CN115347623B - 一种考虑电动汽车需求响应的可再生能源微电网调峰方法 - Google Patents

一种考虑电动汽车需求响应的可再生能源微电网调峰方法 Download PDF

Info

Publication number
CN115347623B
CN115347623B CN202211268123.4A CN202211268123A CN115347623B CN 115347623 B CN115347623 B CN 115347623B CN 202211268123 A CN202211268123 A CN 202211268123A CN 115347623 B CN115347623 B CN 115347623B
Authority
CN
China
Prior art keywords
electric vehicle
renewable energy
grid
load
peak
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211268123.4A
Other languages
English (en)
Other versions
CN115347623A (zh
Inventor
侯婷婷
方仍存
王治华
侯慧
贺兰菲
汪致洵
唐金锐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Wuhan University of Technology WUT
Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT, Economic and Technological Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Wuhan University of Technology WUT
Priority to CN202211268123.4A priority Critical patent/CN115347623B/zh
Publication of CN115347623A publication Critical patent/CN115347623A/zh
Application granted granted Critical
Publication of CN115347623B publication Critical patent/CN115347623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/63Monitoring or controlling charging stations in response to network capacity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06312Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0075Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source according to economic or energy efficiency considerations, e.g. economic dispatch
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/40Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation wherein a plurality of decentralised, dispersed or local energy generation technologies are operated simultaneously
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/58The condition being electrical
    • H02J2310/60Limiting power consumption in the network or in one section of the network, e.g. load shedding or peak shaving
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/50The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads
    • H02J2310/56The network for supplying or distributing electric power characterised by its spatial reach or by the load for selectively controlling the operation of the loads characterised by the condition upon which the selective controlling is based
    • H02J2310/62The condition being non-electrical, e.g. temperature
    • H02J2310/64The condition being economic, e.g. tariff based load management

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Business, Economics & Management (AREA)
  • Marketing (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Educational Administration (AREA)
  • Water Supply & Treatment (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Primary Health Care (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种考虑电动汽车需求响应的可再生能源微电网调峰方法,包括以下步骤:根据电动汽车用户的出行特性模型,建立电动汽车用户心理模型、峰谷电价时段转移模型以及电动汽车用户满意度模型;建立抽水蓄能机组以及蓄电池储能机组运行特性及模型;建立以负荷方差及用户满意度为目标函数的电动汽车层调度模型,采用NSGA‑Ⅱ遗传算法求解得到Pareto前沿解集,将每一个解代入模糊隶属度函数,并从中选取最优方案;建立可再生能源微电网层调度模型,分为并网模式和孤岛模式,采用PSO算法负责指定可再生能源微电网层分布式电源每小时的具体出力。本发明不仅降低了系统运维成本,而且提高了可再生能源利用率与系统可靠性。

Description

一种考虑电动汽车需求响应的可再生能源微电网调峰方法
技术领域
本发明涉及电力系统调度技术领域,尤其涉及一种考虑电动汽车需求响应的可再生能源微电网调峰方法。
背景技术
建立“源网荷储”一体化协调统一的微电网系统,对解决可再生能源出力间歇性和不确定性具有重要意义。对于电源侧和电网侧,合理地优化协调微电网内各单元的出力,充分消纳可再生能源是目前研究的重点;对于负荷侧,大规模电动汽车(Electric vehicle,EV)接入电网进行无序充电,也会导致电网负荷峰上加峰;至于储能侧,目前电力系统中各种长时间储能以抽水蓄能最为成熟,然而现有与微电网相关的研究少有能充分利用抽水蓄能机组的调峰、调频以及备用等功能。因此,现有技术存在系统运维成本高、交互功率波动较大、可再生能源利用率较低的缺陷。
发明内容
本发明的目的是克服现有技术中存在的系统运维成本高、交互功率波动大、可再生能源利用率低的缺陷与问题,提供一种系统运维成本低、交互功率波动小、可再生能源利用率高的考虑电动汽车需求响应的可再生能源微电网调峰方法。
为实现以上目的,本发明的技术解决方案是:一种考虑电动汽车需求响应的可再生能源微电网调峰方法,该方法包括以下步骤:
S1、根据电动汽车用户的出行特性模型,建立电动汽车用户心理模型、峰谷电价时段转移模型以及电动汽车用户满意度模型;
S2、建立抽水蓄能机组以及蓄电池储能机组运行特性及模型;
S3、建立以负荷方差及用户满意度为目标函数的电动汽车层调度模型,采用NSGA-Ⅱ遗传算法求解得到Pareto前沿解集,将每一个解代入模糊隶属度函数,并从中选取最优方案;
S4、建立可再生能源微电网层调度模型,分为并网模式和孤岛模式,采用PSO算法负责指定可再生能源微电网层分布式电源每小时的具体出力。
步骤S1中,所述电动汽车用户的出行特性模型为:
Figure 805920DEST_PATH_IMAGE001
Figure 191902DEST_PATH_IMAGE002
Figure 706060DEST_PATH_IMAGE003
式中,
Figure 570111DEST_PATH_IMAGE004
为返程时刻,
Figure 853324DEST_PATH_IMAGE005
为返程时刻为
Figure 144628DEST_PATH_IMAGE004
时的电动汽车的概率密度函数,
Figure 146082DEST_PATH_IMAGE006
为返 程时刻正态分布的方差,
Figure 813824DEST_PATH_IMAGE007
为返程时刻正态分布的均值;
Figure 217124DEST_PATH_IMAGE008
为每日行驶里程,
Figure 944908DEST_PATH_IMAGE009
为每日行 驶里程为
Figure 433658DEST_PATH_IMAGE008
时的电动汽车的概率密度函数,
Figure 639512DEST_PATH_IMAGE010
为每日行驶里程对数正态分布的均值,
Figure 897318DEST_PATH_IMAGE011
为每 日行驶里程对数正态分布的方差;
Figure 61583DEST_PATH_IMAGE012
为充电时长,
Figure 37629DEST_PATH_IMAGE013
为电动汽车每公里的耗电量,
Figure 781594DEST_PATH_IMAGE014
为电动 汽车的充电功率,
Figure 159486DEST_PATH_IMAGE015
为电动汽车的充电效率。
步骤S1中,所述电动汽车用户心理模型中,存在饱和区、线性区和死区三个阶段:
Figure 963494DEST_PATH_IMAGE016
式中,
Figure 426836DEST_PATH_IMAGE017
为峰谷负荷转移率,
Figure 971563DEST_PATH_IMAGE018
为线性区与饱和区之间的边界,
Figure 203961DEST_PATH_IMAGE019
为线性区与死 区之间的边界,
Figure 444449DEST_PATH_IMAGE020
为峰谷电价的差值,
Figure 129509DEST_PATH_IMAGE021
为最大的负荷转移率。
步骤S1中,峰时段会有
Figure 746435DEST_PATH_IMAGE022
位电动汽车用户自愿转移到谷时段充电,
Figure 833339DEST_PATH_IMAGE023
为返程 时刻于峰时段的用户数量,则峰谷电价时段转移模型为:
Figure 244729DEST_PATH_IMAGE024
式中,
Figure 417085DEST_PATH_IMAGE025
为充电起始时刻,
Figure 572122DEST_PATH_IMAGE026
为谷时段时长,
Figure 779113DEST_PATH_IMAGE027
为充电时长;
Figure 361404DEST_PATH_IMAGE028
Figure 21055DEST_PATH_IMAGE029
分别为谷时段 结束时刻和起始时刻,
Figure 979784DEST_PATH_IMAGE030
Figure 206061DEST_PATH_IMAGE031
为0到1之间的随机数。
步骤S1中,所述电动汽车用户满意度模型为:
Figure 693674DEST_PATH_IMAGE032
Figure 43884DEST_PATH_IMAGE033
Figure 540724DEST_PATH_IMAGE034
式中,
Figure 456727DEST_PATH_IMAGE035
为用户满意度,
Figure 112312DEST_PATH_IMAGE036
为用电舒适满意度,
Figure 480977DEST_PATH_IMAGE037
为用电经济满意度,
Figure 781508DEST_PATH_IMAGE038
为电价响应前后每小时充电量改变的总和,
Figure 817597DEST_PATH_IMAGE039
为无序充电情况下24小时 充电量的总和,
Figure 912592DEST_PATH_IMAGE040
为电价响应前后购电费用的改变量,
Figure 768553DEST_PATH_IMAGE041
为电价响应前电 动汽车用户购电的总费用。
步骤S2中,所述抽水蓄能机组运行特性及模型为:
功率约束:
Figure 872775DEST_PATH_IMAGE042
式中,
Figure 497791DEST_PATH_IMAGE043
为抽水蓄能机组的运行功率,
Figure 29267DEST_PATH_IMAGE044
Figure 106944DEST_PATH_IMAGE045
分别为抽水蓄能机组发 电功率的上限和下限;
抽水蓄能库容约束:
Figure 14857DEST_PATH_IMAGE046
Figure 759959DEST_PATH_IMAGE047
式中,
Figure 462336DEST_PATH_IMAGE048
为抽水蓄能机组在
Figure 27310DEST_PATH_IMAGE049
时段蓄水池的库容,
Figure 473335DEST_PATH_IMAGE050
为抽水蓄能机组在抽水状 态下的综合发电效率,
Figure 72943DEST_PATH_IMAGE051
为抽水蓄能机组在发电状态下的综合发电效率,
Figure 680642DEST_PATH_IMAGE052
为蓄水池的 最大库容,
Figure 998491DEST_PATH_IMAGE053
为蓄水池的最小库容,
Figure 982627DEST_PATH_IMAGE054
为蓄水池的初始库容,
Figure 702322DEST_PATH_IMAGE055
为蓄水池的结束库容;
状态切换约束:
Figure 746501DEST_PATH_IMAGE056
式中,
Figure 551646DEST_PATH_IMAGE057
为调度时间间隔数;
备用容量约束:
Figure 73894DEST_PATH_IMAGE058
式中,
Figure 648095DEST_PATH_IMAGE059
Figure 863176DEST_PATH_IMAGE060
分别为抽水蓄能机组的正、负备用容量;
爬坡约束:
Figure 892967DEST_PATH_IMAGE061
式中,
Figure 218906DEST_PATH_IMAGE062
为抽水蓄能机组的最大爬坡。
步骤S2中,所述蓄电池储能机组运行特性及模型为:
Figure 647614DEST_PATH_IMAGE063
Figure 33596DEST_PATH_IMAGE064
Figure 813333DEST_PATH_IMAGE065
Figure 942963DEST_PATH_IMAGE066
式中,
Figure 226177DEST_PATH_IMAGE067
Figure 783060DEST_PATH_IMAGE049
时刻蓄电池储能的电池荷电状态;
Figure 784514DEST_PATH_IMAGE068
为电池的自放电系数,表征 电池在不使用的情况下电量的自我流失;
Figure 717835DEST_PATH_IMAGE069
Figure 855555DEST_PATH_IMAGE049
时刻蓄电池储能的运行功率,
Figure 583340DEST_PATH_IMAGE070
为蓄电 池储能的总容量,
Figure 72090DEST_PATH_IMAGE071
Figure 543523DEST_PATH_IMAGE072
分别为蓄电池储能的充/放电效率,
Figure 801329DEST_PATH_IMAGE073
Figure 965594DEST_PATH_IMAGE074
分别为 蓄电池储能的电池荷电状态的上下限,
Figure 410482DEST_PATH_IMAGE075
Figure 685605DEST_PATH_IMAGE076
分别为蓄电池储能运行功率的上下 限,
Figure 63497DEST_PATH_IMAGE077
为蓄电池储能的最大爬坡限制。
步骤S3中,所述电动汽车层调度模型的目标函数为:
Figure 867505DEST_PATH_IMAGE078
Figure 330847DEST_PATH_IMAGE079
Figure 144082DEST_PATH_IMAGE080
式中,
Figure 376481DEST_PATH_IMAGE081
表示经电动汽车层调度后,电动汽车充电负荷
Figure 616969DEST_PATH_IMAGE082
和电网原负荷
Figure 302028DEST_PATH_IMAGE083
的方差;
Figure 918954DEST_PATH_IMAGE084
为电动汽车充电负荷
Figure 2929DEST_PATH_IMAGE085
和电网原负荷
Figure 679898DEST_PATH_IMAGE083
之和的平均负荷;
Figure 586675DEST_PATH_IMAGE086
表示电动汽车层调度中用户 满意度,
Figure 741712DEST_PATH_IMAGE036
为用电舒适满意度,
Figure 948703DEST_PATH_IMAGE087
为用电经济满意度;
所述电动汽车层调度模型的约束条件为:
Figure 530994DEST_PATH_IMAGE088
Figure 190645DEST_PATH_IMAGE089
Figure 883795DEST_PATH_IMAGE090
Figure 945292DEST_PATH_IMAGE091
Figure 964063DEST_PATH_IMAGE092
式中,
Figure 845432DEST_PATH_IMAGE093
为峰谷电价,
Figure 342272DEST_PATH_IMAGE094
Figure 258275DEST_PATH_IMAGE095
分别为峰谷电价的上下限,
Figure 447948DEST_PATH_IMAGE096
Figure 82192DEST_PATH_IMAGE097
分别为用电舒适满意度和用电经济满意度的下限,
Figure 117144DEST_PATH_IMAGE098
为峰谷负荷转移率,
Figure 622075DEST_PATH_IMAGE099
为最大的负 荷转移率,
Figure 451491DEST_PATH_IMAGE100
为充电时长的上限,
Figure 307451DEST_PATH_IMAGE101
为充电时长。
步骤S4中,并网模式下,所述可再生能源微电网层调度模型的目标函数为:
Figure 880515DEST_PATH_IMAGE102
Figure 771110DEST_PATH_IMAGE103
Figure 302586DEST_PATH_IMAGE104
Figure 645843DEST_PATH_IMAGE105
Figure 302825DEST_PATH_IMAGE106
Figure 47927DEST_PATH_IMAGE107
Figure 484725DEST_PATH_IMAGE108
式中,
Figure 49698DEST_PATH_IMAGE109
表示经可再生能源微电网层调度后,主网联络线功率
Figure 964565DEST_PATH_IMAGE110
的方差;
Figure 829752DEST_PATH_IMAGE111
为主网联络线功率
Figure 703030DEST_PATH_IMAGE112
的均值,
Figure 755300DEST_PATH_IMAGE113
表示并网模式下可再生能源微电网的综合运行 成本,
Figure 739437DEST_PATH_IMAGE114
为可再生能源微电网中所有储能单元的运行成本,
Figure 459131DEST_PATH_IMAGE115
为各类储能单元的运行维 护成本;
Figure 237731DEST_PATH_IMAGE116
为储能单元的类别,
Figure 42876DEST_PATH_IMAGE117
时为抽水蓄能机组,
Figure 565124DEST_PATH_IMAGE118
时为蓄电池储能机组;
Figure 873746DEST_PATH_IMAGE119
为各 类储能单元的出力,
Figure 557668DEST_PATH_IMAGE120
为各类储能单元充放单位电量所需的运行维护成本,
Figure 318951DEST_PATH_IMAGE121
为所有 储能单元的启停切换状态成本,
Figure 910469DEST_PATH_IMAGE122
为各类储能单元的启停切换次数,
Figure 73597DEST_PATH_IMAGE123
为各类 储能单元单次的启停切换成本,
Figure 459579DEST_PATH_IMAGE124
为可再生能源微电网向主电网的购电/售电成本,
Figure 239316DEST_PATH_IMAGE125
Figure 100437DEST_PATH_IMAGE126
分别为可再生能源微电网的购电/售电状态变量,
Figure 383651DEST_PATH_IMAGE127
Figure 940534DEST_PATH_IMAGE128
分别为 可再生能源微电网的购电/售电电价;
所述可再生能源微电网层调度模型的约束条件为:
Figure 941989DEST_PATH_IMAGE129
Figure 609730DEST_PATH_IMAGE130
式中,
Figure 747451DEST_PATH_IMAGE131
为光伏出力,
Figure 740814DEST_PATH_IMAGE132
为风电出力,
Figure 963985DEST_PATH_IMAGE133
为蓄电池储能出力,
Figure 435418DEST_PATH_IMAGE134
为 抽水蓄能出力,
Figure 427645DEST_PATH_IMAGE135
为电动汽车层优化得到的包括电动汽车在内的总负荷,
Figure 60751DEST_PATH_IMAGE083
为电网原 负荷,
Figure 771218DEST_PATH_IMAGE085
为电动汽车充电负荷。
步骤S4中,孤岛模式下,所述可再生能源微电网层调度模型的目标函数为:
Figure 780763DEST_PATH_IMAGE136
Figure 893075DEST_PATH_IMAGE137
Figure 962662DEST_PATH_IMAGE138
式中,
Figure 160425DEST_PATH_IMAGE139
表示可再生能源微电网层一天的弃风量总和,
Figure 239240DEST_PATH_IMAGE140
Figure 471638DEST_PATH_IMAGE049
时刻的弃风功 率,
Figure 446547DEST_PATH_IMAGE141
表示孤岛模式下可再生能源微电网的综合运行成本,
Figure 131607DEST_PATH_IMAGE142
为可再生能源微电网层中所 有储能单元的运行成本,
Figure 748533DEST_PATH_IMAGE143
表示因为弃风为可再生能源微电网层带来的折合支出,
Figure 572788DEST_PATH_IMAGE144
为单位弃风量的折合费用;
所述可再生能源微电网层调度模型的约束条件为:
Figure 984178DEST_PATH_IMAGE145
Figure 156533DEST_PATH_IMAGE146
Figure 311571DEST_PATH_IMAGE147
式中,
Figure 252982DEST_PATH_IMAGE148
为主网联络线功率,
Figure 100852DEST_PATH_IMAGE149
为光伏出力,
Figure 760504DEST_PATH_IMAGE150
为风电出力,
Figure 453653DEST_PATH_IMAGE133
为蓄 电池储能出力,
Figure 515150DEST_PATH_IMAGE134
为抽水蓄能出力,
Figure 268343DEST_PATH_IMAGE135
为电动汽车层优化得到的包括电动汽车在 内的总负荷,
Figure 149711DEST_PATH_IMAGE151
为弃风功率允许的最大弃风比例。
与现有技术相比,本发明的有益效果为:
本发明一种考虑电动汽车需求响应的可再生能源微电网调峰方法中,面对不同的使用场景,微电网可以运行于并网以及孤岛两种模式,提高了系统的稳定性;系统中不含常规火电机组,同时充分利用了电动汽车需求响应以及储能资源,能够有效的消纳可再生能源,降低微电网综合运行的成本,以及增强系统的安全稳定性和应急响应能力,实现了源网荷储一体化协调统一。因此,本发明降低了系统运维成本、提高了可再生能源利用率、提高了系统可靠性。
附图说明
图1是本发明一种考虑电动汽车需求响应的可再生能源微电网调峰方法的流程图。
图2是本发明中电动汽车负荷计算流程图。
图3是本发明中电动汽车层的调度结果图。
图4是本发明中可再生能源微电网层中并网模式下的调度结果图。
图5是本发明中可再生能源微电网层中孤岛模式下的调度结果图。
具体实施方式
以下结合附图说明和具体实施方式对本发明作进一步详细的说明。
参见图1,一种考虑电动汽车需求响应的可再生能源微电网调峰方法,该方法包括以下步骤:
S1、根据电动汽车用户的出行特性模型,建立电动汽车用户心理模型、峰谷电价时段转移模型以及电动汽车用户满意度模型;
所述电动汽车用户的出行特性模型为:
Figure 912131DEST_PATH_IMAGE152
Figure 828134DEST_PATH_IMAGE002
Figure 17807DEST_PATH_IMAGE153
式中,
Figure 652051DEST_PATH_IMAGE004
为返程时刻,
Figure 687003DEST_PATH_IMAGE005
为返程时刻为
Figure 457513DEST_PATH_IMAGE004
时的电动汽车的概率密度函数,
Figure 818087DEST_PATH_IMAGE006
为返 程时刻正态分布的方差,
Figure 674047DEST_PATH_IMAGE154
为3.4,
Figure 512690DEST_PATH_IMAGE007
为返程时刻正态分布的均值,
Figure 403286DEST_PATH_IMAGE007
为17.6;
Figure 934761DEST_PATH_IMAGE008
为每日行驶 里程,
Figure 278018DEST_PATH_IMAGE155
为每日行驶里程为
Figure 920352DEST_PATH_IMAGE008
时的电动汽车的概率密度函数,
Figure 665454DEST_PATH_IMAGE156
为每日行驶里程对数正 态分布的均值,
Figure 99322DEST_PATH_IMAGE156
为3.2,
Figure 929875DEST_PATH_IMAGE157
为每日行驶里程对数正态分布的方差,
Figure 375900DEST_PATH_IMAGE158
为0.88;
Figure 241087DEST_PATH_IMAGE159
为充电时 长,
Figure 114365DEST_PATH_IMAGE013
为电动汽车每公里的耗电量,
Figure 901056DEST_PATH_IMAGE160
为电动汽车的充电功率,
Figure 150772DEST_PATH_IMAGE161
为电动汽车的充电效率;
分时电价将一天分为峰平谷三个时段,如表1所示;当电价在不同时段的差价过大时,部分用户就会考虑转移用电时段来赚取差价,以获得经济效应;
表1 峰平谷时段的划分
Figure 870466DEST_PATH_IMAGE162
所述电动汽车用户心理模型中,存在饱和区、线性区和死区三个阶段:
Figure 914645DEST_PATH_IMAGE016
式中,
Figure 454211DEST_PATH_IMAGE017
为峰谷负荷转移率;
Figure 976459DEST_PATH_IMAGE163
为线性区与饱和区之间的边界,即阈值;
Figure 550660DEST_PATH_IMAGE164
为线性 区与死区之间的边界,即饱和上限值;
Figure 765741DEST_PATH_IMAGE020
为峰谷电价的差值,
Figure 58182DEST_PATH_IMAGE021
为最大的负荷转移率;
通过电动汽车用户心理模型得到峰谷负荷转移率
Figure 384121DEST_PATH_IMAGE165
后,峰时段会有
Figure 78407DEST_PATH_IMAGE166
位电 动汽车用户自愿转移到谷时段充电,
Figure 136493DEST_PATH_IMAGE023
为返程时刻于峰时段的用户数量,则峰谷电价时段 转移模型为:
Figure 650651DEST_PATH_IMAGE024
式中,
Figure 780281DEST_PATH_IMAGE025
为充电起始时刻,
Figure 63495DEST_PATH_IMAGE026
为谷时段时长,
Figure 620378DEST_PATH_IMAGE027
为充电时长;
Figure 621832DEST_PATH_IMAGE028
Figure 555153DEST_PATH_IMAGE029
分别为谷时段 结束时刻和起始时刻,
Figure 958453DEST_PATH_IMAGE030
Figure 411869DEST_PATH_IMAGE031
为0到1之间的随机数;
基于上述模型,可以得到电动汽车负荷的计算流程如图2所示,由新的充电起始时 刻
Figure 900619DEST_PATH_IMAGE167
代替返程时刻
Figure 637631DEST_PATH_IMAGE004
,经过蒙特卡洛模拟可以得到输出充电负荷
Figure 895437DEST_PATH_IMAGE168
所述电动汽车用户满意度模型为:
Figure 794123DEST_PATH_IMAGE032
Figure 770169DEST_PATH_IMAGE033
Figure 45293DEST_PATH_IMAGE034
式中,
Figure 892026DEST_PATH_IMAGE035
为用户满意度,
Figure 227193DEST_PATH_IMAGE036
为用电舒适满意度,
Figure 424956DEST_PATH_IMAGE037
为用电经济满意度,
Figure 503770DEST_PATH_IMAGE038
为电价响应前后每小时充电量改变的总和,
Figure 470589DEST_PATH_IMAGE039
为无序充电情况下24小时 充电量的总和,
Figure 976657DEST_PATH_IMAGE040
为电价响应前后购电费用的改变量,
Figure 396137DEST_PATH_IMAGE041
为电价响应前电 动汽车用户购电的总费用;
S2、建立抽水蓄能机组以及蓄电池储能机组运行特性及模型;
所述抽水蓄能机组运行特性及模型为:
功率约束:
Figure 13063DEST_PATH_IMAGE042
式中,
Figure 99968DEST_PATH_IMAGE043
为抽水蓄能机组的运行功率,
Figure 776937DEST_PATH_IMAGE044
Figure 949292DEST_PATH_IMAGE045
分别为抽水蓄能机组发 电功率的上限和下限;
抽水蓄能库容约束:
Figure 104330DEST_PATH_IMAGE169
Figure 45741DEST_PATH_IMAGE047
式中,
Figure 893611DEST_PATH_IMAGE048
为抽水蓄能机组在
Figure 553263DEST_PATH_IMAGE049
时段蓄水池的库容,
Figure 511992DEST_PATH_IMAGE050
为抽水蓄能机组在抽水状 态下的综合发电效率,
Figure 573488DEST_PATH_IMAGE051
为抽水蓄能机组在发电状态下的综合发电效率,
Figure 61102DEST_PATH_IMAGE052
为蓄水池的 最大库容,
Figure 208049DEST_PATH_IMAGE053
为蓄水池的最小库容,
Figure 970469DEST_PATH_IMAGE054
为蓄水池的初始库容,
Figure 883542DEST_PATH_IMAGE055
为蓄水池的结束库容;
状态切换约束:
抽水蓄能机组不能进行连续的充放电状态切换,必须保持停机状态至少一个时段之后才能进行转换;
Figure 73215DEST_PATH_IMAGE056
式中,
Figure 441880DEST_PATH_IMAGE057
为调度时间间隔数,其值为24;
备用容量约束:
抽水蓄能机组不仅能够进行不同质量电能的时空移动,产生额外的经济效益,而且可以保留一定的容量,以应对调度过程中风电光伏的出力波动;
Figure 476832DEST_PATH_IMAGE058
式中,
Figure 512921DEST_PATH_IMAGE059
Figure 873495DEST_PATH_IMAGE060
分别为抽水蓄能机组的正、负备用容量;
爬坡约束:
Figure 729456DEST_PATH_IMAGE170
式中,
Figure 833678DEST_PATH_IMAGE062
为抽水蓄能机组的最大爬坡;
所述蓄电池储能机组运行特性及模型为:
Figure 724274DEST_PATH_IMAGE063
Figure 255749DEST_PATH_IMAGE064
Figure 333427DEST_PATH_IMAGE065
Figure 975760DEST_PATH_IMAGE066
式中,
Figure 720863DEST_PATH_IMAGE067
Figure 157660DEST_PATH_IMAGE049
时刻蓄电池储能的电池荷电状态;
Figure 988213DEST_PATH_IMAGE068
为电池的自放电系数,表征 电池在不使用的情况下电量的自我流失;
Figure 168658DEST_PATH_IMAGE069
Figure 768267DEST_PATH_IMAGE049
时刻蓄电池储能的运行功率,
Figure 641545DEST_PATH_IMAGE070
为蓄电 池储能的总容量,
Figure 428236DEST_PATH_IMAGE071
Figure 677951DEST_PATH_IMAGE072
分别为蓄电池储能的充/放电效率,
Figure 132066DEST_PATH_IMAGE073
Figure 176246DEST_PATH_IMAGE074
分别为 蓄电池储能的电池荷电状态的上下限,
Figure 981391DEST_PATH_IMAGE075
Figure 503639DEST_PATH_IMAGE076
分别为蓄电池储能运行功率的上下 限,
Figure 77840DEST_PATH_IMAGE077
为蓄电池储能的最大爬坡限制;
S3、建立以负荷方差及用户满意度为目标函数的电动汽车层调度模型,采用NSGA-Ⅱ遗传算法求解得到Pareto前沿解集,将每一个解代入模糊隶属度函数,并从中选取最优方案;
所述电动汽车层调度模型的目标函数为:
Figure 295850DEST_PATH_IMAGE078
Figure 588291DEST_PATH_IMAGE079
Figure 648651DEST_PATH_IMAGE080
式中,
Figure 77358DEST_PATH_IMAGE081
表示经电动汽车层调度后,电动汽车充电负荷
Figure 728920DEST_PATH_IMAGE082
和电网原负荷
Figure 243078DEST_PATH_IMAGE083
的方差;
Figure 372708DEST_PATH_IMAGE084
为电动汽车充电负荷
Figure 921501DEST_PATH_IMAGE085
和电网原负荷
Figure 478384DEST_PATH_IMAGE083
之和的平均负荷;
Figure 479838DEST_PATH_IMAGE086
表示电动汽车层调度中用户 满意度,
Figure 147580DEST_PATH_IMAGE036
为用电舒适满意度,
Figure 550879DEST_PATH_IMAGE087
为用电经济满意度;
所述电动汽车层调度模型的约束条件为:
Figure 278664DEST_PATH_IMAGE088
Figure 767414DEST_PATH_IMAGE089
Figure 238847DEST_PATH_IMAGE090
Figure 231073DEST_PATH_IMAGE091
Figure 395338DEST_PATH_IMAGE092
式中,
Figure 371385DEST_PATH_IMAGE093
为峰谷电价,
Figure 380929DEST_PATH_IMAGE094
Figure 493241DEST_PATH_IMAGE095
分别为峰谷电价的上下限,考虑到电网盈利需求, 制定的峰谷电价
Figure 562829DEST_PATH_IMAGE093
不能低于成本电价;
Figure 26171DEST_PATH_IMAGE171
Figure 839406DEST_PATH_IMAGE172
分别为用电舒适满意度和用电 经济满意度的下限,用电舒适满意度
Figure 71804DEST_PATH_IMAGE036
和用电经济满意度
Figure 577872DEST_PATH_IMAGE173
不能太低,以免用户大 量流失;
Figure 262931DEST_PATH_IMAGE174
为峰谷负荷转移率,考虑到部分用户对电量有着刚性需求,峰谷负荷转移率
Figure 614278DEST_PATH_IMAGE175
存在上限;
Figure 698253DEST_PATH_IMAGE176
为最大的负荷转移率,
Figure 375222DEST_PATH_IMAGE177
为充电时长的上限;
Figure 547578DEST_PATH_IMAGE178
为充电时长,由于次日清 晨电动汽车将再次出行,充电时长
Figure 702615DEST_PATH_IMAGE101
存在应低于谷时段持续时长;
为了使调度结果可视化,再次进行蒙特卡洛模拟得到图3;可以看出电动汽车负荷较为平滑地从用电高峰时段转移到了用电低谷时段,并对原负荷起到了很好的削峰填谷的效果;
S4、建立可再生能源微电网层调度模型,分为并网模式和孤岛模式,采用PSO算法负责指定可再生能源微电网层分布式电源每小时的具体出力;
并网模式下,所述可再生能源微电网层调度模型的目标函数为:
Figure 909606DEST_PATH_IMAGE179
Figure 491897DEST_PATH_IMAGE103
Figure 151548DEST_PATH_IMAGE180
Figure 110277DEST_PATH_IMAGE181
Figure 906195DEST_PATH_IMAGE106
Figure 924966DEST_PATH_IMAGE107
Figure 806335DEST_PATH_IMAGE108
式中,
Figure 568754DEST_PATH_IMAGE109
表示经可再生能源微电网层调度后,主网联络线功率
Figure 484758DEST_PATH_IMAGE110
的方差;
Figure 408852DEST_PATH_IMAGE182
为主网联络线功率
Figure 43095DEST_PATH_IMAGE112
的均值,
Figure 343626DEST_PATH_IMAGE113
表示并网模式下可再生能源微电网的综合运行 成本,
Figure 114136DEST_PATH_IMAGE114
为可再生能源微电网中所有储能单元的运行成本,
Figure 209131DEST_PATH_IMAGE115
为各类储能单元的运行维 护成本;
Figure 330671DEST_PATH_IMAGE116
为储能单元的类别,
Figure 434893DEST_PATH_IMAGE117
时为抽水蓄能机组,
Figure 59910DEST_PATH_IMAGE118
时为蓄电池储能机组;
Figure 325806DEST_PATH_IMAGE119
为各 类储能单元的出力,
Figure 669063DEST_PATH_IMAGE183
为各类储能单元充放单位电量所需的运行维护成本,
Figure 576976DEST_PATH_IMAGE121
为所有 储能单元的启停切换状态成本,
Figure 322078DEST_PATH_IMAGE122
为各类储能单元的启停切换次数,
Figure 24455DEST_PATH_IMAGE184
为各类 储能单元单次的启停切换成本,
Figure 855007DEST_PATH_IMAGE185
为可再生能源微电网向主电网的购电/售电成本,
Figure 50102DEST_PATH_IMAGE186
Figure 649710DEST_PATH_IMAGE187
分别为可再生能源微电网的购电/售电状态变量,
Figure 522988DEST_PATH_IMAGE127
Figure 840837DEST_PATH_IMAGE188
分别为 可再生能源微电网的购电/售电电价;
所述可再生能源微电网层调度模型的约束条件为:
Figure 824974DEST_PATH_IMAGE129
Figure 544668DEST_PATH_IMAGE189
式中,
Figure 588847DEST_PATH_IMAGE131
为光伏出力,
Figure 128413DEST_PATH_IMAGE190
为风电出力,
Figure 916240DEST_PATH_IMAGE133
为蓄电池储能出力,
Figure 490441DEST_PATH_IMAGE134
为 抽水蓄能出力,
Figure 439943DEST_PATH_IMAGE135
为电动汽车层优化得到的包括电动汽车在内的总负荷,
Figure 466805DEST_PATH_IMAGE083
为电网原 负荷,
Figure 58323DEST_PATH_IMAGE085
为电动汽车充电负荷;
不同于并网模式,孤岛模式在目标函数中加入了弃风惩罚项,因此,孤岛模式下,所述可再生能源微电网层调度模型的目标函数为:
Figure 487030DEST_PATH_IMAGE136
Figure 873012DEST_PATH_IMAGE137
Figure 652749DEST_PATH_IMAGE138
式中,
Figure 516800DEST_PATH_IMAGE139
表示可再生能源微电网层一天的弃风量总和,
Figure 800014DEST_PATH_IMAGE140
Figure 622476DEST_PATH_IMAGE049
时刻的弃风功 率,
Figure 623931DEST_PATH_IMAGE141
表示孤岛模式下可再生能源微电网的综合运行成本,
Figure 291672DEST_PATH_IMAGE142
为可再生能源微电网层中所 有储能单元的运行成本,
Figure 429393DEST_PATH_IMAGE143
表示因为弃风为可再生能源微电网层带来的折合支出,
Figure 422756DEST_PATH_IMAGE191
为单位弃风量的折合费用;
所述可再生能源微电网层调度模型的约束条件为:
Figure 911506DEST_PATH_IMAGE145
Figure 382939DEST_PATH_IMAGE192
Figure 640745DEST_PATH_IMAGE147
式中,
Figure 805010DEST_PATH_IMAGE148
为主网联络线功率,
Figure 515477DEST_PATH_IMAGE193
为光伏出力,
Figure 522092DEST_PATH_IMAGE194
为风电出力,
Figure 899984DEST_PATH_IMAGE133
为蓄 电池储能出力,
Figure 969571DEST_PATH_IMAGE134
为抽水蓄能出力,
Figure 432913DEST_PATH_IMAGE135
为电动汽车层优化得到的包括电动汽车在 内的总负荷,
Figure 246148DEST_PATH_IMAGE151
为弃风功率允许的最大弃风比例。
在电动汽车层将优化后的负荷数据传递给可再生能源微电网层,可再生能源微电网层使用PSO粒子群算法对各电源24时的功率进行优化,得到的结果如图4、图5所示。
并网情况下可再生能源微电网层各单元出力如图4所示,可以看出在此时抽水蓄能单元承担了绝大部分的长时间尺度的出力变化,并且消纳了部分由于风电光伏的出力间歇性带来的中频波动,这些是由抽水蓄能的超大容量特性决定的;电池储能主要负责调度过程中的随机中频波动;电网联络线主要负责向主网售卖微电网多余的电能,联络线功率波动很低是由于分配给方差的权重很高,微电网首先要保证不给主网带来大的调度负担。
孤岛模式与并网模式略有不同,如图5所示;多余的可再生能源出力会直接弃用,目标函数中的弃风惩罚项会限制风电的弃用,故抽水蓄能会尽可能转移晚间负荷至白天,蓄电池储能的同并网模式一样,负责调度中频波动。
对两种模式的结果进行对比:孤岛模式的运行成本为32020元,并网模式的运行成本为-137780元,由于并网模式能向主电网售电,所以可以得到一定的收益,对比之下孤岛模式放弃了一定的可再生能源收益,实际中更推荐微电网运行于并网模式。
本发明包括电动汽车层和可再生能源微电网层两阶段;第一阶段为电动汽车(Electric vehicle,EV) 层,根据电动汽车用户的电价响应特性,制定合适的充电电价,在兼顾电动汽车用户出行满意度的同时,初步调控电网原始负荷的波动;第二阶段为可再生能源微电网 (Renewable energy microgrid,REMG) 层,基于初步优化后的负荷,分别在孤岛及并网模式下,调整网内可再生能源弃用量、主网交互功率以及蓄电池、抽水蓄能等储能出力,达到降低系统运维成本、抑制交互功率波动以及提高可再生能源利用率等目标。结果表明,本发明提出的微电网调峰方法能够达到电动汽车用户和微电网双赢的效果,可实现100%可再生能源微电网最优供电。

Claims (9)

1.一种考虑电动汽车需求响应的可再生能源微电网调峰方法,其特征在于,该方法包括以下步骤:
S1、根据电动汽车用户的出行特性模型,建立电动汽车用户心理模型、峰谷电价时段转移模型以及电动汽车用户满意度模型;
S2、建立抽水蓄能机组以及蓄电池储能机组运行特性及模型;
S3、建立以负荷方差及用户满意度为目标函数的电动汽车层调度模型,采用NSGA-II遗传算法求解得到Pareto前沿解集,将每一个解代入模糊隶属度函数,并从中选取最优方案;
S4、建立可再生能源微电网层调度模型,分为并网模式和孤岛模式,采用PSO算法负责指定可再生能源微电网层分布式电源每小时的具体出力;
并网模式下,所述可再生能源微电网层调度模型的目标函数为:
Figure FDA0003984603520000011
Figure FDA0003984603520000012
min F4=CES+Cgrid
CES=Com+Closs
Figure FDA0003984603520000013
Figure FDA0003984603520000014
Figure FDA0003984603520000015
式中,F3表示经可再生能源微电网层调度后,主网联络线功率Pgrid(t)的方差;Pgrid,av为主网联络线功率Pgrid(t)的均值,F4表示并网模式下可再生能源微电网的综合运行成本,CES为可再生能源微电网中所有储能单元的运行成本,Com为各类储能单元的运行维护成本;j为储能单元的类别,j=1时为抽水蓄能机组,j=2时为蓄电池储能机组;PES,j(t)为各类储能单元的出力,Kom,j为各类储能单元充放单位电量所需的运行维护成本,Closs为所有储能单元的启停切换状态成本,nchange,j为各类储能单元的启停切换次数,Cchange,j为各类储能单元单次的启停切换成本,Cgrid为可再生能源微电网向主电网的购电/售电成本,
Figure FDA0003984603520000021
Figure FDA0003984603520000022
分别为可再生能源微电网的购电/售电状态变量,πbuy(t)和πsell(t)分别为可再生能源微电网的购电/售电电价;
所述可再生能源微电网层调度模型的约束条件为:
Pgrid(t)=-Ppv(t)-Pwt(t)-PBA(t)-PCX(t)+Pload(t)
Pload(t)=P0(t)+PEV(t)
式中,Ppv(t)为光伏出力,Pwt(t)为风电出力,PBA(t)为蓄电池储能出力,PCX(t)为抽水蓄能出力,Pload(t)为电动汽车层优化得到的包括电动汽车在内的总负荷,P0为电网原负荷,PEV为电动汽车充电负荷。
2.根据权利要求1所述的一种考虑电动汽车需求响应的可再生能源微电网调峰方法,其特征在于:步骤S1中,所述电动汽车用户的出行特性模型为:
Figure FDA0003984603520000023
Figure FDA0003984603520000024
Figure FDA0003984603520000025
式中,t0为返程时刻,ft(t0)为返程时刻为t0时的电动汽车的概率密度函数,σt为返程时刻正态分布的方差,μt为返程时刻正态分布的均值;S为每日行驶里程,fs(S)为每日行驶里程为S时的电动汽车的概率密度函数,μs为每日行驶里程对数正态分布的均值,σs为每日行驶里程对数正态分布的方差;Tc为充电时长,E为电动汽车每公里的耗电量,Pc为电动汽车的充电功率,ηc为电动汽车的充电效率。
3.根据权利要求1所述的一种考虑电动汽车需求响应的可再生能源微电网调峰方法,其特征在于:步骤S1中,所述电动汽车用户心理模型中,存在饱和区、线性区和死区三个阶段:
Figure FDA0003984603520000031
式中,λfg为峰谷负荷转移率,lfg为线性区与饱和区之间的边界,hfg为线性区与死区之间的边界,Δπfg为峰谷电价的差值,λmax为最大的负荷转移率。
4.根据权利要求3所述的一种考虑电动汽车需求响应的可再生能源微电网调峰方法,其特征在于:步骤S1中,峰时段会有λfg×Nf位电动汽车用户自愿转移到谷时段充电,Nf为返程时刻于峰时段的用户数量,则峰谷电价时段转移模型为:
Figure FDA0003984603520000032
式中,tsc为充电起始时刻,Δtv为谷时段时长,Tc为充电时长;tv2、tv1分别为谷时段结束时刻和起始时刻,Δtv=tv2-tv1;α1为0到1之间的随机数。
5.根据权利要求1所述的一种考虑电动汽车需求响应的可再生能源微电网调峰方法,其特征在于:步骤S1中,所述电动汽车用户满意度模型为:
CSI=CSIcom+CSIeco
Figure FDA0003984603520000033
Figure FDA0003984603520000041
式中,CSI为用户满意度,CSIcom为用电舒适满意度,CSIeco为用电经济满意度,
Figure FDA0003984603520000042
为电价响应前后每小时充电量改变的总和,
Figure FDA0003984603520000043
为无序充电情况下24小时充电量的总和,
Figure FDA0003984603520000044
为电价响应前后购电费用的改变量,
Figure FDA0003984603520000045
为电价响应前电动汽车用户购电的总费用。
6.根据权利要求1所述的一种考虑电动汽车需求响应的可再生能源微电网调峰方法,其特征在于:步骤S2中,所述抽水蓄能机组运行特性及模型为:
功率约束:
Figure FDA0003984603520000046
式中,PPS(t)为抽水蓄能机组的运行功率,
Figure FDA0003984603520000047
分别为抽水蓄能机组发电功率的上限和下限;
抽水蓄能库容约束:
Figure FDA0003984603520000048
Figure FDA0003984603520000049
式中,W(t)为抽水蓄能机组在t时段蓄水池的库容,
Figure FDA00039846035200000410
为抽水蓄能机组在抽水状态下的综合发电效率,
Figure FDA00039846035200000411
为抽水蓄能机组在发电状态下的综合发电效率,Wmax为蓄水池的最大库容,Wmin为蓄水池的最小库容,W0为蓄水池的初始库容,
Figure FDA00039846035200000413
为蓄水池的结束库容;
状态切换约束:
Figure FDA00039846035200000412
式中,NT为调度时间间隔数;
备用容量约束:
Figure FDA0003984603520000051
式中,Ru(t)、Rd(t)分别为抽水蓄能机组的正、负备用容量;
爬坡约束:
|PPS(t+1)-PPS(t)|≤rPS
式中,rPS为抽水蓄能机组的最大爬坡。
7.根据权利要求1所述的一种考虑电动汽车需求响应的可再生能源微电网调峰方法,其特征在于:步骤S2中,所述蓄电池储能机组运行特性及模型为:
Figure FDA0003984603520000052
SOCmin≤SOC(t)≤SOCmax
Figure FDA0003984603520000053
|PBA(t)-PBA(t-1)|≤rBA
式中,SOC(t)为t时刻蓄电池储能的电池荷电状态;δ为电池的自放电系数,表征电池在不使用的情况下电量的自我流失;PBA(t)为t时刻蓄电池储能的运行功率,Ec为蓄电池储能的总容量,
Figure FDA0003984603520000054
Figure FDA0003984603520000055
分别为蓄电池储能的充/放电效率,SOCmax和SOCmin分别为蓄电池储能的电池荷电状态的上下限,
Figure FDA0003984603520000056
Figure FDA0003984603520000057
分别为蓄电池储能运行功率的上下限,rBA为蓄电池储能的最大爬坡限制。
8.根据权利要求1所述的一种考虑电动汽车需求响应的可再生能源微电网调峰方法,其特征在于:
步骤S3中,所述电动汽车层调度模型的目标函数为:
Figure FDA0003984603520000061
Figure FDA0003984603520000062
max F2=CSIcom+CSIeco
式中,F1表示经电动汽车层调度后,电动汽车充电负荷PEV和电网原负荷P0的方差;
Figure FDA0003984603520000063
为电动汽车充电负荷PEV和电网原负荷P0之和的平均负荷;F2表示电动汽车层调度中用户满意度,CSIcom为用电舒适满意度,CSIeco为用电经济满意度;
所述电动汽车层调度模型的约束条件为:
πmin≤π≤πmax
CSIcom≥CSIcom,min
CSIeco≥CSIeco,min
0≤λfg≤λmax
0≤Tc≤Tmax
式中,π为峰谷电价,πmax和πmin分别为峰谷电价的上下限,CSIcom,min和CSIeco,min分别为用电舒适满意度和用电经济满意度的下限,λfg为峰谷负荷转移率,λmax为最大的负荷转移率,Tmax为充电时长的上限,Tc为充电时长。
9.根据权利要求1所述的一种考虑电动汽车需求响应的可再生能源微电网调峰方法,其特征在于:
步骤S4中,孤岛模式下,所述可再生能源微电网层调度模型的目标函数为:
Figure FDA0003984603520000064
min F6=CES+CWTOFF
Figure FDA0003984603520000065
式中,F5表示可再生能源微电网层一天的弃风量总和,PWTOFF(t)为t时刻的弃风功率,F6表示孤岛模式下可再生能源微电网的综合运行成本,CES为可再生能源微电网层中所有储能单元的运行成本,CWTOFF表示因为弃风为可再生能源微电网层带来的折合支出,πWTOFF为单位弃风量的折合费用;
所述可再生能源微电网层调度模型的约束条件为:
Pgrid(t)=-Ppv(t)-Pwt(t)+PWTOFF(t)-PBA(t)-PCX(t)+Pload(t)
Pgrid(t)=0
0≤PWTOFF(t)≤Pwt(t)koffmax
式中,Pgrid(t)为主网联络线功率,Ppv(t)为光伏出力,Pwt(t)为风电出力,PBA(t)为蓄电池储能出力,PCX(t)为抽水蓄能出力,Pload(t)为电动汽车层优化得到的包括电动汽车在内的总负荷,koffmax为弃风功率允许的最大弃风比例。
CN202211268123.4A 2022-10-17 2022-10-17 一种考虑电动汽车需求响应的可再生能源微电网调峰方法 Active CN115347623B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211268123.4A CN115347623B (zh) 2022-10-17 2022-10-17 一种考虑电动汽车需求响应的可再生能源微电网调峰方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211268123.4A CN115347623B (zh) 2022-10-17 2022-10-17 一种考虑电动汽车需求响应的可再生能源微电网调峰方法

Publications (2)

Publication Number Publication Date
CN115347623A CN115347623A (zh) 2022-11-15
CN115347623B true CN115347623B (zh) 2023-03-24

Family

ID=83957055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211268123.4A Active CN115347623B (zh) 2022-10-17 2022-10-17 一种考虑电动汽车需求响应的可再生能源微电网调峰方法

Country Status (1)

Country Link
CN (1) CN115347623B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862153B2 (ja) * 2006-04-07 2012-01-25 国立大学法人九州工業大学 電力負荷平準化方法及びシステム
CN107069776B (zh) * 2017-04-12 2019-12-24 东南大学 一种平滑微网联络线功率的储能前瞻分布式控制方法
CN109658012B (zh) * 2019-01-22 2022-12-02 武汉理工大学 一种计及需求侧响应的微电网多目标经济调度方法及装置
CN113937796A (zh) * 2021-09-15 2022-01-14 东北电力大学 一种含风、光、储、蓄联合系统多时间尺度优化方法
CN114140165A (zh) * 2021-12-03 2022-03-04 国网江苏省电力有限公司宿迁供电分公司 应用于计及电动汽车充放电选择的充放电电价的定价方法
CN115062985A (zh) * 2022-06-20 2022-09-16 国网福建省电力有限公司 计及用户舒适度需求侧管理的海上孤岛微电网运行策略

Also Published As

Publication number Publication date
CN115347623A (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
Wang et al. Two-stage optimal scheduling strategy for large-scale electric vehicles
CN109217290B (zh) 计及电动汽车充放电的微网能量优化管理方法
CN109948823B (zh) 一种光储充电塔自适应鲁棒日前优化调度方法
CN111762057B (zh) 一种区域微网中v2g电动汽车智能充放电管理方法
CN117096868A (zh) 一种考虑多种柔性负荷和电动汽车的微电网能量调度方法
Ma et al. Optimal dispatch of hybrid energy islanded microgrid considering V2G under TOU tariffs
CN116505510A (zh) 一种基于时空定价策略的集群充电负荷双层优化调度方法
CN114611957A (zh) 一种用于供需预测偏差二次修正储能能量管理算法
CN115347623B (zh) 一种考虑电动汽车需求响应的可再生能源微电网调峰方法
CN116613801A (zh) 一种风光蓄电池混合氢储能发电系统日前优化调度方法
Zhuang et al. Capacity configuration and control strategy of ev charging station with integrated wind power and energy storage based on ssa
CN112785048B (zh) 计及电动汽车用户需求的直流微电网经济调度方法
CN115049431A (zh) 一种水电在电力现货市场中的定价方法
CN110929908B (zh) 多微网系统容量配置与经济调度的协同优化方法及系统
Xiaoyu et al. Research on ordered charging of battery swapping station based on adaptive genetic algorithm
CN111062532A (zh) 一种考虑v2g的增量配电园区内电网容量配置优化方法
Hongli et al. Day-ahead optimal dispatch of regional power grid based on electric vehicle participation in peak shaving pricing strategy
CN117196686B (zh) 基于电能量和调频联合市场的深度调峰市场顺次出清方法
Ma et al. Adaptive Control Strategy of Electric Vehicles Participating in Primary Frequency Regulation of Power Grid
Tian et al. Optimal operation model of multi-energy microgrid considering a large number of EVs
CN113128759B (zh) 一种考虑需求侧响应的区域能源优化运行方法
CN112248868B (zh) 一种新型充电桩配电系统
Wang et al. Simulation of Coordinated Optimization Model of Power Grid Energy Storage Based on Improved Genetic Algorithm
Yuyang et al. Optimal Dispatch of Household Microgrid with Electric Vehicle Based on Demand Response
He et al. Robust Optimal Economic Dispatch of Microgrid with Stepwise Demand Response Mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant