CN115349807A - 一种新型高精度鲁棒的胶囊内镜定位方法 - Google Patents

一种新型高精度鲁棒的胶囊内镜定位方法 Download PDF

Info

Publication number
CN115349807A
CN115349807A CN202211010097.5A CN202211010097A CN115349807A CN 115349807 A CN115349807 A CN 115349807A CN 202211010097 A CN202211010097 A CN 202211010097A CN 115349807 A CN115349807 A CN 115349807A
Authority
CN
China
Prior art keywords
magnetometer
positioning
capsule
precision
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211010097.5A
Other languages
English (en)
Inventor
刘德浩
甘彤
李征
刘伟
胡兵
马洪
沈思丞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Maidikang Technology Co ltd
Original Assignee
Chengdu Maidikang Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Maidikang Technology Co ltd filed Critical Chengdu Maidikang Technology Co ltd
Priority to CN202211010097.5A priority Critical patent/CN115349807A/zh
Publication of CN115349807A publication Critical patent/CN115349807A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/038Measuring direction or magnitude of magnetic fields or magnetic flux using permanent magnets, e.g. balances, torsion devices

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Endoscopes (AREA)

Abstract

本发明公开了一种新型高精度鲁棒的胶囊内镜定位方法,包括以下步骤:S1、磁力计参数初始标定;S2、定位过程中,磁力计数据预处理;S3、定位解算体内胶囊的位置p和方向n。本发明通过同时优化定位体内胶囊和体外磁力计设备的位姿,解决目前磁定位系统体外设备需要刚性固定的缺点,提升定位精度和鲁棒性。并且设计了一种新的数学模型和求解方法,在磁力计观测模型中消除地磁场和本地局部变化的磁环境的干扰,保证人体自由活动时,也能达到胶囊内镜毫米级定位精度。

Description

一种新型高精度鲁棒的胶囊内镜定位方法
技术领域
本发明涉及医疗器械技术领域,具体涉及一种新型高精度鲁棒的胶囊内镜定位方法。
背景技术
胶囊内窥镜系统,是一类具有胶囊形状,内置摄像头、无线信号传输装置等传感器的智能系统。通过口服智能胶囊,借助消化道蠕动,胶囊内镜系统可在消化道完整运动并拍摄图像;医务人员通过外部接收器获取到的图像,诊断消化道病情。胶囊内镜系统是传统电子胃肠镜检查系统的有效补充,尤其是小肠区域,传统电子胃肠镜无法直接检查;并且胶囊内镜系统还具备无痛无创伤、检查方便、不影响患者活动等优点。
医生需要通过胶囊内镜在消化道的位置推定判断病灶位置,因此胶囊内镜在消化道的定位问题是胶囊内镜系统需要解决的一大关键技术问题。现有的胶囊内镜定位技术,包括磁定位技术,视觉定位技术等,在实验室理想条件下能取得较高的定位精度。但在实际使用中,一方面,目前的磁定位系统要求体外穿戴的磁传感器设备刚性连接才能保证定位精度,影响人体自由活动,而且刚性连接使体外穿戴的信号接收设备容易发生形变,导致定位精度降低。另一方面目前的磁定位系统,需要事先精确标定计算地磁场、零偏等各种地球环境和磁力计设备相关的固有参数,并且需要保持本地磁场环境稳定,但在实际使用场景中,精确地标定不一定有条件实现,而且本地磁场环境复杂多变,导致定位精度低和定位结果不鲁棒。
发明内容
针对上述问题,本发明提供一种新型高精度鲁棒的胶囊内镜定位方法,解决目前胶囊内镜定位系统定位精度低和定位结果不鲁棒的问题。
本发明采用下述的技术方案:
一种新型高精度鲁棒的胶囊内镜定位方法,其特征在于,包括以下步骤:
S1、磁力计参数初始标定:
S101、将体外磁力计阵列上电,并作8字形运动,记录磁力计读数,通过极小化∑i||mi-bm||,其中mi是第i个测力计观测值,计算磁力计零偏bm
S102、将体外磁力计阵列静止放置并上电,体内胶囊含有永磁铁,对永磁铁不同位置,记录磁力计读数,构造非线性最小二乘问题,并使用列文伯格-马夸尔特迭代方法求解,计算不同磁力计之间的相对位置和方向参数。
S2、定位过程中,磁力计数据预处理:通过插值将磁力计数据统一到相同时间系统,相同采样频率并且时间戳对齐。
S3、定位解算体内胶囊的位置p和方向n:
S301、基于磁偶极子模型建模永磁铁磁场,磁偶极子模型:
Figure BDA0003810215030000022
Δp=ps-pm
ρ=||Δp||
Figure BDA0003810215030000021
式中,m为依赖磁体材料的常数;B为位于参考坐标系{nm,pm}的磁棒在ps处产生的磁场;nm为永磁铁方向;pm为永磁铁位置;
通过李群扰动方向矢量nm得到扰动模型:
nm+∈3×1=expso3(T3×2δ2×1)nm
式中,T3×2为nm的正交平面的正交基;∈3×1为方向矢量对应李群的扰动项,expso3为是SO3群的指数变换,δ2×1为方向矢量对应李代数的扰动项;
S302、建立磁力计测量模型:
Figure BDA0003810215030000031
式中,
Figure BDA0003810215030000032
为磁力计坐标系s到定位参考坐标系w的旋转;ms为测力计量;bs为磁力计零偏;
Figure BDA0003810215030000033
为地磁场在参考坐标系w的值;
Figure BDA0003810215030000034
为本地缓慢变化的磁干扰在参考坐标系w的值;noise为磁力计观测的白噪声;
S303、通过磁力计观察模型差分技术,消除地磁场和本地磁场环境的干扰,磁观测单差方程:
Figure BDA0003810215030000035
式中,
Figure BDA0003810215030000036
分别为磁力计si和sj在参考坐标系w的旋转矩阵;
Figure BDA0003810215030000037
分别为对应的磁力计测量值;
Figure BDA0003810215030000038
分别为对应磁力计的零偏;Bi,Bj分别为永磁铁产生的磁场在磁力计si和sj处的理论值;noise为白噪声;
S304、通过CoordinateDescent方法计算胶囊较低精度的3自由度位置和2自由度方向,作为后续联合优化的初始值;
S305、使用非线性优化技术,联合优化胶囊位置、方向,以及体外磁力计设备的相对位置和方向,获得鲁棒高精度的胶囊内镜定位结果。
本发明的有益效果是:
1、通过同时优化定位体内胶囊和体外磁力计设备的位姿,解决目前磁定位系统体外设备需要刚性固定的缺点,提升定位精度和鲁棒性;
2、设计了一种新的数学模型和求解方法,在磁力计观测模型中消除地磁场和本地局部变化的磁环境的干扰,保证人体自由活动时,也能达到胶囊内镜毫米级定位精度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明流程示意图;
图2为本发明设备示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
下面结合附图和实施例对本发明进一步说明。
如图1所示,一种新型高精度鲁棒的胶囊内镜定位方法,其特征在于,包括以下步骤:
S1、磁力计参数初始标定:
S101、将体外磁力计阵列上电,并作8字形运动,记录磁力计读数,通过极小化∑i||mi-bm||,其中mi是第i个测力计观测值,计算磁力计零偏bm
S102、将体外磁力计阵列静止放置并上电,体内胶囊含有永磁铁,对永磁铁不同位置,记录磁力计读数,构造非线性最小二乘问题,并使用列文伯格-马夸尔特迭代方法求解,计算不同磁力计之间的相对位置和方向参数。
S2、定位过程中,磁力计数据预处理:通过插值将磁力计数据统一到相同时间系统,相同采样频率并且时间戳对齐;
S3、定位解算体内胶囊的位置p和方向n:
S301、基于磁偶极子模型建模永磁铁磁场,磁偶极子模型:
Figure BDA0003810215030000051
Δp=ps-pm
ρ=||Δp||
Figure BDA0003810215030000052
式中,m为依赖磁体材料的常数;B为位于参考坐标系{nm,pm}的磁棒在ps处产生的磁场;nm为永磁铁方向;pm为永磁铁位置;
通过李群扰动方向矢量nm得到扰动模型:
nm+∈3×1=expso3(T3×2δ2×1)nm
式中,T3×2为nm的正交平面的正交基;∈3×1为方向矢量对应李群的扰动项,expso3为是SO3群的指数变换,δ2×1为方向矢量对应李代数的扰动项;
S302、建立磁力计测量模型:
Figure BDA0003810215030000053
式中,
Figure BDA0003810215030000054
为磁力计坐标系s到定位参考坐标系w的旋转;ms为测力计量;bs为磁力计零偏;
Figure BDA0003810215030000055
为地磁场在参考坐标系w的值;
Figure BDA0003810215030000056
为本地缓慢变化的磁干扰在参考坐标系w的值;noise为磁力计观测的白噪声;
S303、通过磁力计观察模型差分技术,消除地磁场和本地磁场环境的干扰,磁观测单差方程:
Figure BDA0003810215030000061
式中,
Figure BDA0003810215030000062
分别为磁力计si和sj在参考坐标系w的旋转矩阵;
Figure BDA0003810215030000063
分别为对应的磁力计测量值;
Figure BDA0003810215030000064
分别为对应磁力计的零偏;Bi,Bj分别为永磁铁产生的磁场在磁力计si和sj处的理论值;noise为白噪声;
S304、通过Coordinate Descent方法,在磁力计阵列内部任取一点作为永磁铁位置的初值,固定位置利用非线性最小二乘方法计算永磁铁朝向,然后固定朝向,再利用非线性最小二乘方法计算永磁铁位置,反复迭代直至收敛;获得胶囊较低精度的3自由度位置和2自由度方向,作为后续联合优化的初始值;
S305、使用非线性最小二乘方法,通过列文伯格-马夸尔特迭代求解技术,联合优化胶囊位置、方向,以及体外磁力计设备的相对位置和方向,获得鲁棒高精度的胶囊内镜定位结果。
图2为本发明胶囊与磁力计阵列位置关系示意图。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (2)

1.一种新型高精度鲁棒的胶囊内镜定位方法,其特征在于,包括以下步骤:
S1、磁力计参数初始标定:
S2、定位过程中,磁力计数据预处理:通过插值将磁力计数据统一到相同时间系统,相同采样频率并且时间戳对齐;
S3、定位解算体内胶囊的位置p和方向n:
S301、基于磁偶极子模型建模永磁铁磁场,磁偶极子模型:
Figure FDA0003810215020000011
Δp=ps-pm
ρ=||Δp||
Figure FDA0003810215020000012
式中,m为依赖磁体材料的常数;B为位于参考坐标系{nm,pm}的磁棒在ps处产生的磁场;nm为永磁铁方向;pm为永磁铁位置;
通过李群扰动方向矢量nm得到扰动模型:
nm+∈3×1=expso3(T3×2δ2×1)nm
式中,T3×2为nm的正交平面的正交基;∈3×1为方向矢量对应李群的扰动项,expso3为是SO3群的指数变换,δ2×1为方向矢量对应李代数的扰动项;
S302、建立磁力计测量模型:
Figure FDA0003810215020000013
式中,
Figure FDA0003810215020000014
为磁力计坐标系s到定位参考坐标系w的旋转;ms为测力计量;bs为磁力计零偏;
Figure FDA0003810215020000015
为地磁场在参考坐标系w的值;
Figure FDA0003810215020000016
为本地缓慢变化的磁干扰在参考坐标系w的值;noise为磁力计观测的白噪声;
S303、通过磁力计观察模型差分技术,消除地磁场和本地磁场环境的干扰,磁观测单差方程:
Figure FDA0003810215020000021
式中,
Figure FDA0003810215020000022
分别为磁力计si和sj在参考坐标系w的旋转矩阵;
Figure FDA0003810215020000023
分别为对应的磁力计测量值;
Figure FDA0003810215020000024
分别为对应磁力计的零偏;Bi,Bj分别为永磁铁产生的磁场在磁力计si和sj处的理论值;noise为白噪声;
S304、通过Coordinate Descent方法计算胶囊较低精度的3自由度位置和2自由度方向,作为后续联合优化的初始值;
S305、使用非线性优化技术,联合优化胶囊位置、方向,以及体外磁力计设备的相对位置和方向,获得鲁棒高精度的胶囊内镜定位结果。
2.根据权利要求1所述的一种新型高精度鲁棒的胶囊内镜定位方法,其特征在于,所述步骤S1的具体过程为:
S101、将体外磁力计阵列上电,并作8字形运动,记录磁力计读数,通过极小化∑i||mi-bm||,其中mi是第i个测力计观测值,计算磁力计零偏bm
S102、将体外磁力计阵列静止放置并上电,体内胶囊含有永磁铁,对永磁铁不同位置,记录磁力计读数,构造非线性最小二乘问题,并使用列文伯格-马夸尔特迭代方法求解,计算不同磁力计之间的相对位置和方向参数。
CN202211010097.5A 2022-08-23 2022-08-23 一种新型高精度鲁棒的胶囊内镜定位方法 Pending CN115349807A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211010097.5A CN115349807A (zh) 2022-08-23 2022-08-23 一种新型高精度鲁棒的胶囊内镜定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211010097.5A CN115349807A (zh) 2022-08-23 2022-08-23 一种新型高精度鲁棒的胶囊内镜定位方法

Publications (1)

Publication Number Publication Date
CN115349807A true CN115349807A (zh) 2022-11-18

Family

ID=84002945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211010097.5A Pending CN115349807A (zh) 2022-08-23 2022-08-23 一种新型高精度鲁棒的胶囊内镜定位方法

Country Status (1)

Country Link
CN (1) CN115349807A (zh)

Similar Documents

Publication Publication Date Title
US11712309B2 (en) Magnetic flexible catheter tracking system and method using digital magnetometers
Shao et al. A novel passive magnetic localization wearable system for wireless capsule endoscopy
CN101179979B (zh) 胶囊型医疗装置
Son et al. A simultaneous calibration method for magnetic robot localization and actuation systems
US7580739B2 (en) System for detecting position of capsule endoscope in subject
CN100594840C (zh) 一种跟踪体内微型装置的方法
CN107348931B (zh) 一种胶囊内窥镜空间姿态测定系统
US7398117B2 (en) System for detecting position of capsule endoscope in subject
KR101101003B1 (ko) 센서노드를 이용한 신체의 움직임 및 균형 감지 시스템 및 방법
CN103079452B (zh) 位置信息估计系统
CN105919595B (zh) 用于跟踪运动物体体内具有磁信号的微型装置的系统和方法
JPH11295618A (ja) 内視鏡画像処理装置
US7509158B2 (en) System for detecting position of capsule endoscope in subject
WO2021104368A1 (zh) 用于磁力计空间定位的系统和方法
CN106999004A (zh) 位置检测系统以及引导系统
Hu et al. A new 6D magnetic localization technique for wireless capsule endoscope based on a rectangle magnet
Pham et al. A real-time localization system for an endoscopic capsule
Li et al. Calibrated analytical model for magnetic localization of wireless capsule endoscope based on onboard sensing
Wang et al. 3-D electromagnetic position estimation system using high-magnetic-permeability metal for continuum medical robots
CN108186017B (zh) 一种用于确定内窥镜胶囊体内位姿的检测系统和方法
CN115349807A (zh) 一种新型高精度鲁棒的胶囊内镜定位方法
CN113288008A (zh) 一种磁性胶囊内窥镜全姿态测定方法
Zeising et al. Localization of passively guided capsule endoscopes—A review
CN114668362B (zh) 无线胶囊内窥镜的定位系统、装置及计算机设备
US11819320B2 (en) Method and system for determining orientation of capsule endoscope

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination