CN115219939A - 电池温度预测方法、装置、车辆和存储介质 - Google Patents

电池温度预测方法、装置、车辆和存储介质 Download PDF

Info

Publication number
CN115219939A
CN115219939A CN202211119179.3A CN202211119179A CN115219939A CN 115219939 A CN115219939 A CN 115219939A CN 202211119179 A CN202211119179 A CN 202211119179A CN 115219939 A CN115219939 A CN 115219939A
Authority
CN
China
Prior art keywords
predicted
battery
current
heat exchange
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202211119179.3A
Other languages
English (en)
Other versions
CN115219939B (zh
Inventor
贾凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiaomi Automobile Technology Co Ltd
Original Assignee
Xiaomi Automobile Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiaomi Automobile Technology Co Ltd filed Critical Xiaomi Automobile Technology Co Ltd
Priority to CN202211119179.3A priority Critical patent/CN115219939B/zh
Publication of CN115219939A publication Critical patent/CN115219939A/zh
Application granted granted Critical
Publication of CN115219939B publication Critical patent/CN115219939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本公开涉及一种电池温度预测方法、装置、车辆和存储介质,涉及动力电池技术领域,方法包括:获取当前时刻的车辆工况,确定车辆工况下车辆的电池在当前时刻之后的至少一个目标时刻的预测电流,针对各个目标时刻,根据目标时刻的预测电流,确定电池在目标时刻的预测端电压,获取电池的热交换参数,根据目标时刻的预测电流、目标时刻的预测端电压和热交换参数,确定电池在目标时刻的预测温度值。通过区分车辆的工况场景预估电池未来的预测电流,提高了对电池未来电流预测的准确性,进而,基于目标时刻的预测电流,预测目标时刻的预测温度值,提高了未来温度预测的准确性。

Description

电池温度预测方法、装置、车辆和存储介质
技术领域
本公开涉及动力电池技术领域,尤其涉及一种电池温度预测方法、装置、车辆和存储介质。
背景技术
电池的温度对其性能(如,功率/热量),寿命及安全至关重要,如,动力电池在低温下,性能衰减较大,在高温下,寿命衰减较快,且过温极易引发热失控。因此,准确预估电池未来的温度变化,对电池安全且高效地使用,具有重要意义。
发明内容
本公开提供一种电池温度预测方法、装置、车辆和存储介质,提高了电池温度预测的准确度。
根据本公开实施例的第一方面,提供一种电池温度预测方法,包括:
获取当前时刻的车辆工况;
确定所述车辆工况下车辆的电池在所述当前时刻之后的至少一个目标时刻的预测电流;
针对各个所述目标时刻,根据所述目标时刻的预测电流,确定所述电池在所述目标时刻的预测端电压;
获取所述电池的热交换参数;
根据所述目标时刻的预测电流、所述目标时刻的预测端电压和所述热交换参数,确定所述电池在所述目标时刻的预测温度值。
根据本公开实施例的第二方面,提供一种电池温度预测装置,包括:
获取模块,被配置为获取当前时刻的车辆工况;
第一确定模块,被配置为确定所述车辆工况下车辆的电池在所述当前时刻之后的至少一个目标时刻的预测电流;
第二确定模块,被配置为针对各个所述目标时刻,根据所述目标时刻的预测电流,确定所述电池在所述目标时刻的预测端电压;
所述获取模块,还被配置为获取所述电池的热交换参数;
第三确定模块,被配置为根据所述目标时刻的预测电流、所述目标时刻的预测端电压和所述热交换参数,确定所述电池在所述目标时刻的预测温度值。
根据本公开实施例的第三方面,提供一种车辆,包括:处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:
实现第一方面所述方法的步骤。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开第一方面所述方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:获取当前时刻的车辆工况,确定车辆工况下车辆的电池在当前时刻之后的至少一个目标时刻的预测电流,针对各个目标时刻,根据目标时刻的预测电流,确定电池在目标时刻的预测端电压,获取电池的热交换参数,根据目标时刻的预测电流、目标时刻的预测端电压和热交换参数,确定电池在目标时刻的预测温度值。通过区分车辆的工况场景预估电池未来的预测电流,提高了对电池未来电流预测的准确性,进而,基于目标时刻的预测电流,预测目标时刻的预测温度值,提高了未来温度预测的准确性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种电池温度预测方法的流程图;
图2是根据一示例性实施例示出的一种电池对应的二阶等效电路模型;
图3是根据一示例性实施例示出的一种电池温度预测方法的流程图;
图4是根据一示例性实施例示出的一种电池温度预测方法的流程图;
图5是根据一示例性实施例示出的一种电池温度预测方法的流程图;
图6是根据一示例性实施例示出的一种电池温度预测方法的示意图;
图7是根据一示例性实施例示出的一种电池温度预测装置的框图;
图8是根据一示例性实施例示出的一种车辆800的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本公开中所有获取信号、信息或数据的动作都是在遵照所在地国家相应的数据保护法规政策的前提下,并获得由相应装置所有者给予授权的情况下进行的。
图1是根据一示例性实施例示出的一种电池温度预测方法的流程图,如图1所示,包括以下步骤。
步骤101中,获取当前时刻的车辆工况。
本公开实施例中,车辆工况包括车辆的行驶工况和充电工况,在行驶工况下,车辆处于行驶模式;在充电工况下,车辆处于充电模式,即动力电池处于充电模式。
步骤102,确定车辆工况下车辆的电池在当前时刻之后的至少一个目标时刻的预测电流。
其中,当前时刻之后的至少一个目标时刻,是基于预测需求确定的要对车辆中的电池温度进行预测的未来至少一个时刻,例如,对电池温度测量的间隔为每1分钟测量一次,当前时刻为1点25分,则目标时刻1可以是1点26分、目标时刻2可以是1点27分、目标时刻3可以是1点28分,此处不一一列举。
本公开实施例中,通过确定车辆工况,在对应的车辆工况下,确定车辆的电池在至少一个目标时刻的预测电流,基于车辆所处的不同工况,预估电池在至少一个目标时刻的预测电流,实现了区分场景预估电池未来的预测电流,提高了对电池未来电流预测的准确性。
步骤103,针对各个目标时刻,根据目标时刻的预测电流,确定电池在目标时刻的预测端电压。
本公开实施例的一种实现方式中,采用等效电路模型预估电池在目标时刻的预测端电压,其中,电池的端电压又称为电池的开路电压。
作为一种示例,以使用二阶等效电路模型预估电池在目标时刻的预测端电压。如图2所示,图2为电池对应的二阶等效电路模型,其中,Uocv为电池的恒压源,Ut为电池的预测端电压,R1和R2为电池的极化电阻;C1和C2分别表示电池的极化电容。R0表示随循环次数的增加而变化的欧姆内阻。
在目标时刻k,电池的预测端电压为Ut(k),则Ut(k)满足如下关系:
Ut(k)=Uocv–I(k)*R0-U1(k)-U2(k);
其中,I(k)为目标时刻的预测电流,U1(k)为目标时刻极化电阻R1的电压,U2(k)为目标时刻极化电阻R2的电压。
其中,
Figure 652493DEST_PATH_IMAGE001
Figure 55793DEST_PATH_IMAGE002
Figure 908211DEST_PATH_IMAGE003
Figure 396961DEST_PATH_IMAGE004
其中,Dt是进行温度预测的时间间隔,例如,两个连续的目标时刻间的时间间隔;U1(k-1)是目标时刻的前一时刻,即k-1时刻极化电阻R1的电压;U2(k-1)为目标时刻的前一时刻,即k-1时刻极化电阻R2的电压。
其中,
Figure 133973DEST_PATH_IMAGE005
Figure 391779DEST_PATH_IMAGE006
为时间常数。
步骤104,获取电池的热交换参数。
其中,电池的热交换参数,用于确定的电池在对应的目标工况下进行热交换产生的热量。
本公开实施例中,热交换参数包含包括电池与环境进行热交换的第一热交换参数,以及电池与温控装置进行热交换的第二热交换参数中的至少一个。温控装置,可以为电池内部的冷板,冷板中的冷却液用于对电池进行降温或加温,以实现电池与冷板之间的热量交换,实现对电池加热或降温的需求。
步骤105,根据目标时刻的预测电流、目标时刻的预测端电压和热交换参数,确定电池在目标时刻的预测温度值。
本公开实施例中,针对各个目标时刻,根据该目标时刻的预测电流和该目标时刻的端电压可确定在相应的车辆工况下,从该目标时刻的前一时刻到该目标时刻,即两个预测时刻的时间间隔内,电池自身发热产生的第一热量,以及电池根据热交换参数,确定的电池进行热交换产生的第二热量,根据第一热量和第二热量即可确定电池的热量的变化,根据电池的热量的变化即可确定两个预测时刻的时间间隔内电池温度的变化,根据电池温度的变化和目标时刻的前一时刻的预测温度值,即可确定该目标时刻电池的预测温度值。
本公开实施例的电池温度预测方法中,获取当前时刻的车辆工况,确定车辆工况下车辆的电池在当前时刻之后的至少一个目标时刻的预测电流,针对各个目标时刻,根据目标时刻的预测电流,确定电池在目标时刻的预测端电压,获取电池的热交换参数,根据目标时刻的预测电流、目标时刻的预测端电压和热交换参数,确定电池在目标时刻的预测温度值。通过区分车辆的工况场景预估电池未来的预测电流,提高了对电池未来电流预测的准确性,进而,基于目标时刻的预测电流,预测目标时刻的预测温度值,提高了未来温度预测的准确性。
基于前述实施例,图3是根据一示例性实施例示出的一种电池温度预测方法的流程图,如图3所示,包括以下步骤。
步骤301中,获取当前时刻的车辆工况。
其中,步骤301可参照前述实施例的中的解释说明,原理相同,此次不再赘述。
步骤302,在车辆处于行驶工况下,获取电池在当前时刻之前的历史电流序列。
步骤303,根据历史电流序列中的至少一个电流值,确定至少一个目标时刻的预测放电电流。
本公开实施例中,在车辆处于行驶工况下,获取电池在当前时刻之前的历史电流序列,例如为,过去n个历史时刻的历史电流序列,对历史电流序列中的各个历史时刻的电流做均方根,将均方根结果作为至少一个目标时刻的预测放电电流,即作为当前时刻之后的未来各个目标时刻的预测放电电流,也就是说未来各个目标时刻的预测放电电流相同。
作为一种示例,至少一个目标时刻的预测放电电流I满足以下关系:
Figure 556044DEST_PATH_IMAGE007
其中,Ii为历史电流序列中的一个电流值。
需要说明的是,在车辆行驶过程中,电池通过放电给车辆提供能量,因此,在车辆处于行驶工况下,预测得到的电流为预测放电电流。
步骤304,针对各个目标时刻,根据目标时刻的预测放电电流,确定电池在目标时刻的预测端电压。
具体可参照前述实施例中的解释说明,原理相同,此处不再赘述。
步骤305,获取电池的热交换参数。
本公开实施例的一种实现方式中,可获取设定的电池的热交换参数。
本公开实施例的另一种实现方式中,为了提高准确性,可获取在当前时刻的前一时刻电池的第一历史温度序列、该前一时刻环境的第二历史温度序列和该前一时刻温控装置的第三历史温度序列,根据第一历史温度序列、第二历史温度序列和第三历史温度序列,拟合得到第一热交换参数和第二热交换参数,其中,拟合算法,包含采用最小二乘法、递归最小二乘法等,实现了根据采集到的和电池热交换相关的电池自身的第一历史温度序列、环境的第二温度系列和温控装置的第三历史温度序列,使用最小二乘法在线递归求解电池的热交换参数,其中,热交换参数包括电池与环境间的第一热交换参数,以及电池与温控装置间的第二热交换参数,也就是说通过动态自适应计算电池的热交换参数,提高了电池热交换产生的热交换热量计算的准确性。
步骤306,根据目标时刻的预测放电电流、目标时刻的预测端电压和热交换参数,确定电池在目标时刻的预测温度值。
本公开实施例的一种实现方式中,根据目标时刻的预测端电压和目标时刻的预测放电电流,确定电池自发热产生的可逆热量和不可逆热量,也就是说本公开中在计算电池自身产生的热量时,不仅考虑了电池产生的可逆热量还考虑了不可逆热量,提高了电池自身产热计算的准确性。进而,根据热交换参数,确定电池进行热交换产生的热交换热量,具体可包含电池与环境进行热交换产生的第一热量,以及电池与温控装置进行热交换产生的第二热量,其中,温控装置例如为电池的冷板。从而,根据电池的可逆热量、不可逆热量和热交换热量,可以确定电池在对应的时间间隔内的总变化热量,根据总变化热量,除以电池的热容比和质量,得到该时间间隔内电池温度的变化值,进而根据目标时刻的前一时刻预测得到的温度值和确定的电池温度的变化值,可确定目标时刻电池的预测温度值。
需要说明的是,时间间隔即从目标时刻的前一时刻到目标时刻的时间间隔,也就是设定进行电池未来温度预测的预测时间间隔。但是具体到每两个相邻的目标时刻间的时间间隔,电池的总变化热量可能不同。
本公开实施例中,在车辆处于行驶工况下,获取电池在当前时刻之前的历史电流序列,根据历史电流序列中的至少一个电流值,确定至少一个目标时刻的预测放电电流,实现了区分场景准确预估电池未来使用的电流值,进而,基于预测放电电流,对电池未来温度进行预测,提高了电池温度预测的准确性。
基于前述实施例,图4是根据一示例性实施例示出的一种电池温度预测方法的流程图,如图4所示,包括以下步骤:
步骤401中,获取当前时刻的车辆工况。
具体可参照前述实施例中的解释说明,原理相同,此处不再赘述。
步骤402,在车辆处于充电工况下,针对各个目标时刻,获取电池的历史预测温度值和历史预测荷电状态值。
作为第一种实现方式,针对各个目标时刻,若目标时刻为当前时刻之后的首个目标时刻,则将当前时刻实际测量得到的温度值作为历史预测温度值,以及将当前时刻的预测荷电状态值作为历史预测荷电状态值为,其中,荷电状态值的预测满足以下关系:
本公开实施例的一种实现方式中,采用安时积分法预估电池在各个时刻的SOC,例如为当前时刻的预测荷电状态值,其中,当前时刻的SOC满足如下关系:
Figure 656724DEST_PATH_IMAGE008
其中,SOC(k-1)为当前时刻k-1的预测荷电状态值,SOC(k-2)为当前时刻的前一时刻k-2时刻预测到的荷电状态值,其中C为电池的额定电容。
作为第二种实现方式,针对各个目标时刻,若目标时刻不为当前时刻之后的首个目标时刻,则获取目标时刻的前一时刻的历史预测温度值和历史预测荷电状态值,其中,目标时刻的前一时刻的历史预测荷电状态值,可参照上述当前时刻的预测荷电状态值的预测方法,原理相同,此处不再赘述。而目标时刻的前一时刻的历史预测温度值,是在目标时刻之前预测得到的,采用的方法和目标时刻的温度预测方法相同,此处不再赘述。
作为第三种实现方式,针对各个目标时刻,若目标时刻不为当前时刻之后的首个目标时刻,则获取首个目标时刻的历史预测温度值和历史预测荷电状态值,以及历史预测温度值和历史预测荷电状态值,与充电电流之间的对应关系,该对应关系中指示了每一个历史预测温度值和历史预测荷电状态值的组合,都具有对应的电流值。
需要说明的是,首个目标时刻的历史预测温度值,即预测得到的首个目标时刻的预测温度值,因为首个目标时刻的预测温度值是在当前要预测的目标时刻之前预测得到的,因此,称为历史预测温度值。对于其它时刻的历史预测温度值,含义相同,此处不一一列举。
步骤403,根据历史预测温度值和历史预测荷电状态值,与充电电流之间的对应关系,查找得到目标时刻的预测充电电流。
从而,根据获取到的历史预测温度值和历史预测荷电状态值,与充电电流之间的对应关系,可查找得到目标时刻的预测充电电流。
步骤404,针对各个目标时刻,根据目标时刻的预测充电电流,确定电池在目标时刻的预测端电压。
步骤405,获取电池的热交换参数。
步骤406,根据目标时刻的预测充电电流、目标时刻的预测端电压和热交换参数,确定电池在目标时刻的预测温度值。
其中,在车辆处于充电工况下,基于确定的各个目标时刻的预测充电电流,确定电池在各个目标时刻的预测温度值的方法,和前述实施例中车辆处于行驶工况下的确定原理相同,具体,步骤404至步骤406可参照前述实施例中的解释说明,原理相同,此处不再赘述。
本公开实施例中,在车辆处于充电工况下,针对各个目标时刻,获取电池的历史预测温度值和历史预测荷电状态值,根据历史预测温度值和历史预测荷电状态值,与充电电流之间的对应关系,查找得到目标时刻的预测充电电流,实现了区分场景准确预估电池未来使用的电流值,进而,基于预测放电电流,对电池未来温度进行预测,提高了电池温度预测的准确性。
基于前述实施例,图5是根据一示例性实施例示出的一种电池温度预测方法的流程图,如图5所示,包括以下步骤:
步骤501,获取当前时刻的车辆工况。
步骤502,确定车辆工况下车辆的电池在当前时刻之后的至少一个目标时刻的预测电流。
步骤503,针对各个目标时刻,根据目标时刻的预测电流,确定电池在目标时刻的预测端电压。
步骤504,获取电池的热交换参数。
具体地,步骤501至步骤504可参照前述实施例中的解释说明,原理相同,此处不再赘述。
步骤505,根据目标时刻的预测端电压和目标时刻的预测电流,确定目标时刻对应的电池自发热产生的可逆热量和不可逆热量。
作为一种示例,电池自发热产生的不可逆热量QGen1满足以下关系:
Figure 931848DEST_PATH_IMAGE009
电池自发热产生的可逆热量QGen2满足以下关系:
Figure 309739DEST_PATH_IMAGE010
其中,T(k-1)为目标时刻的前一时刻,即K-1时刻预测到的电池的预测温度值;docv/dT指示了电池的开路电压随温度的变化率。
步骤506,获取目标时刻的环境温度和温控装置的温度。
步骤507,根据第一热交换参数、环境温度和目标时刻的前一时刻的预测温度值,确定目标时刻对应的电池与环境进行热交换产生的第一热量。
作为一种示例,在目标时刻电池与环境进行热交换产生的第一热量QAir-EX满足如下关系:
Figure 379326DEST_PATH_IMAGE011
其中,TAir为目标时刻的环境温度,RAir为目标时刻对应的第一热交换参数,T(k-1)为目标时刻的前一时刻的预测温度值。
步骤508,根据第二热交换参数、温控装置的温度和目标时刻的前一时刻的预测温度值,确定目标时刻对应的电池与温控装置进行热交换产生的第二热量。
作为一种示例,目标时刻对应的电池与温控装置进行热交换产生的第二热量QCool-EX满足如下关系:
Figure 842669DEST_PATH_IMAGE012
其中,TCool为目标时刻的环境温度,RCool为目标时刻对应的第一热交换参数。
需要说明的是,目标时刻对应的第二热量,是指从目标时刻的前一时刻到目标时刻的时间间隔内,电池与温控装置进行热交换产生的第二热量。
步骤509,根据可逆热量、不可逆热量、第一热量和第二热量,确定电池在目标时刻的预测温度值。
本公开实施例中,根据可逆热量、不可逆热量、第一热量和第二热量,确定从目标时刻的前一时刻到目标时刻电池热量变化的总热量变化值,根据总热量变化值、电池的热容比和电池质量,确定电池的温度变化值,根据电池的温度变化值和目标时刻的前一时刻的预测温度值,得到目标时刻的预测温度值T(k),其中,T(k)满足如下关系:
Figure 921483DEST_PATH_IMAGE013
其中,CBatt为电池的热容比,MBatt为电池的质量。
本公开实施例的电池温度预测方法中,在对电池未来温度进行预测的过程中,针对不同的车辆的工况,确定电池未来的各个目标时刻的预测电流,提高了预测电流确定的准确性,进而,在计算电池的总热量变化值的过程中,不仅考虑了电池自发热产生的可逆热和不可逆热,还考虑了电池与环境热交换产生的第一热量,以及电池与温控装置进行热交换产生的第二热量,提高了电池总热量变化值确定的准确性,进而确定了每一个预测间隔内电池总热量变化值确定的准确性,从而,提高了未来各个目标时刻的预测温度值确定的准确性。
基于前述实施例,图6是根据一示例性实施例示出的一种电池温度预测方法的示意图,基于图6对电池温度预测的过程进行说明:
作为一种示例,对电池的温度预测,可采用热管理模型来实现,控制热管理模型对电池温度进行预测。在对电池的温度进行预测的过程中,还需要用到电池的端电压,控制电池电管理模型,计算未来要预测的各个目标时刻电池的端电压和荷电状态。
本公开实施例中,车辆的动力电池通常为电池包,确定要预测的未来时间段,该未来时间段中包含至少一个目标时刻,其中,各个目标时刻间的间隔可以相同,也可以不同。获取未来时间段之前的电池的历史数据,包含电池的历史电流序列、电池的第一历史温度序列、温控装置的第三历史温度序列和环境的第二历史温度序列,其中,温控装置可以为冷板,冷板包含历史进水口温度序列和历史出水口温度序列。
进而,根据电池的第一历史温度序列、温控装置的第三历史温度序列、和环境的第二历史温度序列,对热管理模型的参数进行更新,包含更新电池与环境间的第一热交换参数,以及电池与温控装置间的第二热交换参数,可选地,可在热管理模型启动的情况下、或者是车辆启动的情况下,即运行电池热管理模型,实现了对电池的热管理模型参数的实时计算,提高了热管理模型对电池温度预测的准确性。
进一步,获取车辆当前的工况,根据车辆所处的不同工况,确定预测的未来时段电池对应的预测电流,即电池的预测放电电流和预测充电电流,进而基于预测放电电流或预测充电电流,对不同工况下,电池的预测温度值进行预测。实现了不同车辆工况下,采用不同的预测方式确定预测电流,提高了预测电流的准确性。其中,对于预测电流的确定方式,可参照前述实施例的解释说明,原理相同,此处不再赘述。
根据更新的电池与环境间热交换的第一热交换参数、电池与温控装置间的热交换的第二热交换参数、电池的预测端电压和电池的预测电流,确定电池未来的预测温度值。
需要说明的是,前述方法实施例中的解释说明和技术效果也适用于本实施例,原理相同,此处不再赘述。
基于前述实施例,图7是根据一示例性实施例示出的一种电池温度预测装置的框图。参照图7,该装置包括:
获取模块71,被配置为获取当前时刻的车辆工况。
第一确定模块72,被配置为确定所述车辆工况下车辆的电池在所述当前时刻之后的至少一个目标时刻的预测电流。
第二确定模块73,被配置为针对各个所述目标时刻,根据所述目标时刻的预测电流,确定所述电池在所述目标时刻的预测端电压。
所述获取模块71,还被配置为获取所述电池的热交换参数。
第三确定模块74,被配置为根据所述目标时刻的预测电流、所述目标时刻的预测端电压和所述热交换参数,确定所述电池在所述目标时刻的预测温度值。
进一步,作为一种实现方式,所述预测电流包含预测放电电流,所述第一确定模块72,被配置为:
在所述车辆处于行驶工况下,获取所述电池在所述当前时刻之前的历史电流序列;
根据所述历史电流序列中的至少一个电流值,确定至少一个所述目标时刻的预测放电电流。
作为一种实现方式,所述预测电流包含预测充电电流,所述第一确定模块72,还被配置为:
在所述车辆处于充电工况下,针对各个所述目标时刻,获取所述电池的历史预测温度值和历史预测荷电状态值;
根据所述历史预测温度值和所述历史预测荷电状态值,与充电电流之间的对应关系,查找得到所述目标时刻的预测充电电流。
作为一种实现方式,所述第三确定模块74,还被配置为:
根据所述目标时刻的预测端电压和所述目标时刻的预测电流,确定所述目标时刻对应的所述电池自发热产生的可逆热量和不可逆热量;
根据所述热交换参数,确定所述目标时刻对应的所述电池进行热交换产生的热交换热量;
根据所述可逆热量、所述不可逆热量和所述热交换热量,确定所述电池在所述目标时刻的预测温度值。
作为一种实现方式,所述热交换参数,包括所述电池与环境间的第一热交换参数,以及所述电池与温控装置间的第二热交换参数,所述第三确定模块74,还被配置为:
获取所述目标时刻的环境温度和所述温控装置的温度;
根据所述第一热交换参数、所述环境温度和所述目标时刻的前一时刻的预测温度值,确定所述目标时刻对应的所述电池与环境进行热交换产生的第一热量;
根据所述第二热交换参数、所述温控装置的温度和所述目标时刻的前一时刻的预测温度值,确定所述目标时刻对应的所述电池与所述温控装置进行热交换产生的第二热量。
作为一种实现方式,获取模块71,还被配置为:
获取在所述当前时刻的前一时刻所述电池的第一历史温度序列、环境的第二历史温度序列和温控装置的第三历史温度序列;
根据所述第一历史温度序列、所述第二历史温度序列和所述第三历史温度序列,拟合得到所述第一热交换参数和所述第二热交换参数。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例的电池温度预测装置中,获取当前时刻的车辆工况,确定车辆工况下车辆的电池在当前时刻之后的至少一个目标时刻的预测电流,针对各个目标时刻,根据目标时刻的预测电流,确定电池在目标时刻的预测端电压,获取电池的热交换参数,根据目标时刻的预测电流、目标时刻的预测端电压和热交换参数,确定电池在目标时刻的预测温度值。通过区分车辆的工况场景预估电池未来的预测电流,提高了对电池未来电流预测的准确性,进而,基于目标时刻的预测电流,预测目标时刻的预测温度值,提高了未来温度预测的准确性。
图8是根据一示例性实施例示出的一种车辆800的框图。例如,车辆800可以是混合动力车辆,也可以是非混合动力车辆、电动车辆、燃料电池车辆或者其他类型的车辆。车辆800可以是自动驾驶车辆、半自动驾驶车辆或者非自动驾驶车辆。
参照图8,车辆800可包括各种子系统,例如,信息娱乐系统810、感知系统820、决策控制系统830、驱动系统840以及计算平台850。其中,车辆800还可以包括更多或更少的子系统,并且每个子系统都可包括多个部件。另外,车辆800的每个子系统之间和每个部件之间可以通过有线或者无线的方式实现互连。
在一些实施例中,信息娱乐系统810可以包括通信系统,娱乐系统以及导航系统等。
感知系统820可以包括若干种传感器,用于感测车辆800周边的环境的信息。例如,感知系统820可包括全球定位系统(全球定位系统可以是GPS系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)、激光雷达、毫米波雷达、超声雷达以及摄像装置。
决策控制系统830可以包括计算系统、整车控制器、转向系统、油门以及制动系统。
驱动系统840可以包括为车辆800提供动力运动的组件。在一个实施例中,驱动系统840可以包括引擎、能量源、传动系统和车轮。引擎可以是内燃机、电动机、空气压缩引擎中的一种或者多种的组合。引擎能够将能量源提供的能量转换成机械能量。
车辆800的部分或所有功能受计算平台850控制。计算平台850可包括至少一个处理器851和存储器852,处理器851可以执行存储在存储器852中的指令853。
处理器851可以是任何常规的处理器,诸如商业可获得的CPU。处理器还可以包括诸如图像处理器(Graphic Process Unit,GPU),现场可编程门阵列(Field ProgrammableGate Array,FPGA)、片上系统(System on Chip,SOC)、专用集成芯片(ApplicationSpecific Integrated Circuit,ASIC)或它们的组合。
存储器852可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
除了指令853以外,存储器852还可存储数据,例如道路地图,路线信息,车辆的位置、方向、速度等数据。存储器852存储的数据可以被计算平台850使用。
在本公开实施例中,处理器851可以执行指令853,以完成上述的电池温度预测方法的全部或部分步骤。
本公开还提供一种车辆,包括处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:实现前述方法实施例所提供的电池温度预测方法的步骤。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开提供的电池温度预测方法的步骤。
本公开还提供一种计算机程序产品,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开提供的电池温度预测方法的步骤。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (14)

1.一种电池温度预测方法,其特征在于,包括:
获取当前时刻的车辆工况;
确定所述车辆工况下车辆的电池在所述当前时刻之后的至少一个目标时刻的预测电流;
针对各个所述目标时刻,根据所述目标时刻的预测电流,确定所述电池在所述目标时刻的预测端电压;
获取所述电池的热交换参数;
根据所述目标时刻的预测电流、所述目标时刻的预测端电压和所述热交换参数,确定所述电池在所述目标时刻的预测温度值。
2.如权利要求1所述的方法,其特征在于,所述预测电流包含预测放电电流,所述确定所述车辆工况下车辆的电池在所述当前时刻之后的至少一个目标时刻的预测电流,包括:
在所述车辆处于行驶工况下,获取所述电池在所述当前时刻之前的历史电流序列;
根据所述历史电流序列中的至少一个电流值,确定至少一个所述目标时刻的预测放电电流。
3.如权利要求1所述的方法,其特征在于,所述预测电流包含预测充电电流,所述确定所述车辆工况下车辆的电池在所述当前时刻之后的至少一个目标时刻的预测电流,包括:
在所述车辆处于充电工况下,针对各个所述目标时刻,获取所述电池的历史预测温度值和历史预测荷电状态值;
根据所述历史预测温度值和所述历史预测荷电状态值,与充电电流之间的对应关系,查找得到所述目标时刻的预测充电电流。
4.如权利要求1至3任一项所述的方法,其特征在于,所述根据所述目标时刻的预测电流、所述目标时刻的预测端电压和所述热交换参数,确定所述电池在所述目标时刻的预测温度值,包括:
根据所述目标时刻的预测端电压和所述目标时刻的预测电流,确定所述目标时刻对应的所述电池自发热产生的可逆热量和不可逆热量;
根据所述热交换参数,确定所述目标时刻对应的所述电池进行热交换产生的热交换热量;
根据所述可逆热量、所述不可逆热量和所述热交换热量,确定所述电池在所述目标时刻的预测温度值。
5.如权利要求4所述的方法,其特征在于,所述热交换参数,包括所述电池与环境间的第一热交换参数,以及所述电池与温控装置间的第二热交换参数,所述根据所述热交换参数,确定所述目标时刻对应的所述电池进行热交换产生的热交换热量,包括:
获取所述目标时刻的环境温度和所述温控装置的温度;
根据所述第一热交换参数、所述环境温度和所述目标时刻的前一时刻的预测温度值,确定所述目标时刻对应的所述电池与环境进行热交换产生的第一热量;
根据所述第二热交换参数、所述温控装置的温度和所述目标时刻的前一时刻的预测温度值,确定所述目标时刻对应的所述电池与所述温控装置进行热交换产生的第二热量。
6.如权利要求5所述的方法,其特征在于,所述获取所述电池的热交换参数,包括:
获取在所述当前时刻的前一时刻所述电池的第一历史温度序列、环境的第二历史温度序列和所述温控装置的第三历史温度序列;
根据所述第一历史温度序列、所述第二历史温度序列和所述第三历史温度序列,拟合得到所述第一热交换参数和所述第二热交换参数。
7.一种电池温度预测装置,其特征在于,包括:
获取模块,被配置为获取当前时刻的车辆工况;
第一确定模块,被配置为确定所述车辆工况下车辆的电池在所述当前时刻之后的至少一个目标时刻的预测电流;
第二确定模块,被配置为针对各个所述目标时刻,根据所述目标时刻的预测电流,确定所述电池在所述目标时刻的预测端电压;
所述获取模块,还被配置为获取所述电池的热交换参数;
第三确定模块,被配置为根据所述目标时刻的预测电流、所述目标时刻的预测端电压和所述热交换参数,确定所述电池在所述目标时刻的预测温度值。
8.如权利要求7所述的装置,其特征在于,所述预测电流包含预测放电电流,所述第一确定模块,被配置为:
在所述车辆处于行驶工况下,获取所述电池在所述当前时刻之前的历史电流序列;
根据所述历史电流序列中的至少一个电流值,确定至少一个所述目标时刻的预测放电电流。
9.如权利要求7所述的装置,其特征在于,所述预测电流包含预测充电电流,所述第一确定模块,还被配置为:
在所述车辆处于充电工况下,针对各个所述目标时刻,获取所述电池的历史预测温度值和历史预测荷电状态值;
根据所述历史预测温度值和所述历史预测荷电状态值,与充电电流之间的对应关系,查找得到所述目标时刻的预测充电电流。
10.如权利要求7至9任一项所述的装置,其特征在于,所述第三确定模块,还被配置为:
根据所述目标时刻的预测端电压和所述目标时刻的预测电流,确定所述目标时刻对应的所述电池自发热产生的可逆热量和不可逆热量;
根据所述热交换参数,确定所述目标时刻对应的所述电池进行热交换产生的热交换热量;
根据所述可逆热量、所述不可逆热量和所述热交换热量,确定所述电池在所述目标时刻的预测温度值。
11.如权利要求10所述的装置,其特征在于,所述热交换参数,包括所述电池与环境间的第一热交换参数,以及所述电池与温控装置间的第二热交换参数,所述第三确定模块,还被配置为:
获取所述目标时刻的环境温度和所述温控装置的温度;
根据所述第一热交换参数、所述环境温度和所述目标时刻的前一时刻的预测温度值,确定所述目标时刻对应的所述电池与环境进行热交换产生的第一热量;
根据所述第二热交换参数、所述温控装置的温度和所述目标时刻的前一时刻的预测温度值,确定所述目标时刻对应的所述电池与所述温控装置进行热交换产生的第二热量。
12.如权利要求11所述的装置,其特征在于,所述获取模块,还被配置为:
获取在所述当前时刻的前一时刻所述电池的第一历史温度序列、环境的第二历史温度序列和所述温控装置的第三历史温度序列;
根据所述第一历史温度序列、所述第二历史温度序列和所述第三历史温度序列,拟合得到所述第一热交换参数和所述第二热交换参数。
13.一种车辆,其特征在于,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:实现权利要求1至6中任一项所述方法的步骤。
14.一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理器执行时实现权利要求1至6中任一项所述方法的步骤。
CN202211119179.3A 2022-09-15 2022-09-15 电池温度预测方法、装置、车辆和存储介质 Active CN115219939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211119179.3A CN115219939B (zh) 2022-09-15 2022-09-15 电池温度预测方法、装置、车辆和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211119179.3A CN115219939B (zh) 2022-09-15 2022-09-15 电池温度预测方法、装置、车辆和存储介质

Publications (2)

Publication Number Publication Date
CN115219939A true CN115219939A (zh) 2022-10-21
CN115219939B CN115219939B (zh) 2023-01-03

Family

ID=83617736

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211119179.3A Active CN115219939B (zh) 2022-09-15 2022-09-15 电池温度预测方法、装置、车辆和存储介质

Country Status (1)

Country Link
CN (1) CN115219939B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115856666A (zh) * 2022-11-28 2023-03-28 伏瓦科技(苏州)有限公司 电池工况数据的处理方法、设备及存储介质
CN116176358A (zh) * 2023-04-26 2023-05-30 广汽埃安新能源汽车股份有限公司 一种电池热管理方法、装置、存储介质及设备
WO2024174873A1 (zh) * 2023-02-21 2024-08-29 北京罗克维尔斯科技有限公司 热管理系统中部件温度预测方法及相关设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104881550A (zh) * 2015-06-15 2015-09-02 清华大学 动力电池运行温度的自适应预测方法
US20150362558A1 (en) * 2013-02-21 2015-12-17 Renault S.A.S. Assessment of the energy that can be extracted from a motor vehicle battery
CN107128186A (zh) * 2016-02-26 2017-09-05 福特全球技术公司 用于电池健康状态监测的系统和方法
CN109975711A (zh) * 2017-12-28 2019-07-05 宝沃汽车(中国)有限公司 电池组故障检测方法及装置
WO2020188284A1 (en) * 2019-03-20 2020-09-24 Dyson Technology Limited Device and method of estimating an amount of charge of a battery
CN111823952A (zh) * 2020-04-17 2020-10-27 北京嘀嘀无限科技发展有限公司 电芯温度的诊断方法、存储介质和电子设备
CN112840496A (zh) * 2018-09-27 2021-05-25 格勒诺布尔理工学院 实时且现场测量电池的热力学数据(焓和熵)的方法和装置
CN113459889A (zh) * 2020-03-30 2021-10-01 现代自动车株式会社 用于估计车辆电池的充电时间的系统及其控制方法
WO2022142996A1 (zh) * 2020-12-28 2022-07-07 长城汽车股份有限公司 一种动力电池的温度控制方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362558A1 (en) * 2013-02-21 2015-12-17 Renault S.A.S. Assessment of the energy that can be extracted from a motor vehicle battery
CN104881550A (zh) * 2015-06-15 2015-09-02 清华大学 动力电池运行温度的自适应预测方法
CN107128186A (zh) * 2016-02-26 2017-09-05 福特全球技术公司 用于电池健康状态监测的系统和方法
CN109975711A (zh) * 2017-12-28 2019-07-05 宝沃汽车(中国)有限公司 电池组故障检测方法及装置
CN112840496A (zh) * 2018-09-27 2021-05-25 格勒诺布尔理工学院 实时且现场测量电池的热力学数据(焓和熵)的方法和装置
WO2020188284A1 (en) * 2019-03-20 2020-09-24 Dyson Technology Limited Device and method of estimating an amount of charge of a battery
CN113459889A (zh) * 2020-03-30 2021-10-01 现代自动车株式会社 用于估计车辆电池的充电时间的系统及其控制方法
CN111823952A (zh) * 2020-04-17 2020-10-27 北京嘀嘀无限科技发展有限公司 电芯温度的诊断方法、存储介质和电子设备
WO2022142996A1 (zh) * 2020-12-28 2022-07-07 长城汽车股份有限公司 一种动力电池的温度控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏国强等: "纯电动汽车动力电池温度预测模型实验研究", 《电子测量技术》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115856666A (zh) * 2022-11-28 2023-03-28 伏瓦科技(苏州)有限公司 电池工况数据的处理方法、设备及存储介质
CN115856666B (zh) * 2022-11-28 2024-03-26 伏瓦科技(苏州)有限公司 电池工况数据的处理方法、设备及存储介质
WO2024174873A1 (zh) * 2023-02-21 2024-08-29 北京罗克维尔斯科技有限公司 热管理系统中部件温度预测方法及相关设备
CN116176358A (zh) * 2023-04-26 2023-05-30 广汽埃安新能源汽车股份有限公司 一种电池热管理方法、装置、存储介质及设备

Also Published As

Publication number Publication date
CN115219939B (zh) 2023-01-03

Similar Documents

Publication Publication Date Title
CN115219939B (zh) 电池温度预测方法、装置、车辆和存储介质
US8914173B2 (en) Method and system for conditioning an energy storage system (ESS) for a vehicle
US11691518B2 (en) Predictive model for estimating battery states
CN105424221B (zh) 用于电池系统温度估计的系统和方法
US10818983B2 (en) Battery management device and system, and hybrid vehicle control system for utilizing battery performance while maintaining battery life
US10048321B2 (en) Systems and methods for directional capacity estimation of a rechargeable battery
US9205755B2 (en) Receding horizon regression analysis for battery impedance parameter estimation
US9037426B2 (en) Systems and methods for determining cell capacity values in a multi-cell battery
US9594123B2 (en) Techniques for estimating battery pack parameters
CN111612205A (zh) 用于针对驾驶路线确定目标电池充电水平的系统和方法
US20170242077A1 (en) Systems and methods for real-time estimation of capacity of a rechargeable battery
US20120316712A1 (en) Thermal conditioning of vehicle rechargeable energy storage systems
CN110957544B (zh) 锂离子电池的控制装置、锂离子电池的控制方法及存储介质
CN110323519A (zh) 电池包加热控制方法及系统
US20160001672A1 (en) Equivalent circuit based battery current limit estimations
US9197078B2 (en) Battery parameter estimation
US20160377684A1 (en) Assessing the quantity of energy in a motor vehicle battery
US9067504B1 (en) Perturbative injection for battery parameter identification
CN114590169A (zh) 电池冷却方法、装置、电子设备和存储介质
CN115817183A (zh) 一种纯电动汽车续驶里程预测方法及预测装置
KR102663544B1 (ko) 친환경 차량의 주행가능거리를 산출하는 방법 및 시스템
EP4414210A1 (en) Vehicle battery preheating method, vehicle and readable storage medium
CN115295925B (zh) 电池加热的方法、装置、电池组件、存储介质和车辆
JPH10108301A (ja) 電気自動車の走行可能距離算出方法
CN111487537B (zh) 修改荷电状态估计的方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant