CN115109305A - A carbon fiber composite rod microwave continuous processing and recycling integrated device and method - Google Patents
A carbon fiber composite rod microwave continuous processing and recycling integrated device and method Download PDFInfo
- Publication number
- CN115109305A CN115109305A CN202210951716.4A CN202210951716A CN115109305A CN 115109305 A CN115109305 A CN 115109305A CN 202210951716 A CN202210951716 A CN 202210951716A CN 115109305 A CN115109305 A CN 115109305A
- Authority
- CN
- China
- Prior art keywords
- carbon fiber
- fiber composite
- track
- microwave
- pyrolysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 87
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 87
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 86
- 239000002131 composite material Substances 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 11
- 238000004064 recycling Methods 0.000 title claims description 16
- 238000012545 processing Methods 0.000 title claims description 10
- 238000000197 pyrolysis Methods 0.000 claims abstract description 72
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 46
- 230000003647 oxidation Effects 0.000 claims abstract description 45
- 238000007789 sealing Methods 0.000 claims abstract description 35
- 239000000463 material Substances 0.000 claims abstract description 28
- 239000003365 glass fiber Substances 0.000 claims abstract description 21
- 238000011084 recovery Methods 0.000 claims abstract description 17
- 238000004804 winding Methods 0.000 claims abstract description 14
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000007789 gas Substances 0.000 claims description 69
- 230000005540 biological transmission Effects 0.000 claims description 21
- 238000005336 cracking Methods 0.000 claims description 14
- 239000007788 liquid Substances 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 11
- 238000012546 transfer Methods 0.000 claims description 7
- 239000002699 waste material Substances 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 5
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 230000003068 static effect Effects 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 239000000805 composite resin Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010169 landfilling Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D5/00—Condensation of vapours; Recovering volatile solvents by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G35/00—Mechanical conveyors not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Polymers & Plastics (AREA)
- Wood Science & Technology (AREA)
- Mechanical Engineering (AREA)
- Sustainable Development (AREA)
- Processing Of Solid Wastes (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
技术领域technical field
本发明涉及碳纤维复合材料热解回收技术领域,具体涉及一种碳纤维复合杆微波连续处理回收一体化装置及其方法。The invention relates to the technical field of pyrolysis recycling of carbon fiber composite materials, in particular to an integrated device for continuous microwave treatment and recycling of carbon fiber composite rods and a method thereof.
背景技术Background technique
碳纤维增强树脂复合材料以其质量轻、强度高、耐高温、抗腐蚀能力强以及热力学性能优良等特点广泛应用于汽车、航空航天等各大领域。抽油杆是抽油井的细长杆件,上端与光杆连接,下端抽油泵起到传递动力的作用,碳纤维增强树脂复合材料用于制备抽油杆,制得的抽油杆具有高强度、重量轻、耐腐蚀、采油率高以及能耗低等一系列优点,从而引起了广大采油领域的专家以及学者的密切关注,进行了技术研发并已推广使用。Carbon fiber reinforced resin composites are widely used in automobiles, aerospace and other fields due to their light weight, high strength, high temperature resistance, strong corrosion resistance and excellent thermodynamic properties. The sucker rod is the slender rod of the oil well, the upper end is connected with the polished rod, and the lower end sucker pump plays the role of transmitting power. The carbon fiber reinforced resin composite material is used to prepare the sucker rod. A series of advantages such as light weight, corrosion resistance, high oil recovery rate and low energy consumption have attracted the attention of experts and scholars in the field of oil production, and have carried out technical research and development and have been widely used.
碳纤维增强树脂复合的抽油杆在采油领域作用显著,尤其体现在深油增油、节能降耗、防腐延寿三个方面。因此需求不断地增加,随之而来的是产生了大量废弃的抽油杆。目前的常规处理方式是燃烧或者填埋,直接燃烧会产生大量的有毒有害气体,造成环境污染;大量填埋处理会导致资源的浪费,尤其是对于成本高昂的碳纤维增强树脂复合材料,是一种极大的资源浪费,所以目前对于碳纤维增强树脂复合材料抽油杆的回收处理是十分有必要的。碳纤维的回收一般分为两步,先在无氧环境下裂解分解,然后再氧化回收碳纤维。因为抽油杆为细长杆件,且其表面有一层玻璃纤维,在热解后需要剥离玻璃纤维,同时要考虑设备的自动进料等问题,因此亟需开发一种连续自动传送料的碳纤维增强树脂复合杆微波快速热解氧化回收一体化装置和方法。The carbon fiber reinforced resin composite sucker rod plays a significant role in the field of oil production, especially in three aspects: oil increase in deep oil, energy saving and consumption reduction, anti-corrosion and life extension. As a result, the demand continues to increase, and with it, a large number of discarded sucker rods are produced. The current conventional treatment method is burning or landfilling. Direct combustion will produce a large amount of toxic and harmful gases, causing environmental pollution; a large amount of landfill treatment will lead to waste of resources, especially for high-cost carbon fiber reinforced resin composite materials, which is a kind of It is a huge waste of resources, so it is very necessary to recycle the carbon fiber reinforced resin composite sucker rod. The recovery of carbon fiber is generally divided into two steps, which is first cracked and decomposed in an oxygen-free environment, and then oxidized to recover carbon fiber. Because the sucker rod is a slender rod with a layer of glass fiber on its surface, the glass fiber needs to be peeled off after pyrolysis, and problems such as automatic feeding of the equipment must be considered. Therefore, it is urgent to develop a carbon fiber for continuous automatic feeding of materials. Reinforced resin composite rod microwave rapid pyrolysis oxidation recovery integrated device and method.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种碳纤维复合杆微波连续处理回收一体化装置及其方法,解决现有碳纤维复合碳纤维复合杆热解回收不方便的问题。The purpose of the present invention is to provide an integrated device for continuous processing and recycling of carbon fiber composite rods and a method thereof, so as to solve the problem of inconvenient pyrolysis recovery of the existing carbon fiber composite rods.
为解决上述的技术问题,本发明采用以下技术方案:一种碳纤维复合杆微波连续处理回收一体化装置,其特征在于:包括依次连接的物料传送装置、微波热解装置、玻纤剥离装置、微波氧化装置、物质回收装置,所述物料传送装置包括传送轨道、第一驱动电机,第一驱动电机驱动传送轨道输送碳纤维复合杆;微波热解装置包括热解装置壳体,热解装置壳体两侧均设置有气封装置,热解装置壳体内设置有第一U型槽轨道、微波发生器,热解装置壳体顶部的排气口与气体收集装置连接,热解装置壳体底部设置有裂解油收集装置;玻纤剥离装置包括剥离装置箱体,剥离装置箱体顶部转动设置有剥离器,剥离器通过传动装置与第二驱动电机连接;微波氧化装置包括氧化装置壳体,氧化装置壳体内设置有第二U型槽轨道、微波发生器,氧化装置壳体顶部的进气口与氧气提供装置连接,物质回收装置内设置有自动收卷装置;传送轨道出料口与热解装置壳体一侧的气封装置进料口连接,气封装置出料口依次与第一U型槽轨道、另一侧的气封装置、剥离器、第二U型槽轨道、自动收卷装置连接。In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions: an integrated device for continuous processing and recycling of carbon fiber composite rods, which is characterized in that it includes a material conveying device, a microwave pyrolysis device, a glass fiber stripping device, a microwave An oxidation device and a material recovery device, the material conveying device includes a conveying track and a first driving motor, and the first driving motor drives the conveying track to transport the carbon fiber composite rod; the microwave pyrolysis device includes a pyrolysis device shell, and the pyrolysis device shell has two parts. Gas sealing devices are installed on both sides, a first U-shaped groove track and a microwave generator are arranged in the shell of the pyrolysis device, the exhaust port on the top of the shell of the pyrolysis device is connected with the gas collection device, and the bottom of the shell of the pyrolysis device is provided with a gas collecting device. The pyrolysis oil collection device; the glass fiber stripping device includes a stripping device box, the top of the stripping device box is rotated and provided with a stripper, and the stripper is connected with the second driving motor through a transmission device; the microwave oxidation device includes an oxidation device shell, and the oxidation device shell The body is provided with a second U-shaped groove track and a microwave generator, the air inlet on the top of the oxidation device shell is connected to the oxygen supply device, the material recovery device is provided with an automatic winding device; the outlet of the transmission track is connected to the shell of the pyrolysis device The air sealing device feed port on one side of the body is connected, and the air sealing device outlet is sequentially connected with the first U-shaped groove track, the air sealing device on the other side, the stripper, the second U-shaped groove track, and the automatic winding device. .
更进一步的技术方案是所述剥离器内侧为锥形状管道,锥形状管道上设置有刀片,刀片旁设置有废料出口,剥离器外侧壁上设置有传动齿轮,传动齿轮由第二驱动电机驱动,锥形状管道两端转动设置在剥离装置箱体顶部,剥离装置箱体上设置有锥形状管道让位孔,传送轨道与锥形状管道连接。A further technical solution is that the inner side of the stripper is a cone-shaped pipe, a blade is arranged on the cone-shaped pipe, a waste outlet is arranged beside the blade, and a transmission gear is arranged on the outer side wall of the stripper, and the transmission gear is driven by the second drive motor. Both ends of the cone-shaped pipe are rotatably arranged on the top of the stripping device box, the stripping device box is provided with a cone-shaped pipe giving way, and the conveying track is connected with the cone-shaped pipe.
更进一步的技术方案是所述第一U型槽轨道包括轨道底板,轨道底板上平行设置有若干U型槽,U型槽底部设置有裂解油出口,U型槽侧壁设置有轨道滚珠。A further technical solution is that the first U-shaped groove track includes a track bottom plate, a plurality of U-shaped grooves are arranged in parallel on the track bottom plate, the bottom of the U-shaped groove is provided with a pyrolysis oil outlet, and the side wall of the U-shaped groove is provided with orbital balls.
更进一步的技术方案是所述气封装置上设置有物料通道,物料通道依次套设有旋转动环、静环、弹簧,气封装置顶部的气体进口与氮气提供装置连接。A further technical solution is that the gas sealing device is provided with a material channel, the material channel is sequentially sleeved with a rotating moving ring, a static ring, and a spring, and the gas inlet at the top of the gas sealing device is connected to the nitrogen supply device.
更进一步的技术方案是所述气体收集装置包括冷凝器,冷凝器底部液体出口与液体容器连接,冷凝器顶部气体出口与气体容器连接。A further technical solution is that the gas collecting device includes a condenser, the liquid outlet at the bottom of the condenser is connected with the liquid container, and the gas outlet at the top of the condenser is connected with the gas container.
更进一步的技术方案是所述传送轨道为滚珠传送轨道,包括若干主动滚珠和从动滚珠,主动滚珠由第一驱动电机驱动。A further technical solution is that the transmission track is a ball transmission track, including a plurality of driving balls and driven balls, and the driving balls are driven by the first driving motor.
更进一步的技术方案是所述第二U型槽轨道包括轨道底板,轨道底板上平行设置有若干U型槽,U型槽侧壁设置有轨道滚珠。A further technical solution is that the second U-shaped groove track includes a track bottom plate, a plurality of U-shaped grooves are arranged in parallel on the track bottom plate, and the side walls of the U-shaped groove are provided with track balls.
更进一步的技术方案是所述装置的热解方法包括如下步骤:A further technical scheme is that the pyrolysis method of the device comprises the following steps:
S1.将碳纤维复合杆置于传送轨道上,启动第一驱动电机,传送轨道使碳纤维复合杆通过气封装置进入热解装置壳体的第一U型槽轨道上;S1. Place the carbon fiber composite rod on the transfer track, start the first drive motor, and the transfer track enables the carbon fiber composite rod to enter the first U-shaped groove track of the pyrolysis device shell through the gas sealing device;
S2.待碳纤维复合杆全部进入热解装置壳体内后,启动两侧的气封装置,氮气进入气封装置使热解装置壳体两侧与外部气体隔绝后,启动热解装置壳体内的微波发生器,馈入微波快速加热碳纤维复合杆,使碳纤维复合杆在600-800℃下裂解,裂解得到的气体从热解装置壳体顶部的排气口进入气体收集装置,裂解得到的液体从第一U型槽轨道上的裂解油出口流入热解装置壳体底部,再通过底部出料口进入裂解油收集装置;S2. After all the carbon fiber composite rods enter the shell of the pyrolysis device, start the gas sealing devices on both sides, and after nitrogen enters the gas sealing device to isolate the two sides of the shell of the pyrolysis device from the external gas, start the microwave in the shell of the pyrolysis device The generator feeds microwaves to rapidly heat the carbon fiber composite rod, so that the carbon fiber composite rod is cracked at 600-800 ° C. The gas obtained from the cracking enters the gas collection device from the exhaust port on the top of the shell of the pyrolysis device, and the liquid obtained from the cracking The pyrolysis oil outlet on the U-shaped groove track flows into the bottom of the pyrolysis device shell, and then enters the pyrolysis oil collection device through the bottom outlet;
S3.被裂解后的碳纤维复合杆在第一U型槽轨道的传送下,经过另一侧的气封装置后,进入剥离装置箱体的剥离器内,剥离器将碳纤维复合杆表层的玻璃纤维剥除,表层玻璃纤维被剥除后掉落收集在剥离装置箱体底部;S3. Under the transmission of the first U-shaped groove track, the cracked carbon fiber composite rod enters the stripper of the peeling device box after passing through the air sealing device on the other side, and the stripper removes the glass fiber on the surface of the carbon fiber composite rod After peeling off, the surface glass fiber is peeled off and collected at the bottom of the peeling device box;
S4.碳纤维复合杆在传送轨道作用下,从剥离器出来后氧化装置壳体的第二U型槽轨道上;S4. The carbon fiber composite rod is on the second U-shaped groove track of the oxidation device shell after it comes out of the stripper under the action of the transmission track;
S5.待碳纤维复合杆全部进入氧化装置壳体内后,往氧化装置壳体内通入氧气含量在20%-30%的混合气体,开启微波发生器,在550-600℃下加热碳纤维复合杆,并保温10-15min,氧化除去碳纤维复合杆表面的残留碳;S5. After all the carbon fiber composite rods have entered the oxidation device shell, a mixed gas with an oxygen content of 20%-30% is introduced into the oxidation device shell, the microwave generator is turned on, and the carbon fiber composite rods are heated at 550-600 ° C, and Incubate for 10-15min, oxidize and remove the residual carbon on the surface of the carbon fiber composite rod;
S6.氧化完成后得到碳纤维复合杆裂解氧化后的碳纤维丝束,在第二U型槽轨道传送下,碳纤维被自动收卷装置收集。S6. After the oxidation is completed, the carbon fiber tow after the cracking and oxidation of the carbon fiber composite rod is obtained, and the carbon fiber is collected by the automatic winding device under the second U-shaped groove track transmission.
更进一步的技术方案是所述步骤S3中裂解得到的气体在气体收集装置中的冷凝器被冷却,部分被冷凝后得到的油类物质进入液体容器内,不可冷凝的气体进入气体容器内。A further technical solution is that the gas obtained by cracking in the step S3 is cooled in the condenser in the gas collection device, the oily substance obtained after part of the condensation enters the liquid container, and the non-condensable gas enters the gas container.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1.通过传送轨道、第一U型槽轨道和第二U型槽轨道,在驱动电机作用下,完成将碳纤维复合杆从传送轨道送入微波热解装置中热解,再送入微波氧化装置内微波氧化,得到的碳纤维被送入自动收卷装置中进行收卷收集,实现碳纤维复合杆的自动连续送料和回收,实现了高效热解氧化和回收一体化,大大提高了设备的自动化和智能化。1. Through the transmission track, the first U-shaped groove track and the second U-shaped groove track, under the action of the driving motor, the carbon fiber composite rod is sent from the transmission track to the microwave pyrolysis device for pyrolysis, and then sent to the microwave oxidation device. Microwave oxidation, the obtained carbon fiber is sent to the automatic winding device for winding and collection, realizing automatic continuous feeding and recycling of carbon fiber composite rods, realizing the integration of high-efficiency pyrolysis oxidation and recycling, and greatly improving the automation and intelligence of the equipment .
2.通过玻纤剥离器将碳纤维复合杆表面玻璃纤维剥除,将玻璃纤维与碳纤维分离后分别回收,便于碳纤维氧化处理;通过微波加热热解和氧化,使碳纤维复合杆均匀受热,快速升温,大大提高了热解氧化效率;通过气体收集装置和裂解油收集装置分类收集裂解后的气体和油类物质,有效进行回收。2. The glass fiber on the surface of the carbon fiber composite rod is stripped by a glass fiber stripper, and the glass fiber and carbon fiber are separated and recycled separately, which is convenient for carbon fiber oxidation treatment; through microwave heating, pyrolysis and oxidation, the carbon fiber composite rod is heated evenly, and the temperature rises rapidly. The pyrolysis oxidation efficiency is greatly improved; the pyrolyzed gas and oil are collected by the gas collection device and the cracked oil collection device, and recovered effectively.
3.通过气封装置实现将微波热解装置与外界气体隔绝的目的,避免影响热解过程;U型槽轨道设置成U型槽加轨道滚珠传送,在热解段U型槽底部设置裂解油出口,滚珠传送更为平稳,且可选择耐高温的钢珠,更加适宜微波加热环境。3. The purpose of isolating the microwave pyrolysis device from the outside gas is realized by the gas sealing device, so as to avoid affecting the pyrolysis process; the U-shaped groove track is set as a U-shaped groove plus orbital ball transmission, and pyrolysis oil is set at the bottom of the U-shaped groove in the pyrolysis section. At the exit, the ball transfer is more stable, and high temperature resistant steel balls can be selected, which is more suitable for microwave heating environment.
附图说明Description of drawings
图1为本发明的正面结构示意图。FIG. 1 is a schematic view of the front structure of the present invention.
图2为本发明的三维结构示意图。FIG. 2 is a schematic diagram of the three-dimensional structure of the present invention.
图3为本发明中传送轨道的结构示意图。FIG. 3 is a schematic diagram of the structure of the conveying track in the present invention.
图4为本发明中玻纤剥离装置的结构示意图。FIG. 4 is a schematic structural diagram of the glass fiber stripping device in the present invention.
图5为本发明中微波热解装置的结构示意图。FIG. 5 is a schematic structural diagram of a microwave pyrolysis device in the present invention.
图6为本发明中气封装置的结构示意图。FIG. 6 is a schematic structural diagram of the gas sealing device in the present invention.
图7为本发明中气封装置的内部结构示意图。FIG. 7 is a schematic diagram of the internal structure of the gas sealing device in the present invention.
图8为本发明中第一U型槽轨道的结构示意图。FIG. 8 is a schematic structural diagram of the first U-shaped groove track in the present invention.
图9为本发明中微波氧化装置的结构示意图。FIG. 9 is a schematic structural diagram of a microwave oxidation device in the present invention.
图10为本发明中物质回收装置的结构示意图。FIG. 10 is a schematic structural diagram of the material recovery device in the present invention.
图中:1-传送轨道,2-第一驱动电机,3-剥离装置箱体,4-剥离器,401-刀片,402-锥形状管道,5-第二驱动电机,6-热解装置壳体,7-气封装置,701-物料通道,702-旋转动环,703-静环,704-弹簧,8-第一U型槽轨道,801-轨道底板,802-U型槽,803-裂解油出口,804-轨道滚珠,9-微波发生器,10-氧化装置壳体,11-自动收卷装置,12-第二U型槽轨道,13-冷凝器,14-气体容器,15-碳纤维复合杆,16-氮气提供装置,17-氧气提供装置。In the figure: 1-conveyor track, 2-first drive motor, 3-peeling device box, 4-stripper, 401-blade, 402-conical pipe, 5-second drive motor, 6-pyrolysis device shell Body, 7-air sealing device, 701-material channel, 702-rotating ring, 703-static ring, 704-spring, 8-first U-slot track, 801-track bottom plate, 802-U-slot, 803- Pyrolysis oil outlet, 804-track ball, 9-microwave generator, 10-oxidation device shell, 11-automatic winding device, 12-second U-shaped groove track, 13-condenser, 14-gas container, 15- Carbon fiber composite rod, 16-nitrogen supply device, 17-oxygen supply device.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objectives, technical solutions and advantages of the present invention more clear, the invention will be further described in detail below with reference to the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
图1、2示出了:一种碳纤维复合杆微波连续处理回收一体化装置,包括依次连接的物料传送装置、微波热解装置、玻纤剥离装置、微波氧化装置、物质回收装置。Figures 1 and 2 show: an integrated device for continuous microwave treatment and recycling of carbon fiber composite rods, including a material conveying device, a microwave pyrolysis device, a glass fiber stripping device, a microwave oxidation device, and a material recovery device that are connected in sequence.
所述物料传送装置包括传送轨道1、第一驱动电机2,如图3所示,传送轨道1为滚珠传送轨道,通过在U型槽的轨道两侧设置轨道滚珠,包括16个主动滚珠和176个从动滚珠,主动滚珠由第一驱动电机2驱动,滚珠可选用橡胶材质,摩擦力更大,其转速为0.5-5r/min。轨道数量可按需求设置,附图中设置有4根,第一驱动电机2驱动传送轨道1同时输送4根碳纤维复合杆15到玻纤剥离装置内。The material conveying device includes a conveying
微波热解装置包括热解装置壳体6,如图5所示,热解装置壳体6两侧均设置有气封装置7,热解装置壳体6内设置有加热炉体,第一U型槽轨道8贯穿设置在加热炉体内,微波发生器9设置在加热炉体外侧,对称设置有8个。加热炉体与热解装置壳体6间填充有保温材料,热解装置壳体6顶部的排气口与气体收集装置连接,热解装置壳体6底部设置有裂解油收集装置。所述气封装置7的结构如图6、7所示,气封装置7上设置有物料通道701,物料通道701依次套设有旋转动环702、静环703、弹簧704,气封装置7顶部的气体进口与氮气提供装置16连接。密封气体氮气经自力式压力调节阀进入气封装置7内,在气封装置7与热解装置壳体6之间形成气膜以隔绝外部环境。The microwave pyrolysis device includes a
如图8所示,所述第一U型槽轨道8包括轨道底板801,轨道底板801上平行设置有若干U型槽802,U型槽802底部设置有裂解油出口803,U型槽802侧壁设置有轨道滚珠804,轨道滚珠804,轨道滚珠804采用耐高温的钢材制备。As shown in FIG. 8 , the first
玻纤剥离装置包括剥离装置箱体3,如图4所示,剥离装置箱体3为中空箱体,剥离器4内侧为锥形状管道402,锥形状管道402上设置有刀片401,材质为立方氮化硼刀具材料,旋转切削速度为0.5-5r/min。刀片401旁设置有废料出口,剥离器4外侧壁上设置有传动齿轮,传动齿轮由第二驱动电机5驱动,锥形状管道402两端转动设置在剥离装置箱体3顶部,剥离装置箱体3上设置有锥形状管道402让位孔,第一U型槽轨道8依次与气封装置7的物料通道701、剥离器4的锥形状管道402一端连接。碳纤维复合杆15在第一U型槽轨道8作用下从气封装置7内出来后进入锥形管道402内,在第二驱动电机5作用下,刀片401旋转同时剥除碳纤维复合杆15表面的玻璃纤维层,碳纤维复合杆15同步被往前传送,被剥离后的玻璃纤维从废料出口掉落在剥离装置箱体3底部,定期清理。The glass fiber stripping device includes a stripping
微波氧化装置与微波热解装置结构较为类似,微波氧化装置包括氧化装置壳体10,如图9所示,氧化装置壳体10内内设置有加热炉体,第二U型槽轨道12贯穿设置在加热炉体内,微波发生器9设置在加热炉体外侧,对称设置有2个。加热炉体与氧化装置壳体10间填充有保温材料,氧化装置壳体10顶部的进气口与氧气提供装置17连接。如图10所示,物质回收装置内设置有自动收卷装置11。锥形状管道402另一端依次与第二U型槽轨道12、自动收卷装置11连接。The microwave oxidation device is similar in structure to the microwave pyrolysis device. The microwave oxidation device includes an
为方便热解气体的分离,所述气体收集装置包括冷凝器13,冷凝器13底部液体出口与液体容器连接,冷凝器13顶部气体出口与气体容器14连接。In order to facilitate the separation of pyrolysis gas, the gas collection device includes a
上述装置的微波连续处理回收方法包括如下步骤:The microwave continuous treatment recovery method of the above device comprises the following steps:
S1.将碳纤维复合杆15置于传送轨道1上,启动第一驱动电机2,传送轨道1使碳纤维复合杆15通过气封装置7进入热解装置壳体6的第一U型槽轨道8上;S1. Place the carbon fiber
S2.待碳纤维复合杆15全部进入热解装置壳体6内后,启动两侧的气封装置7,氮气进入气封装置7使热解装置壳体6两侧与外部气体隔绝后,启动热解装置壳体6内的微波发生器9,馈入微波快速加热碳纤维复合杆15,使碳纤维复合杆15在600-800℃下裂解,裂解得到的气体从热解装置壳体6顶部的排气口进入气体收集装置,裂解得到的液体从第一U型槽轨道8上的裂解油出口803流入热解装置壳体6底部,再通过底部出料口进入裂解油收集装置;裂解得到的气体在气体收集装置中的冷凝器13被冷却,部分被冷凝后得到的油类物质进入液体容器内,不可冷凝的气体进入气体容器14内。S2. After all the carbon fiber
S3.被裂解后的碳纤维复合杆15在第一U型槽轨道8的传送下,经过另一侧的气封装置7后,进入剥离装置箱体3的剥离器4内,剥离器4将碳纤维复合杆15表层的玻璃纤维剥除,表层玻璃纤维被剥除后掉落收集在剥离装置箱体3底部;S3. Under the transmission of the first
S4.碳纤维复合杆15在传送轨道1用下,从剥离器4出来后进入氧化装置壳体10的第二U型槽轨道12上;S4. The carbon fiber
S5.待碳纤维复合杆15全部进入氧化装置壳体10内后,往氧化装置壳体10内通入氧气含量在10%-30%的混合气体,开启微波发生器9,在550-600℃下加热碳纤维复合杆15,并保温10-15min,氧化除去碳纤维复合杆15表面的残留碳;S5. After all the carbon fiber
S6.氧化完成后得到碳纤维复合杆裂解氧化后的碳纤维丝束,在第二U型槽轨道12传送下,碳纤维被自动收卷装置11收集。S6. After the oxidation is completed, the carbon fiber tow after the cracking and oxidation of the carbon fiber composite rod is obtained, and the carbon fiber is collected by the automatic winding
尽管这里参照本发明的多个解释性实施例对本发明进行了描述,但是,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。更具体地说,在本申请公开、附图和权利要求的范围内,可以对主题组合布局的组成部件或布局进行多种变形和改进。除了对组成部件或布局进行的变形和改进外,对于本领域技术人员来说,其他的用途也将是明显的。Although the present invention has been described herein with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the scope of this disclosure. within the scope and spirit of the principles. More particularly, various variations and modifications are possible in the component parts or arrangements of the subject combination arrangement within the scope of the present disclosure, drawings and claims. In addition to variations and modifications to the component parts or arrangements, other uses will also be apparent to those skilled in the art.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2022105712083 | 2022-05-24 | ||
CN202210571208.3A CN114907614A (en) | 2022-05-24 | 2022-05-24 | Microwave continuous treatment and recovery integrated device and method for carbon fiber composite rod |
Publications (2)
Publication Number | Publication Date |
---|---|
CN115109305A true CN115109305A (en) | 2022-09-27 |
CN115109305B CN115109305B (en) | 2023-03-28 |
Family
ID=82768575
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210571208.3A Withdrawn CN114907614A (en) | 2022-05-24 | 2022-05-24 | Microwave continuous treatment and recovery integrated device and method for carbon fiber composite rod |
CN202210951716.4A Active CN115109305B (en) | 2022-05-24 | 2022-08-09 | Microwave continuous treatment and recovery integrated device and method for carbon fiber composite rod |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210571208.3A Withdrawn CN114907614A (en) | 2022-05-24 | 2022-05-24 | Microwave continuous treatment and recovery integrated device and method for carbon fiber composite rod |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN114907614A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116117899A (en) * | 2023-03-07 | 2023-05-16 | 兰州工业学院 | Cutting device and method for carbon fiber composite material |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101767104A (en) * | 2009-12-21 | 2010-07-07 | 大连理工大学 | Pyrolysis based resource reclaiming process of waste circuit board |
WO2013180323A1 (en) * | 2012-05-31 | 2013-12-05 | 한국철도기술연구원 | Continuous circulation flow reactor for collecting carbon fiber of waste cfrp, and method therefor |
CN106429210A (en) * | 2016-08-29 | 2017-02-22 | 四川弘毅智慧知识产权运营有限公司 | Steel pipe conveyor with cleaning function |
CN108673787A (en) * | 2018-05-15 | 2018-10-19 | 山东大学 | A kind of recovery method of fibre reinforced composites sucker rod |
CN209344658U (en) * | 2019-02-13 | 2019-09-03 | 郑州宸通机械设备有限公司 | A kind of wire stripper with recycling function |
CN210233228U (en) * | 2019-05-21 | 2020-04-03 | 中国石油化工股份有限公司 | Stripping device for outer cladding of half-clad sucker rod |
CN112266257A (en) * | 2020-10-29 | 2021-01-26 | 中南大学 | Low-cost preparation method and product of fiber-reinforced silicon carbide composite based on continuous C and SiC inter-bundle hybrid |
CN213384387U (en) * | 2020-10-06 | 2021-06-08 | 谢涛 | Device for facilitating transportation of tubular prefabricated part through water utilization |
CN113021680A (en) * | 2021-03-12 | 2021-06-25 | 昆明理工大学 | Method for separating and recovering all components of waste sucker rod |
CN214356157U (en) * | 2021-03-05 | 2021-10-08 | 田作州 | Conveyer is deposited to efficient pipe fitting for building engineering |
CN114230856A (en) * | 2021-11-24 | 2022-03-25 | 江苏亨睿航空工业有限公司 | Recovery system and method for carbon fiber composite material |
-
2022
- 2022-05-24 CN CN202210571208.3A patent/CN114907614A/en not_active Withdrawn
- 2022-08-09 CN CN202210951716.4A patent/CN115109305B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101767104A (en) * | 2009-12-21 | 2010-07-07 | 大连理工大学 | Pyrolysis based resource reclaiming process of waste circuit board |
WO2013180323A1 (en) * | 2012-05-31 | 2013-12-05 | 한국철도기술연구원 | Continuous circulation flow reactor for collecting carbon fiber of waste cfrp, and method therefor |
CN106429210A (en) * | 2016-08-29 | 2017-02-22 | 四川弘毅智慧知识产权运营有限公司 | Steel pipe conveyor with cleaning function |
CN108673787A (en) * | 2018-05-15 | 2018-10-19 | 山东大学 | A kind of recovery method of fibre reinforced composites sucker rod |
CN209344658U (en) * | 2019-02-13 | 2019-09-03 | 郑州宸通机械设备有限公司 | A kind of wire stripper with recycling function |
CN210233228U (en) * | 2019-05-21 | 2020-04-03 | 中国石油化工股份有限公司 | Stripping device for outer cladding of half-clad sucker rod |
CN213384387U (en) * | 2020-10-06 | 2021-06-08 | 谢涛 | Device for facilitating transportation of tubular prefabricated part through water utilization |
CN112266257A (en) * | 2020-10-29 | 2021-01-26 | 中南大学 | Low-cost preparation method and product of fiber-reinforced silicon carbide composite based on continuous C and SiC inter-bundle hybrid |
CN214356157U (en) * | 2021-03-05 | 2021-10-08 | 田作州 | Conveyer is deposited to efficient pipe fitting for building engineering |
CN113021680A (en) * | 2021-03-12 | 2021-06-25 | 昆明理工大学 | Method for separating and recovering all components of waste sucker rod |
CN114230856A (en) * | 2021-11-24 | 2022-03-25 | 江苏亨睿航空工业有限公司 | Recovery system and method for carbon fiber composite material |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116117899A (en) * | 2023-03-07 | 2023-05-16 | 兰州工业学院 | Cutting device and method for carbon fiber composite material |
CN116117899B (en) * | 2023-03-07 | 2023-07-11 | 兰州工业学院 | Cutting device and method for carbon fiber composite material |
Also Published As
Publication number | Publication date |
---|---|
CN114907614A (en) | 2022-08-16 |
CN115109305B (en) | 2023-03-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113278438B (en) | A microwave cracking treatment system and method for waste wind power blades based on coal-fired power plants | |
CN111271711A (en) | A kind of continuous carbonization pyrolysis disposal method of waste lithium battery | |
CN106244186B (en) | A kind of organic polymer waste material processing unit | |
CN107866437A (en) | A kind of processing method of discarded circuit board pyrolysis recovery | |
CN115109305A (en) | A carbon fiber composite rod microwave continuous processing and recycling integrated device and method | |
CN114262620A (en) | Resource utilization method and equipment for organic hazardous solid waste | |
CN104633675B (en) | Discarded appliance circuit plate energy innocuity disposal system | |
CN113531546A (en) | A kind of rotary kiln, electric furnace electronic waste resource recovery device and recovery method | |
CN105154115B (en) | A kind of spiral biomass continuous microwave pyrolysis charring device | |
CN213570104U (en) | System for oily sludge oil recovery and innocent treatment | |
CN110000189A (en) | A kind of fiber reinforcement organic composite material waste effectively resource utilization equipment | |
CN101307154B (en) | Combined type material thermal cracking integrated system | |
CN112410050A (en) | Microwave plasma cracking gasification technology | |
CN211367360U (en) | High-liquid-content oil sludge cracking treatment device | |
CN217127317U (en) | Carbon fiber resin sucker rod microwave pyrolysis device | |
CN111978966A (en) | Oily sludge treatment system based on syllogic rotary kiln | |
CN212610424U (en) | An oily sludge treatment system based on three-stage rotary kiln | |
CN215592993U (en) | Microwave cracking system capable of feeding continuously | |
CN212425823U (en) | A two-stage pyrolysis treatment system for oily sludge | |
CN212451115U (en) | Processing system of oily sludge | |
CN205590624U (en) | Micelle reaction schizolysis cauldron | |
CN212451116U (en) | Processing system of oily sludge | |
CN211972228U (en) | Micro-negative pressure cracking system for rubber thermal cycle heating | |
CN116001144A (en) | Method and system for recycling waste fan blades | |
CN210662866U (en) | Domestic waste oxygen boosting schizolysis gasification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |