室温条件下进行,搅拌使混合均匀,利于充分发生络合反应;
所述老化时间为10min~7h;所述干燥温度为70~140℃,干燥时间为5~24h;所述焙烧温度为300~700℃,升温速率为1~10℃/min,焙烧时间为2~12h;所述蒸氨的条件为至混合物的pH值为6~8时停止蒸氨。
进一步可选地,所述搅拌时间上限可独立选自40min、45min、50min、55min、1h;所述搅拌时间下限可独立选自10min、15min、20min、25min、30min;
进一步可选地,所述老化时间上限可独立选自5.0h、5.5h、6.0h、6.5h、7h;所述老化时间下限可独立选自10min、20min、30min、40min、50min;
进一步可选地,所述干燥温度上限可独立选自110℃、120℃、130℃、140℃;所述干燥温度下限可独立选自70℃、80℃、90℃、100℃;
进一步可选地,所述干燥时间上限可独立选自16h、18h、20h、22h、24h;所述干燥时间下限可独立选自5h、6h、8h、10h、12h;
进一步可选地,所述焙烧温度上限可独立选自500℃、550℃、600℃、650℃、700℃;所述焙烧温度下限可独立选自300℃、350℃、400℃、450℃、500℃;
进一步可选地,所述焙烧时间上限可独立选自8h、9h、10h、11h、12h;所述焙烧时间下限可独立选自2h、3h、4h、5h、6h。
可选地,所述蒸氨包括以下步骤:混合物放入的蒸氨设备起始温度设定为30~50℃;待混合物放入蒸氨设备后,蒸氨温度立即设定为60~100℃,然后蒸氨温度恒定在60~100℃下进行蒸氨反应,此前生成的铜氨和锌氨络合物在高温作用下脱掉氨根离子,剩下的铜锌离子与载体作用,从而分散负载在载体上。
根据本发明的又一方面,提供一种二氧化碳加氢合成甲醇的方法,将含有氢气、二氧化碳和氮气的混合气与经过预处理的催化剂接触反应,合成甲醇,其中所述的催化剂选自所述的双功能催化剂、所述的制备方法制备得到的双功能催化中的至少一种。
可选地,所述催化剂的预处理的条件为:预处理的催化剂颗粒大小为10~80目;预处理温度为250~450℃;预处理压力为0.1~1.5MPa;预处理时间为2~10h;预处理的气氛条件为氢气气氛或者氮气与氢气混合气,其中氮气与氢气的摩尔比为0~20;
进一步可优选地,所述预处理的催化剂颗粒大小目数为10~20目、20~40目、10~40目、40~60目和40~80目;
进一步可选地,所述预处理反应温度可独立选自250℃、300℃、350℃、400℃、450℃;
进一步可选地,所述预处理反应压力上限可独立选自1.0MPa、1.1MPa、1.2MPa、1.3MPa、1.4MPa、1.5MPa;所述预处理反应压力下限可独立选自0.1MPa、0.2MPa、0.3MPa、0.4MPa、0.5MPa、0.6MPa;
进一步可选地,所述预处理时间可独立选自2h、3h、4h、5h、6h、7h、8h、9h、10h。
可选地,所述催化剂合成甲醇的反应条件为:反应温度为190~320℃,反应压力为0.8~6.0MPa,混合气空速为2000~30000h-1,所述混合气包括氢气、二氧化碳和氮气,其中氢气、二氧化碳和氮气的摩尔比为40~160:16~40:1~8,产物由150℃保温下经气相色谱自动取样进入岛津GC-2014色谱,所用色谱配备热导检测器(TCD)和氢焰检测器(FID)。
优选地,所述反应温度为240~300℃;
优选地,所述混合气空速为6000~15000h-1
进一步可选地,所述反应压力上限可独立选自4.0MPa、4.5MPa、5.0MPa、5.5MPa、6.0MPa;所述反应压力下限可独立选自0.8MPa、1.2MPa、1.6MPa、2.0MPa、2.4MPa;
进一步可选地,其中氢气、二氧化碳和氮气的摩尔比上限可独立选自160:40:8、150:35:7、140:30:6,氢气、二氧化碳和氮气的摩尔比下限可独立选自40:16:1、50:21:2、60:26:3、72:24:1。
根据本发明的再一方面,提供一种甲醇与水蒸气重整制氢的方法,甲醇和水蒸气的混合物与经过预处理的催化剂接触反应制氢,其中所述的催化剂选自所述的双功能催化剂、所述的制备方法制备得到的双功能催化剂中的至少一种。
可选地,所述预处理的反应条件与上述甲醇合成催化剂的预处理条件相同。
进一步可优选地,所述预处理的催化剂颗粒大小目数为10~20目、20~40目、10~40目、40~60目和40~80目。
可选地,所述反应温度为200~300℃,反应压力为0.1~3.0MPa,甲醇的质量空速为0.1~5.0h-1,水与甲醇摩尔比为0.5~4,产物由150℃保温下经气相色谱自动取样进入安捷伦GC-7890B色谱,所用色谱配备TCD和FID检测器。
优选地,所述反应温度为260~300℃;
进一步可选地,所述反应压力上限可独立选自2.2MPa、2.4MPa、2.6MPa、2.8MPa、3.0MPa;所述反应压力下限可独立选自0.1MPa、0.3MPa、0.5MPa、0.7MPa、0.9MPa;
进一步可选地,所述甲醇的质量空速上限可独立选自4.5h-1、4.6h-1、4.7h-1、4.8h-1、4.9h-1、5.0h-1;所述甲醇的质量空速下限可独立选自0.1h-1、0.2h-1、0.3h-1、0.4h-1、0.5h-1、0.6h-1
进一步可选地,所述水与甲醇摩尔比上限可独立选自2.5、3.0、3.5、4;所述水与甲醇摩尔比下限可独立选自0.5、1.0、1.5、2.0。
根据本发明的再一方面,提供一种储氢运氢的方法,所述方法包括:
(a)将含有二氧化碳、氢气和氮气的混合气与经过预处理的催化剂接触反应,制备甲醇,其中所述的催化剂选自所述的双功能催化剂、所述的制备方法制备得到的双功能催化剂中的至少一种;
(b)将含有水蒸气和步骤(a)制备的甲醇的原料,与经过预处理的催化剂接触反应制取氢,其中所述的催化剂选自所述的双功能催化剂、所述的制备方法制备得到的双功能催化剂中的至少一种。
本发明能产生的有益效果包括:
与现有技术相比,本发明的优点在于采用蒸氨法制备的铜基催化剂,金属纳米颗粒尺寸均匀,高度分散,并且与载体具有较强的相互作用;铜的分散度和比表面积高,即暴露的活性位多。从而既可以用于二氧化碳加氢合成甲醇,也可以用于甲醇与水蒸气重整制氢反应,在氢气的存储和运输以及CO2资源化利用等领域,具有良好的应用前景和潜在的有益效果。
附图说明
图1为本发明绿色甲醇储氢和制氢的技术路线图。
图2为对实施例1和对比例1、对比例2样品还原后的X-射线衍射仪图。
图3为对实施例1和对比例1、对比例2样品还原后的透射电镜图,其中图3中(a)、(b)为实施例1的样品,(c)、(d)为对比例1的样品,(e)、(f)为对比例2的样品。
图1中,1、甲醇合成塔;2、甲醇重整塔。
具体实施方式
下面结合实施例进一步说明本发明的技术方案,但本发明并不局限于这些实施例。
如无特别说明,本发明的实施例中的原料均通过商业途径购买,其中质量分数为30%的硅溶胶购买于上海源叶生物科技有限公司,SBA-15和KIT-6纯硅分子筛购买于南京先丰纳米材料科技有限公司,ZrO2粉末购买于上海量函纳米科技发展有限公司,其它试剂如氨水、聚乙烯吡咯烷酮K30(平均分子量40000)和十六烷基三甲基溴化铵均购买于国药集团化学试剂有限公司,注意氨水出产规格为500mL GR(沪试),质量浓度为25.0~28.0%。如无特别说明,测试方法均采用常规方法,仪器设置均采用均厂家推荐的设置。
本发明的实施例中分析方法如下:
实施例和对比例催化剂的金属负载量使用珀金埃尔默仪器有限公司的电感耦合等离子体发射光谱(ICP-OES)7300DV测试,催化剂的比表面积(SBET)、平均孔径(Dp)和孔容(Vp)使用美国麦克默瑞提克仪器有限公司的全自动三站式比表面与孔隙度分析仪TriStarII 3020测试,催化剂中铜的比表面积(SCu)和分散度(DCu)采用美国麦克默瑞提克仪器有限公司的全自动程序升温化学吸附仪AutoChem II 2920测试,催化剂中金属的物相采用日本理学公司的X-射线衍射仪(XRD)Rigaku D/Max2500/PC测试,催化剂中形貌和颗粒分散性特征采用FEI公司的高分辨透射电子显微镜(TEM)TECNAI G2 F30测试。
图1为本发明绿色甲醇储氢和制氢的技术路线图,其工艺流程为利用太阳能等可再生能源产生的电力电解水生产氢气,并将其与捕集的二氧化碳在装有本发明的双功能催化剂甲醇合成塔1里合成甲醇,将便于储运的绿色液态燃料甲醇运输到另一端后,在装有本发明的双功能催化剂甲醇重整塔2里原位重整制氢,从而利用甲醇作载体实现氢气的存储和运输以及二氧化碳的循环利用。
实施例1:Cu-ZnO/SiO2催化剂的制备
使用本发明的蒸氨法制得Cu-ZnO/SiO2催化剂,具体过程为:在室温下,将0.484g三水合硝酸铜[Cu(NO3)2·3H2O]、0.298g六水合硝酸锌[Zn(NO3)2·6H2O]和1.0g尿素溶于30mL水中,室温下搅拌10min后加入3mL质量浓度为25~28wt%氨水,形成铜氨和锌氨混合溶液;室温下搅拌20min后加入6.337g质量分数为30%的硅溶胶,室温下老化20min后从50℃开始蒸氨,然后将蒸氨温度恒定在80℃进行蒸氨,当溶液pH值为7时停止蒸氨,得到固体沉淀物;将所得固体沉淀物用水洗涤后,在100℃下干燥12h,然后在马弗炉中以3℃/min升到450℃焙烧5h,制得Cu-ZnO/SiO2催化剂。
实施例2:Cu-ZnO/SBA-15催化剂的制备
将实施例1中6.337g质量分数为30%的硅溶胶载体更改为1.901g的SBA-15分子筛载体,同时将焙烧时的升温速率改为2℃/min,其他条件同实施例1,制得Cu-ZnO/SBA-15催化剂。
实施例3:Cu-ZnO/KIT-6催化剂的制备
将实施例1中6.337g质量分数为30%的硅溶胶载体更改为0.951g的KIT-6分子筛载体,其它所有原料用量减半,将焙烧时的升温速率改为2℃/min,其他条件同实施例1,制得Cu-ZnO/KIT-6催化剂。
实施例4:Cu-ZnO/ZrO2催化剂的制备
将实施例1中6.337g质量分数为30%的硅溶胶载体更改为1.901g的ZrO2粉末载体,其他条件同实施例1,制得Cu-ZnO/ZrO2催化剂。
对比例1:Cu-ZnO/SiO2催化剂的制备
使用溶胶凝胶法制得Cu-ZnO/SiO2对比催化剂,具体过程为:将0.484gCu(NO3)2·3H2O和0.298gZn(NO3)2·6H2O溶于20mL水、20mL N,N-二甲基甲酰胺和20mL乙醇混合液中,加入5.5g正硅酸四乙酯,然后在室温下搅拌20min后装入100mL水热釜,在150℃下水热9h,得到凝胶状的固体沉淀物,然后用水和乙醇(体积比1:1)洗涤后,在80℃真空烘箱中干燥10h,再在鼓风烘箱中100℃下干燥12h。然后在马弗炉中以3℃/min升到450℃焙烧5h,制得对比的Cu-ZnO/SiO2催化剂。
对比例2:Cu-ZnO/SiO2催化剂的制备
使用改进的法制得Cu-ZnO/SiO2对比催化剂,具体过程为:将0.484g Cu(NO3)2·3H2O、0.298g Zn(NO3)2·6H2O和3.0g聚乙烯吡咯烷酮(PVP)溶于200mL乙醇中(溶液A);将3.0g十六烷基三甲基溴化铵(CTAB)溶于80mL水、100mL乙醇和20mL质量浓度为25~28wt%氨水混合液中(溶液B)。将溶液A倒入溶液B后再加入5.5g正硅酸四乙酯,然后在室温下搅拌24h,得到固体沉淀物;将所得固体沉淀物用水和乙醇(体积比1:1)洗涤后,在100℃下干燥12h,然后在马弗炉中以1℃/min升到450℃焙烧5h,制得对比的Cu-ZnO/SiO2催化剂。
对实施例1和对比例1、对比例2使用不同制备方法合成的Cu-ZnO/SiO2催化剂进行物性表征,结果如表1所示,可以看出,实施例1和对比例1、对比例2的催化剂具有相近的Cu和Zn负载量,可以排除金属负载量对催化性能的影响,本发明蒸氨法制备的样品比表面积适中,为144m2/g,远高于法制备的对比例2样品,但仍然低于溶胶凝胶法制备的对比例1样品。从暴露的活性位来看,本发明制备的样品具有最高的铜比表面积和铜的分散度(实施例1中,铜的比表面积为5.5m2/g,铜的分散度为14.2%,优于对比例1、2)。同时X-射线衍射结果也表明还原后的实施例1样品具有较宽的氧化亚铜衍射峰和微弱的铜的衍射峰,而对比例样品中铜的衍射峰较尖锐,说明实施例1样品中铜的分散性好(见图2),从透射电镜图中可以进一步清晰表明铜和氧化锌纳米颗粒高度分散在二氧化硅中,在二氧化硅球边缘也能观察到铜和氧化锌纳米颗粒(见图3中(a)、(b)),而对比例1中铜和氧化锌纳米颗粒也相对分散在二氧化硅中(见图3中(c)、(d)),对比例2样品中铜和氧化锌纳米颗粒大部分被镶嵌在二氧化硅球里(见图3中(e)、(f)),在二氧化硅球边缘观察不到铜和氧化锌纳米颗粒,进一步说明金属的分散性差。
实施例5:CO2加氢合成甲醇
对实施例1~4和对比例1~2进行CO2加氢合成甲醇的应用评价。将Cu-ZnO/X催化剂样品压片,破碎成20~40目颗粒,然后装在固定床连续流动反应器上,在温度为350℃,压力为1.0MPa的氢气中预处理2h;接着进行CO2加氢合成甲醇的反应,工艺条件为:反应温度为220、280℃,反应压力为2.0MPa,氢气、二氧化碳和氮气混合气气相空速为4000、12000h-1,其中n(H2):n(CO2):n(N2)摩尔比为72:24:1。产物由150℃保温下经气相色谱自动取样进入岛津GC-2014色谱,所用色谱配备热导检测器(TCD)和氢焰检测器(FID)。上述催化剂的CO2加氢合成甲醇性能结果见表2,其中CO2转化率、甲醇选择性及甲醇收率的计算公式如下:
其中,f为TCD和FID上相应物质的相对摩尔校正因子,A为相应物质在色谱检测器上的峰面积,i为TCD和FID的转换系数,GHSV为气相空速,V%为原料气体中CO2的体积分数,M为甲醇的相对分子质量。
从表2可以看出,与溶胶凝胶法和改进的法制备的对比例催化剂相比,本发明蒸氨法制备的实施例催化剂具有较高的CO2加氢合成甲醇性能,其中实施例2催化剂的CO2转化率和甲醇收率最高,在280℃时,甲醇收率达到133.7g·kgcat -1·h-1,而对比例2在同等压力、温度和更低空速下,甲醇收率只有9.8g·kgcat -1·h-1。实施例1在更低的220℃反应条件下,甲醇收率也能达到21.7g·kgcat -1·h-1,此时甲醇选择性为66.4%。此外,实施例1~4在反应条件相同的条件下,催化性能出现较小变化的原因主要是使用的载体物化性质不一样,导致催化剂的物化性质也不一致,它们的比表面积(实施例1~4的SBET分别为144m2/g、329m2/g、337m2/g、26m2/g)、孔容(实施例1~4的Vp分别为0.78cm3/g、0.86cm3/g、0.54cm3/g、0.19cm3/g)和孔道结构(其中SBA-15具有高度有序的二维孔道结构而KIT-6具有高度有序的三维孔道结构)不一样会影响二氧化碳和氢气以及反应中间体在催化剂表面及孔道里的吸附传质,从而最终影响催化性能;实施例1在不同反应温度和空速条件下,催化性能出现较大变化的主要原因是温度和空速会影响甲醇合成反应的动力学以及反应物在催化剂表面的接触时间,可见优选的反应温度为240~300℃,优选的空速为6000~15000h-1
实施例6:甲醇和水蒸气重整制氢
为了进一步拓展本发明制备催化剂的应用,选取甲醇合成性能相近的实施例1和对比例1进行甲醇和水蒸气重整制氢的应用评价。将催化剂样品压片,破碎成40~80目颗粒,取300mg样品装在固定床连续流动反应器上,在温度为300℃,压力为0.1MPa的氢气中预处理2h;接着进行甲醇与水蒸气重整制氢的反应,工艺条件为:反应温度为250℃、280℃、300℃,反应压力为0.1MPa,甲醇的质量空速为4.5h-1,n(H2O):n(CH3OH)摩尔比为1,产物由150℃保温下经气相色谱自动取样进入安捷伦GC-7890B色谱,所用色谱配备TCD和FID检测器。上述催化剂的甲醇和水蒸气重整制氢性能结果见表3,其中甲醇转化率、一氧化碳选择性及氢气收率的计算公式如下:
其中,A为甲醇在FID检测器的峰面积,CO和CO2在TCD检测器的峰面积,f为TCD上CO和CO2的相对摩尔校正因子,WHSV为甲醇的质量空速,M为甲醇的相对分子质量。
从表3可以看出,虽然实施例1和对比例1具有类似的甲醇合成性能,但是两者在甲醇和水蒸气重整制氢反应中表现出差异较大的性能。其中,本发明蒸氨法制备的实施例1在300℃时可以转化75.5%的甲醇,而且CO的选择性低至3.0%,氢气的收率达到85.7μmol·g-1·s-1,而同等条件下,对比例1的甲醇转化率和氢气收率均低于实施例1。此外,实施例1在不同反应温度下表现出不同的甲醇蒸汽重整性能,说明反应温度具有较明显的影响,为此优选的反应温度为260~300℃。
综合表2和表3说明,本发明制备的催化剂相较于其他方法制备得到的催化剂,既可应用于CO2加氢合成甲醇,也可应用于甲醇重整制氢,且性能优异。
表1不同催化剂的物性参数
表2不同催化剂的CO2加氢合成甲醇性能结果
表3不同催化剂的甲醇和水蒸气重整制氢性能结果
以上所述,仅是本发明的几个实施例,并非对本发明做任何形式的限制,虽然本发明以较佳实施例揭示如上,然而并非用以限制本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (7)

1.一种双功能催化剂用于储氢运氢的方法,其特征在于,所述方法包括:
(a)将含有二氧化碳、氢气和氮气的混合气与经过预处理的催化剂接触反应,制备甲醇;
(b)将含有水蒸气和步骤(a)制备的甲醇的原料,与经过预处理的催化剂接触反应制取氢;
所述催化剂为双功能催化剂,所述双功能催化剂包括活性组分和载体;
所述活性组分包括活性元素;
所述活性元素包括铜、锌;
所述载体选自分子筛、无机氧化物中的至少一种;
铜的比表面积2~10m2/g,铜的分散度3~20%;
所述分子筛选自KIT-6、SBA-15、SBA-16、MCM-41、HZSM-5、SAPO-34中的至少一种;
所述无机氧化物选自SiO2、MgO、Al2O3、CeO2、ZrO2、La2O3中的至少一种。
2.根据权利要求1所述的方法,其特征在于,
所述铜的负载量为所述双功能催化剂质量的3~35wt%,以铜元素的负载量计算;
所述锌的负载量为所述双功能催化剂质量的1~15wt%,以锌元素的负载量计算;
所述载体的质量为所述双功能催化剂质量的50~96wt%。
3.根据权利要求1所述的方法,其特征在于,所述双功能催化剂的比表面积为20~450m2/g,平均孔径为4~30nm,孔容为0.15~0.95cm3/g。
4.根据权利要求1所述的方法,其特征在于,所述催化剂的制备方法包括如下步骤:
将含有可溶性铜盐、可溶性锌盐、尿素、水的溶液与氨水、载体混合形成混合物,经老化、蒸氨、焙烧后得到催化剂。
5.根据权利要求4所述的方法,其特征在于,
所述可溶性铜盐选自硝酸铜、乙酸铜、硫酸铜和氯化铜中至少一种;
所述可溶性锌盐选自硝酸锌、乙酸锌、硫酸锌和氯化锌中的至少一种;
所述可溶性铜盐、可溶性锌盐、尿素、氨水、水和载体的摩尔比为1~14: 0.5~7: 10~80:40~420: 800~2000: 10~35。
6.根据权利要求4所述的方法,其特征在于,
所述氨水的质量浓度为10~28wt%;所述老化时间为10min~7h;所述焙烧温度为300~700℃,焙烧时间为2~12h;所述蒸氨的条件为至混合物pH值为6~8时停止蒸氨。
7.根据权利要求4所述的方法,其特征在于,
所述蒸氨包括以下步骤:蒸氨起始温度为30~50℃;蒸氨恒定温度为60~100℃。
CN202110540957.5A 2021-05-18 2021-05-18 一种双功能催化剂、制备方法及在甲醇合成及其重整制氢中的应用 Active CN115364863B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110540957.5A CN115364863B (zh) 2021-05-18 2021-05-18 一种双功能催化剂、制备方法及在甲醇合成及其重整制氢中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110540957.5A CN115364863B (zh) 2021-05-18 2021-05-18 一种双功能催化剂、制备方法及在甲醇合成及其重整制氢中的应用

Publications (2)

Publication Number Publication Date
CN115364863A CN115364863A (zh) 2022-11-22
CN115364863B true CN115364863B (zh) 2024-03-26

Family

ID=84058913

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110540957.5A Active CN115364863B (zh) 2021-05-18 2021-05-18 一种双功能催化剂、制备方法及在甲醇合成及其重整制氢中的应用

Country Status (1)

Country Link
CN (1) CN115364863B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079101A (ja) * 2000-09-08 2002-03-19 Hiroshima Industrial Technology Organization メタノール水蒸気改質用触媒前駆体並びにメタノール水蒸気改質用触媒及びその製造方法
CN1562472A (zh) * 2004-04-22 2005-01-12 复旦大学 一种甲醇水蒸汽重整制氢用的铜基催化剂及其制备方法
CN103566941A (zh) * 2013-02-04 2014-02-12 中国科学院大连化学物理研究所 一种甲醇水蒸气催化重整制氢催化剂及其制备方法
CN105776134A (zh) * 2014-12-24 2016-07-20 高化学株式会社 甲醇水蒸气重整制氢的方法
CN106076346A (zh) * 2016-05-20 2016-11-09 辽宁石油化工大学 用于甲醇水蒸气催化重整制氢的催化剂、制备方法及应用
CN106582652A (zh) * 2015-10-16 2017-04-26 上海华谊能源化工有限公司 一种草酸二甲酯气相加氢合成乙二醇的催化剂及其制备方法与应用
CN107043319A (zh) * 2016-02-05 2017-08-15 株式会社模范 制备甲醇的方法
CN111167459A (zh) * 2020-02-12 2020-05-19 中国科学院上海高等研究院 一种用于混合气制甲醇催化剂及其制备方法和用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002079101A (ja) * 2000-09-08 2002-03-19 Hiroshima Industrial Technology Organization メタノール水蒸気改質用触媒前駆体並びにメタノール水蒸気改質用触媒及びその製造方法
CN1562472A (zh) * 2004-04-22 2005-01-12 复旦大学 一种甲醇水蒸汽重整制氢用的铜基催化剂及其制备方法
CN103566941A (zh) * 2013-02-04 2014-02-12 中国科学院大连化学物理研究所 一种甲醇水蒸气催化重整制氢催化剂及其制备方法
CN105776134A (zh) * 2014-12-24 2016-07-20 高化学株式会社 甲醇水蒸气重整制氢的方法
CN106582652A (zh) * 2015-10-16 2017-04-26 上海华谊能源化工有限公司 一种草酸二甲酯气相加氢合成乙二醇的催化剂及其制备方法与应用
CN107043319A (zh) * 2016-02-05 2017-08-15 株式会社模范 制备甲醇的方法
CN106076346A (zh) * 2016-05-20 2016-11-09 辽宁石油化工大学 用于甲醇水蒸气催化重整制氢的催化剂、制备方法及应用
CN111167459A (zh) * 2020-02-12 2020-05-19 中国科学院上海高等研究院 一种用于混合气制甲醇催化剂及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Slurry methanol synthesis from CO2 hydrogenation over micro-spherical SiO2 support Cu/ZnO catalysts;Ying Jiang et al.;《Journal of CO2 Utilization》;第26卷;第642-651页 *

Also Published As

Publication number Publication date
CN115364863A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
Liao et al. An active, selective, and stable manganese oxide-supported atomic Pd catalyst for aerobic oxidation of 5-hydroxymethylfurfural
Hu et al. Hydrogen production via catalytic decomposition of NH 3 using promoted MgO-supported ruthenium catalysts
Zhang et al. Octahedral core–shell bimetallic catalysts M@ UIO-67 (M= Pt–Pd nanoparticles, Pt–Pd nanocages): metallic nanocages that enhanced CO2 conversion
Zhang et al. Mass production of a single-atom cobalt photocatalyst for high-performance visible-light photocatalytic CO 2 reduction
CN113634258B (zh) 一种用于光催化还原二氧化碳生成乙烯的催化剂及其制备方法
CN109908903A (zh) 一种高比表面积木质素基活性炭为载体的镍基催化剂及其制备与应用
An et al. Co0− Coδ+ active pairs tailored by Ga-Al-O spinel for CO2-to-ethanol synthesis
CN113101964B (zh) 一种介孔氧化铈光催化剂及其制备方法和应用
WANG et al. CO2 methanation over Ni/Mg@ MCM-41 prepared by in-situ synthesis method
CN113385171A (zh) 一种寡层碳保护的金属基催化剂及其在环氧乙烷羰基化中的应用
CN1301793C (zh) 一种纳米碳材料改性的铜基催化剂及其制备方法
Fujitsuka et al. Hydrogen Production from formic acid using Pd/C, Pt/C, and Ni/C catalysts prepared from Ion-exchange resins
CN114931949B (zh) 一种用于二氧化碳还原的光催化剂及其制备方法与应用
WO2023035030A1 (en) Process for producing an organic acid, and catalyst for same
CN111992213A (zh) 用于催化愈创木酚加氢脱氧制备环己醇的核壳型催化剂的制备方法
CN108273488A (zh) 一种纳米片状二氧化铈/多孔炭复合材料的制备方法
HAI et al. Hydrogenation of furfural to 1, 5-pentanediol over CuCo bimetallic catalysts
Ma et al. Au nanoparticle-doped Co 3 O 4–CoFe 2 O 4@ SiO 2 as a catalyst for visible-light-driven water oxidation
CN115364863B (zh) 一种双功能催化剂、制备方法及在甲醇合成及其重整制氢中的应用
CN109908898B (zh) 一种费托合成催化剂及其制法
Xu et al. A simple fabrication of mineral supported Ni-NiAl2O4 nanocomposites with a novel transition layer
CN102441388B (zh) 一种高稳定性钴基费托合成催化剂的制备方法
CN114950439A (zh) 一种高效光解水产氢MOF TiO2-NiO材料及其制备方法和应用
CN110028375B (zh) 一种逆水煤气变换耦合甲基环己烷脱氢的方法
Albeladi et al. Zn deposited nickel silicate nanotubes as efficient CO2 methanation catalysts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant