CN114988852A - 一种具有多层夹层结构陶瓷型芯的制备方法 - Google Patents

一种具有多层夹层结构陶瓷型芯的制备方法 Download PDF

Info

Publication number
CN114988852A
CN114988852A CN202210521288.1A CN202210521288A CN114988852A CN 114988852 A CN114988852 A CN 114988852A CN 202210521288 A CN202210521288 A CN 202210521288A CN 114988852 A CN114988852 A CN 114988852A
Authority
CN
China
Prior art keywords
ceramic core
core
sandwich structure
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210521288.1A
Other languages
English (en)
Other versions
CN114988852B (zh
Inventor
姜卫国
宋佐龙
刘炳昌
李国胜
张珊珊
董琳
赵德彪
李延昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weifang University of Science and Technology
Original Assignee
Weifang University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weifang University of Science and Technology filed Critical Weifang University of Science and Technology
Priority to CN202210521288.1A priority Critical patent/CN114988852B/zh
Publication of CN114988852A publication Critical patent/CN114988852A/zh
Application granted granted Critical
Publication of CN114988852B publication Critical patent/CN114988852B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/481Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing silicon, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63496Bituminous materials, e.g. tar, pitch
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

本发明的目的在于提供一种具有多层夹层结构陶瓷型芯的制备方法,具体步骤为:1)、制备夹层结构内层陶瓷型芯素坯,并进行烧结;2)、对烧结后的内层陶瓷型芯进行修整与强化处理;3)、将修整好的内层陶瓷型芯放置在金属模具中,制备包含内层陶瓷型芯的外层陶瓷型芯素坯;4)、将含有内层陶瓷型芯的外层陶瓷型芯素坯进行烧结;5)、采用化学法将内层陶瓷型芯去除,最终,制得多层夹层结构陶瓷型芯。该方法仅通过常规工艺设备即可制备具有夹层结构的陶瓷型芯,可保证夹层结构陶瓷型芯的成品率及高温性能,满足复杂结构空心叶片制备需求。

Description

一种具有多层夹层结构陶瓷型芯的制备方法
技术领域
本发明属于高温合金技术领域,特别涉及复杂空心结构高温合金陶瓷型芯的制备工艺。
背景技术
航空发动机最关键的热端部件是涡轮叶片,为了提高热效率,涡轮叶片前进气温度越来越高,但该温度已远超过材料本身的熔点,因此必须采用冷却技术,即叶片为空心结构。空心叶片的冷却效果与叶片的气冷结构有密切关系,为了追求更高的气体冷却效果,叶片的空心结构也越来越复杂,特别是具有夹层结构的型腔,其型芯制备异常困难。
专利CN201410210181.0提供了一种多层夹层结构陶瓷型芯制备工艺,其特征为采用金属芯制备复杂内嵌空腔结构陶瓷型芯,但金属型芯只能制备简单的形状,尚无法制备形状复杂结构型芯。
专利CN201510231173.9提供了一种面向双层壁空心涡轮叶片的制造方法,其中也包含了一种夹层结构陶瓷型芯的制备方法,其特征为采用三维造型软件,将叶片原型的叶盆和叶背上与双层壁的冷却通道对应的外壁从叶片原型中拆分出来,利用光固化成型分别制得含有冲击孔的双层壁空心涡轮叶片的树脂原型、拆分出的树脂外壁以及用于形成陶瓷型壳外壁面的树脂外壳;然后进行模压成型,制得含有冲击孔型芯的双层壁冷却通道的陶瓷型芯;最后将制得的陶瓷型芯镶嵌在含有冲击孔的双层壁空心涡轮叶片的树脂原型中,再和拆分出的树脂外壁相装配;然后将树脂外壳与树脂原型的榫根部分相装配,制得含有陶瓷型芯的双层壁空心涡轮叶片的树脂负型;最后制备用于制作陶瓷铸型的陶瓷浆料,将其灌注入树脂负型中,待该陶瓷铸型的陶瓷浆料原位固化后形成陶瓷铸型坯体,再依次经冷冻干燥、脱脂预烧、浸渍和终烧,制得含有陶瓷型芯的双层壁空心涡轮叶片的陶瓷铸型;可见该工艺异常复杂,虽然可制备夹层结构陶瓷型芯,但其成品率受到较大限制,不利于工业生产。
专利CN201510569357.6提供了一种双层壁空心叶片用空心陶瓷型芯的制备方法,其特征在于空心陶瓷型芯采用内芯的制备工艺。首先制备内芯用石蜡基碳粉材料浆料,采用注射成型的方法进行内芯的成型;然后将空心陶瓷型芯用内芯的高温碳化:将制备的空心陶瓷型芯用内芯部件在真空条件下或惰性气体(氮气或氩气)保护条件下,在一定的温度下进行高温碳化处理,获得具有一定强度的内芯部件;将上述制得的内芯镶嵌在制备陶瓷型芯的金属外模具内,采用注射成型的方法进行陶瓷型芯的成型;对获得的陶瓷型芯采用埋粉烧结方式进行烧结,烧结气氛为空气气氛;在加热烧结过程中,上述镶嵌的内芯会在氧气环境下发生反应形成气体被脱除,最终制得空心陶瓷型芯。可见,该工艺工程复杂,内芯与外芯之间的陶瓷型芯也容易变形,内芯烧结过程中易产生残留,清洗非常困难,不适合工业化生产。
专利CN201410530280.7提供了一种航空发动机多孔层板发散冷却涡轮叶片陶瓷型芯一次成型的方法,采用可溶性蜡制备各个工艺部件,将每个工艺部件都用单独的模具压制成型;然后将所有可溶性部件通过相互间的定位结构放置到整体陶瓷型芯模具里压制整体的陶瓷型芯;压制完成后,将可溶性工艺部件溶解,最终得到整体多孔层板陶瓷型芯。但由于可溶性蜡的强度较弱,在制备陶瓷型芯时非常容易弯曲或断裂,型芯的成品率非常低。
专利CN202010051157.2发明了一种熔模铸造用复杂双层壁硅基陶瓷型芯光固化3D打印制备方法。第一步配制陶瓷型芯浆料;第二步根据需要获得的单晶空心双层壁发动机叶片得到复杂双层壁硅基陶瓷型芯的三维模型;第三步将型芯的STL文件导入光固化3D打印机中,并结合第一步配制好的硅基陶瓷型芯浆料进行逐层打印,获得光固化双层壁型芯素坯;第四步将型芯素坯进行干燥、烧结工艺,获得光固化3D打印的复杂双层壁硅基陶瓷型芯。该工艺制备型芯粉料粒度细小,抗高温蠕变能力差,无法满足工业生产需求。
综上可见,如何采用现有工业设备制备高性能、结构复杂、局部尺寸细小及高成品率的夹层结构陶瓷型芯仍然是实际生产中的难题。
发明内容
本发明的目的在于提供一种具有多层夹层结构陶瓷型芯的制备方法,该方法仅通过常规工艺设备即可制备具有夹层结构的陶瓷型芯,可保证夹层结构陶瓷型芯的成品率及高温性能,满足复杂结构空心叶片制备需求。
本发明技术方案如下:
一种具有多层夹层结构陶瓷型芯的制备方法,其特征在于,具体步骤如下:
1)、制备夹层结构内层陶瓷型芯素坯,并进行烧结;
2)、对烧结后的内层陶瓷型芯进行修整与强化处理;
3)、将修整好的内层陶瓷型芯放置在金属模具中,制备包含内层陶瓷型芯的外层陶瓷型芯素坯;
4)、将含有内层陶瓷型芯的外层陶瓷型芯素坯进行烧结;
5)、采用化学法将内层陶瓷型芯去除,最终,制得多层夹层结构陶瓷型芯。
作为优选的技术方案:
步骤1)中,所述内层陶瓷型芯素坯的制备方法为:陶瓷粉料材质为氧化镁,由粒度分别为400-600目和800-1000目的氧化镁粉组成,两者质量比为30-40%:60-70%,增塑剂为石蜡基增塑剂;内层陶瓷型芯料浆中,氧化镁粉与增塑剂的质量比为14-18%:82-86%;采用注射成型的方式成型,成型压力为2-10MPa,注射时间为20-120秒,保压时间为20-120秒。
所述内层陶瓷型芯素坯的烧结工艺为:陶瓷型芯脱蜡阶段采用低温缓慢升温烧结,升温速率控制在0.5-2℃/min,温度500℃-600℃,保温时间1-8小时;终烧结阶段采用高温烧结,烧结温度在1190℃-1250℃,保温时间3-8小时,然后炉冷至室温。制得的氧化镁型芯从室温至1300℃的平均热膨胀系数为(6-14)×10-6-1
步骤2)中,所述强化处理为:将陶瓷型芯浸入低温强化剂中,所述低温强化剂为树脂或酚醛清漆,浸泡时间30-60分钟,取出后在空气中干燥。内层陶瓷型芯强化后其室温抗弯强度大于10MPa。
步骤3)中,将内层陶瓷型芯放置在外层陶瓷型芯模具中,压制含有内层陶瓷型芯的外层陶瓷型芯素坯;外层陶瓷型芯采用注射成型的方式成型,成型压力为2-10MPa,注射时间为20-120秒,保压时间为20-120秒。
外层陶瓷型芯料浆中,粉料材质为石英粉与锆英粉,石英粉由粒度分别为200-400目和600-1000目的石英玻璃粉组成,两者质量比为30-40%:60-70%,石英粉与锆英粉质量比为75-90%:10-25%;增塑剂为石蜡基增塑剂。
外层陶瓷型芯料浆中,粉料与增塑剂的质量比为14-18%:82-86%。
步骤4)中,外层陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段采用低温缓慢升温烧结,升温速率控制在0.5-2℃/min,温度500℃-600℃,保温时间1-8小时;终烧结阶段采用高温烧结,烧结温度在1190℃-1250℃,保温时间3-8小时,然后炉冷至室温。制备的外层二氧化硅基型芯从室温至1300℃的平均热膨胀系数为(5-15)×10-6-1
步骤5)中,烧结后的外层陶瓷型芯经修整后,采用醋酸去除内层陶瓷型芯,醋酸质量浓度为5-30%,加热温度80-100℃,时间1-5小时;然后对型芯进行清洗,清洗后进行烘干,烘干温度80-150℃,时间1-5小时。
将去除内层后的陶瓷型芯进行室温强化,将陶瓷型芯浸入低温强化剂中,所述低温强化剂为树脂或酚醛清漆,浸泡时间30-60分钟,取出后在空气中干燥。
本发明利用具有高抗弯强度的内层陶瓷型芯,满足复合型芯外层陶瓷型芯素坯高压力下压制成型的要求。同时,通过粉料粒度组成调整内层及外层陶瓷型芯的热膨胀系数,使内层陶瓷型芯与外层陶瓷型芯热膨胀系数匹配,减轻烧结过程中热应力,避免型芯变形及裂纹产生。依据选择性腐蚀原理,利用弱酸选择性去除内层陶瓷型芯而保留外层陶瓷型芯,最终制得夹层结构陶瓷型芯。
具体实施方式
实施例1
1)、制备夹层结构内层陶瓷型芯素坯,并进行烧结;
制备内层陶瓷型芯素坯:内层陶瓷粉料材质为氧化镁,粉料由粒度分别为400目和800目氧化镁粉组成,两者质量配比为30%:70%,增塑剂为石蜡基增塑剂。内层陶瓷型芯料浆中,氧化镁粉与增塑剂的质量配比为18%:82%;内层陶瓷型芯采用注射成型的方式成型,成型压力为2MPa,注射时间为20秒,保压时间为60秒。
内层高陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段升温速率控制在0.5℃/min,升温至500℃,保温时间2小时;终烧结阶段烧结温度在1250℃,保温时间3小时,然后炉冷至室温。氧化镁型芯从室温至1300℃的平均热膨胀系数为8.5×10-6-1
2)、对烧结后的内层陶瓷型芯进行修整与强化处理;
烧结后对内层陶瓷型芯进行修整。然后将内层陶瓷型芯进行室温强化,将陶瓷型芯浸入低温强化剂树脂中,浸泡时间30分钟,然后取出在空气中干燥。
3)、将修整好的内层陶瓷型芯放置在金属模具中,制备包含内层陶瓷型芯的外层陶瓷型芯素坯;
外层陶瓷粉料材质为石英粉与锆英粉组成。石英粉由粒度分别为200目和600目石英玻璃粉组成,两者质量配比为40%:60%,石英粉与锆英粉质量配比为75%:25%;增塑剂为石蜡基增塑剂。外层陶瓷型芯料浆中,粉料与增塑剂的质量配比为14%:86%;将强化后的内层陶瓷型芯放置在金属模具中,压制含有内层陶瓷型芯的外层陶瓷型芯素坯;外层陶瓷型芯采用注射成型的方式成型,成型压力为3MPa,注射时间为30秒,保压时间为60秒。
4)、将含有内层陶瓷型芯的外层陶瓷型芯素坯进行烧结;
外层陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段升温速率控制在1℃/min,温度500℃,保温时间2小时;终烧结阶段烧结温度在1250℃,保温时间6小时,然后炉冷至室温。外层二氧化硅基型芯从室温至1300℃的热膨胀系数为9.2×10-6-1
5)、去除内层陶瓷型芯,制得多层夹层结构陶瓷型芯:
烧结后的外层陶瓷型芯经修整后,采用醋酸去除内层陶瓷型芯,醋酸质量浓度为10%,加热温度100℃,时间1小时。然后对型芯进行清洗,清洗后进行烘干,烘干温度150℃,时间1小时;将去除内层后的型芯进行室温强化,将陶瓷型芯浸入低温强化剂树脂中,浸泡时间30分钟,然后取出在空气中干燥。最终,制得多层夹层结构陶瓷型芯陶瓷型芯,未出现型芯变形及裂纹问题。
实施例2
1)、制备夹层结构内层陶瓷型芯素坯,并进行烧结;
制备内层陶瓷型芯素坯:内层陶瓷粉料材质为氧化镁,粉料由粒度分别为400目和1000目氧化镁粉组成,两者质量配比为30%:70%,增塑剂为石蜡基增塑剂。氧化镁粉与增塑剂的质量配比为16%:84%;采用注射成型的方式成型,成型压力为8MPa,注射时间为30秒,保压时间为60秒。
内层高陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段升温速率控制在2℃/min,升温至600℃,保温时间3小时;终烧结阶段烧结温度在1200℃,保温时间4小时,然后炉冷至室温。氧化镁型芯从室温至1300℃的平均热膨胀系数为6.5×10-6-1
2)、对烧结后的内层陶瓷型芯进行修整与强化处理;
烧结后对内层陶瓷型芯进行修整。然后将内层陶瓷型芯进行室温强化,将陶瓷型芯浸入低温强化剂酚醛清漆中,浸泡时间30分钟,然后取出在空气中干燥。
3)、将修整好的内层陶瓷型芯放置在金属模具中,制备包含内层陶瓷型芯的外层陶瓷型芯素坯;
外层陶瓷粉料材质为石英粉与锆英粉组成。石英粉由粒度分别为400目和600目石英玻璃粉组成,两者质量配比为40%:60%,石英粉与锆英粉质量配比为75%:25%;增塑剂为石蜡基增塑剂。外层陶瓷型芯料浆中,粉料与增塑剂的质量配比为16%:84%;将强化后的内层陶瓷型芯放置在金属模具中,压制含有内层陶瓷型芯的外层陶瓷型芯素坯;外层陶瓷型芯采用注射成型的方式成型,成型压力为5MPa,注射时间为40秒,保压时间为60秒。
4)、将含有内层陶瓷型芯的外层陶瓷型芯素坯进行烧结;
外层陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段升温速率控制在1.5℃/min,升温至500℃,保温时间2小时;终烧结阶段烧结温度在1220℃,保温时间4小时,然后炉冷至室温。外层二氧化硅基型芯从室温至1300℃的平均热膨胀系数为7.1×10-6-1
5)、去除内层陶瓷型芯,制得多层夹层结构陶瓷型芯:
烧结后的外层陶瓷型芯经修整后,采用醋酸去除内层陶瓷型芯,醋酸质量浓度为10%,加热温度80℃,时间4小时。然后对型芯进行清洗,清洗后进行烘干,烘干温度80℃,时间5小时;将去除内层后的型芯进行室温强化,将陶瓷型芯浸入低温强化剂酚醛清漆中,浸泡时间60分钟,然后取出在空气中干燥。最终,制得多层夹层结构陶瓷型芯陶瓷型芯,未出现型芯变形及裂纹问题。
实施例3
1)、制备夹层结构内层陶瓷型芯素坯,并进行烧结;
制备内层陶瓷型芯素坯:内层陶瓷粉料材质为氧化镁,粉料由粒度分别为600目和1000目氧化镁粉组成,两者质量配比为35%:65%,增塑剂为石蜡基增塑剂。氧化镁粉与增塑剂的质量配比为15%:85%;采用注射成型的方式成型,成型压力为6MPa,注射时间为30秒,保压时间为120秒。
内层高陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段升温速率控制在1℃/min,升温至600℃,保温时间1小时;终烧结阶段烧结温度在1250℃,保温时间3小时,然后炉冷至室温。氧化镁型芯从室温至1300℃的平均热膨胀系数为6.3×10-6-1
2)、对烧结后的内层陶瓷型芯进行修整与强化处理;
烧结后对内层陶瓷型芯进行修整。然后将内层陶瓷型芯进行室温强化,将陶瓷型芯浸入低温强化剂树脂中,浸泡时间30分钟,然后取出在空气中干燥。
3)、将修整好的内层陶瓷型芯放置在金属模具中,制备包含内层陶瓷型芯的外层陶瓷型芯素坯;
外层陶瓷粉料材质为石英粉与锆英粉组成。石英粉由粒度分别为400目和1000目石英玻璃粉组成,两者质量配比为40%:60%,石英粉与锆英粉质量配比为80%:20%;增塑剂为石蜡基增塑剂。外层陶瓷型芯料浆中,粉料与增塑剂的质量配比为17%:83%;将强化后的内层陶瓷型芯放置在金属模具中,压制含有内层陶瓷型芯的外层陶瓷型芯素坯;外层陶瓷型芯采用注射成型的方式成型,成型压力为7MPa,注射时间为20秒,保压时间为20秒。
4)、将含有内层陶瓷型芯的外层陶瓷型芯素坯进行烧结;
外层陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段升温速率控制在1℃/min,升温至500℃,保温时间2小时;终烧结阶段烧结温度在1190℃,保温时间6小时,然后炉冷至室温。外层二氧化硅基型芯从室温至1300℃的平均热膨胀系数为5×10-6-1
5)、去除内层陶瓷型芯,制得多层夹层结构陶瓷型芯:
烧结后的外层陶瓷型芯经修整后,采用醋酸去除内层陶瓷型芯,醋酸质量浓度为15%,加热温度100℃,时间2小时。然后对型芯进行清洗,清洗后进行烘干,烘干温度80℃,时间5小时;将去除内层后的型芯进行室温强化,将陶瓷型芯浸入低温强化剂树脂中,浸泡时间30分钟,然后取出在空气中干燥。最终,制得多层夹层结构陶瓷型芯陶瓷型芯,未出现型芯变形及裂纹问题。
实施例4
1)、制备夹层结构内层陶瓷型芯素坯,并进行烧结;
制备内层陶瓷型芯素坯:内层陶瓷粉料材质为氧化镁,粉料由粒度分别为600目和800目氧化镁粉组成,两者质量配比为35%:65%,增塑剂为石蜡基增塑剂。氧化镁粉与增塑剂的质量配比为18%:82%;采用注射成型的方式成型,成型压力为4MPa,注射时间为120秒,保压时间为120秒。
内层高陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段升温速率控制在2℃/min,升至温度600℃,保温时间1小时;终烧结阶段烧结温度在1200℃,保温时间4小时,然后炉冷至室温。氧化镁型芯从室温至1300℃的平均热膨胀系数为6.4×10-6-1
2)、对烧结后的内层陶瓷型芯进行修整与强化处理;
烧结后对内层陶瓷型芯进行修整。然后将内层陶瓷型芯进行室温强化,将陶瓷型芯浸入低温强化剂树脂中,浸泡时间60分钟,然后取出在空气中干燥。
3)、将修整好的内层陶瓷型芯放置在金属模具中,制备包含内层陶瓷型芯的外层陶瓷型芯素坯;
外层陶瓷粉料材质为石英粉与锆英粉组成。石英粉由粒度分别为200目和800目石英玻璃粉组成,两者质量配比为40%:60%,石英粉与锆英粉质量配比为90%:10%;增塑剂为石蜡基增塑剂。外层陶瓷型芯料浆中,粉料与增塑剂的质量配比为14%:86%;将强化后的内层陶瓷型芯放置在金属模具中,压制含有内层陶瓷型芯的外层陶瓷型芯素坯;外层陶瓷型芯采用注射成型的方式成型,成型压力为8MPa,注射时间为60秒,保压时间为60秒。
4)、将含有内层陶瓷型芯的外层陶瓷型芯素坯进行烧结;
外层陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段升温速率控制在1℃/min,温度500℃,保温时间2小时;终烧结阶段烧结温度在1230℃,保温时间6小时,然后炉冷至室温。外层二氧化硅基型芯从室温至1300℃的平均热膨胀系数为9×10-6-1
5)、去除内层陶瓷型芯,制得多层夹层结构陶瓷型芯:
烧结后的外层陶瓷型芯经修整后,采用醋酸去除内层陶瓷型芯,醋酸质量浓度为30%,加热温度80℃,时间2小时。然后对型芯进行清洗,清洗后进行烘干,烘干温度100℃,时间3小时;将去除内层后的型芯进行室温强化,将陶瓷型芯浸入低温强化剂酚醛清漆中,浸泡时间30分钟,然后取出在空气中干燥。最终,制得多层夹层结构陶瓷型芯陶瓷型芯,未出现型芯变形及裂纹问题。
对比例1
与实施例1的不同之处在于:
型芯内层材料粉料粒度为400目氧化镁粉,制备工艺及参数完全相同,但烧结后制得的内层陶瓷型芯强度较弱,在外层陶瓷型芯注射成型时内层陶瓷型芯发生断裂,导致夹层结构陶瓷素坯废品。
对比例2
内层陶瓷型芯粉料配比及制备工艺与实施例2完全相同,不同之处在于夹层结构陶瓷型芯脱蜡阶段升温速率为5℃/min,由于内外型芯热膨胀程度不同,导致外层陶瓷型芯变形与断裂发生。
本发明未尽事宜为公知技术。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种具有多层夹层结构陶瓷型芯的制备方法,其特征在于,具体步骤如下:
1)、制备夹层结构内层陶瓷型芯素坯,并进行烧结;
2)、对烧结后的内层陶瓷型芯进行修整与强化处理;
3)、将修整好的内层陶瓷型芯放置在金属模具中,制备包含内层陶瓷型芯的外层陶瓷型芯素坯;
4)、将含有内层陶瓷型芯的外层陶瓷型芯素坯进行烧结;
5)、采用化学法将内层陶瓷型芯去除,最终,制得多层夹层结构陶瓷型芯。
2.按照权利要求1所述具有多层夹层结构陶瓷型芯的制备方法,其特征在于,步骤1)中,所述内层陶瓷型芯素坯的制备方法为:陶瓷粉料材质为氧化镁,由粒度分别为400-600目和800-1000目的氧化镁粉组成,两者质量比为30-40%:60-70%,增塑剂为石蜡基增塑剂;内层陶瓷型芯料浆中,氧化镁粉与增塑剂的质量比为14-18%:82-86%;采用注射成型的方式成型,成型压力为2-10MPa,注射时间为20-120秒,保压时间为20-120秒。
3.按照权利要求1所述具有多层夹层结构陶瓷型芯的制备方法,其特征在于,步骤1)中,所述内层陶瓷型芯素坯的烧结工艺为:陶瓷型芯脱蜡阶段采用低温缓慢升温烧结,升温速率控制在0.5-2℃/min,温度500℃-600℃,保温时间1-8小时;终烧结阶段采用高温烧结,烧结温度在1190℃-1250℃,保温时间3-8小时,然后炉冷至室温。
4.按照权利要求1所述具有多层夹层结构陶瓷型芯的制备方法,其特征在于,步骤2)中,所述强化处理为:将陶瓷型芯浸入低温强化剂中,所述低温强化剂为树脂或酚醛清漆,浸泡时间30-60分钟,取出后在空气中干燥。
5.按照权利要求1所述具有多层夹层结构陶瓷型芯的制备方法,其特征在于:步骤3)中,将内层陶瓷型芯放置在外层陶瓷型芯模具中,压制含有内层陶瓷型芯的外层陶瓷型芯素坯;外层陶瓷型芯采用注射成型的方式成型,成型压力为2-10MPa,注射时间为20-120秒,保压时间为20-120秒。
6.按照权利要求5所述具有多层夹层结构陶瓷型芯的制备方法,其特征在于:步骤3)中,外层陶瓷型芯料浆中,粉料材质为石英粉与锆英粉,石英粉由粒度分别为200-400目和600-1000目的石英玻璃粉组成,两者质量比为30-40%:60-70%,石英粉与锆英粉质量比为75-90%:10-25%;增塑剂为石蜡基增塑剂。
7.按照权利要求6所述具有多层夹层结构陶瓷型芯的制备方法,其特征在于:步骤3)中,外层陶瓷型芯料浆中,粉料与增塑剂的质量比为14-18%:82-86%。
8.按照权利要求1所述具有多层夹层结构陶瓷型芯的制备方法,其特征在于,步骤4)中,外层陶瓷型芯的烧结工艺为:陶瓷型芯脱蜡阶段采用低温缓慢升温烧结,升温速率控制在0.5-2℃/min,温度500℃-600℃,保温时间1-8小时;终烧结阶段采用高温烧结,烧结温度在1190℃-1250℃,保温时间3-8小时,炉冷至室温。
9.按照权利要求1所述具有多层夹层结构陶瓷型芯的制备方法,其特征在于:步骤5)中,烧结后的外层陶瓷型芯经修整后,采用醋酸去除内层陶瓷型芯,醋酸质量浓度为5-30%,加热温度80-100℃,时间1-5小时;然后对型芯进行清洗,清洗后进行烘干,烘干温度80-150℃,时间1-5小时。
10.按照权利要求1所述具有多层夹层结构陶瓷型芯的制备方法,其特征在于:步骤5)中,将去除内层后的陶瓷型芯进行室温强化,将陶瓷型芯浸入低温强化剂中,所述低温强化剂为树脂或酚醛清漆,浸泡时间30-60分钟,取出后在空气中干燥。
CN202210521288.1A 2022-05-13 2022-05-13 一种具有多层夹层结构陶瓷型芯的制备方法 Active CN114988852B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210521288.1A CN114988852B (zh) 2022-05-13 2022-05-13 一种具有多层夹层结构陶瓷型芯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210521288.1A CN114988852B (zh) 2022-05-13 2022-05-13 一种具有多层夹层结构陶瓷型芯的制备方法

Publications (2)

Publication Number Publication Date
CN114988852A true CN114988852A (zh) 2022-09-02
CN114988852B CN114988852B (zh) 2023-09-05

Family

ID=83026395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210521288.1A Active CN114988852B (zh) 2022-05-13 2022-05-13 一种具有多层夹层结构陶瓷型芯的制备方法

Country Status (1)

Country Link
CN (1) CN114988852B (zh)

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1195910B (de) * 1959-01-22 1965-07-01 Gen Motors Corp Verfahren zur Herstellung von gegossenen hohlen Turbinenschaufeln
FR2301350A1 (fr) * 1975-02-21 1976-09-17 Desmarquest & Cec Procede de
GB2202542A (en) * 1987-02-24 1988-09-28 United Technologies Corp Core molding composition
JPH06246728A (ja) * 1993-02-23 1994-09-06 Mitsubishi Materials Corp 中空セラミックスの製造方法
US5394932A (en) * 1992-01-17 1995-03-07 Howmet Corporation Multiple part cores for investment casting
JPH08141699A (ja) * 1994-11-22 1996-06-04 Daido Steel Co Ltd マニホールドの製造方法
JPH08174150A (ja) * 1994-12-20 1996-07-09 Howmet Corp 包囲鋳造用の多部品コア部
WO1997002914A1 (en) * 1995-07-11 1997-01-30 Extrude Hone Corporation Investment casting molds and cores
EP1367223A2 (en) * 2002-05-31 2003-12-03 Siemens Westinghouse Power Corporation Ceramic matrix composite gas turbine vane
EP1772210A2 (en) * 2005-09-30 2007-04-11 General Electric Company Methods for making ceramic casting cores and cores
CN101077836A (zh) * 2007-06-19 2007-11-28 西安交通大学 一种氧化铝基陶瓷型芯的制造方法
CN102079653A (zh) * 2010-12-06 2011-06-01 北京航空航天大学 航空发动机叶片用硅基陶瓷型芯的制备方法
KR20120032771A (ko) * 2010-09-29 2012-04-06 한국피아이엠(주) 중공형 부품 및 그 제조방법
WO2012045247A1 (zh) * 2010-10-08 2012-04-12 Li Yadong 一种多层壳芯复合结构零件的制备方法
JP2012161805A (ja) * 2011-02-04 2012-08-30 Hitachi Metals Ltd セラミック中子およびその製造方法
CN103242036A (zh) * 2012-02-14 2013-08-14 中国科学院金属研究所 一种复合陶瓷型芯制备工艺
CN104014737A (zh) * 2014-05-19 2014-09-03 沈阳工业大学 一种复杂内嵌空腔结构陶瓷型芯的制备工艺
CN105127373A (zh) * 2015-09-10 2015-12-09 上海大学 一种双层壁空心叶片用空心陶瓷型芯的制备方法
CN105272181A (zh) * 2015-10-16 2016-01-27 沈阳工业大学 复合陶瓷型芯的制备工艺
CN108751949A (zh) * 2018-05-04 2018-11-06 佛山市锋东复合材料有限公司 一种复合陶瓷型芯的制造方法
US20190001402A1 (en) * 2017-06-28 2019-01-03 General Electric Company Additively manufactured interlocking casting core structure with ceramic shell

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1195910B (de) * 1959-01-22 1965-07-01 Gen Motors Corp Verfahren zur Herstellung von gegossenen hohlen Turbinenschaufeln
FR2301350A1 (fr) * 1975-02-21 1976-09-17 Desmarquest & Cec Procede de
GB2202542A (en) * 1987-02-24 1988-09-28 United Technologies Corp Core molding composition
US5394932A (en) * 1992-01-17 1995-03-07 Howmet Corporation Multiple part cores for investment casting
JPH06246728A (ja) * 1993-02-23 1994-09-06 Mitsubishi Materials Corp 中空セラミックスの製造方法
JPH08141699A (ja) * 1994-11-22 1996-06-04 Daido Steel Co Ltd マニホールドの製造方法
JPH08174150A (ja) * 1994-12-20 1996-07-09 Howmet Corp 包囲鋳造用の多部品コア部
WO1997002914A1 (en) * 1995-07-11 1997-01-30 Extrude Hone Corporation Investment casting molds and cores
EP1367223A2 (en) * 2002-05-31 2003-12-03 Siemens Westinghouse Power Corporation Ceramic matrix composite gas turbine vane
EP1772210A2 (en) * 2005-09-30 2007-04-11 General Electric Company Methods for making ceramic casting cores and cores
CN101077836A (zh) * 2007-06-19 2007-11-28 西安交通大学 一种氧化铝基陶瓷型芯的制造方法
KR20120032771A (ko) * 2010-09-29 2012-04-06 한국피아이엠(주) 중공형 부품 및 그 제조방법
WO2012045247A1 (zh) * 2010-10-08 2012-04-12 Li Yadong 一种多层壳芯复合结构零件的制备方法
CN102079653A (zh) * 2010-12-06 2011-06-01 北京航空航天大学 航空发动机叶片用硅基陶瓷型芯的制备方法
JP2012161805A (ja) * 2011-02-04 2012-08-30 Hitachi Metals Ltd セラミック中子およびその製造方法
CN103242036A (zh) * 2012-02-14 2013-08-14 中国科学院金属研究所 一种复合陶瓷型芯制备工艺
CN104014737A (zh) * 2014-05-19 2014-09-03 沈阳工业大学 一种复杂内嵌空腔结构陶瓷型芯的制备工艺
CN105127373A (zh) * 2015-09-10 2015-12-09 上海大学 一种双层壁空心叶片用空心陶瓷型芯的制备方法
CN105272181A (zh) * 2015-10-16 2016-01-27 沈阳工业大学 复合陶瓷型芯的制备工艺
US20190001402A1 (en) * 2017-06-28 2019-01-03 General Electric Company Additively manufactured interlocking casting core structure with ceramic shell
CN108751949A (zh) * 2018-05-04 2018-11-06 佛山市锋东复合材料有限公司 一种复合陶瓷型芯的制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘鸣;姜卫国;何洪涛;任兴孚;: "复杂结构空心高压涡轮导向叶片精密铸造工艺", 特种铸造及有色合金, no. 04 *
赵红亮,翁康荣,关绍康,楼琅洪,李英敖,赵惠田,胡壮麒: "空心叶片用陶瓷型芯", 特种铸造及有色合金, no. 05 *

Also Published As

Publication number Publication date
CN114988852B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
CN107021771B (zh) 一种基于3d打印技术的氧化钙基陶瓷铸型制造方法
KR100619195B1 (ko) 인베스트먼트 주조 주형을 형성하기 위한 방법 및 장치
CN110280717B (zh) 一种喷墨粘接三维打印砂型钛合金铸造工艺
JP2013215805A (ja) 鋳造プロセス用の複合コア並びにその製造及び使用方法
CN103223466B (zh) 一种面向涡轮叶片的金属模具快速制造方法
CN104907492A (zh) 一种面向双层壁空心涡轮叶片的制造方法
CN108675798A (zh) 一种氮化硅陶瓷及其制备方法
CN108002842B (zh) 一种复杂形状多孔氮化硅件的制备方法
CN105170911B (zh) 一种复杂异型复合砂芯的制造方法
CN109692943B (zh) 一种真空压力浸渗正压法制备SiC3D/Al复合材料的方法
CN109822078B (zh) 一种真空压力浸渗反压法制备SiC3D/Al复合材料的方法
CN101670433B (zh) 一种激光间接成型制造金属模具的方法
CN103506594B (zh) 一种发动机叶片的精密铸造方法
CN103521704B (zh) 一种叶片的铸造方法
CN114180945A (zh) 一种陶瓷型芯型壳一体件增材制造方法
CN114988852B (zh) 一种具有多层夹层结构陶瓷型芯的制备方法
CN116283254A (zh) 一种耐高温硅基陶瓷型芯及其制备方法和应用
CN112250473B (zh) 一种梯度多孔陶瓷型芯及其制备方法
CN105855467A (zh) 一种精密铸造蜡芯内模及蜡芯制作方法
CN113563088B (zh) 多孔氮化硅陶瓷零件及其制造方法
JP2019076954A (ja) インベストメント鋳造用セラミックコア内の炭素繊維
CN112496262A (zh) 一种基于sls技术的铝合金铸件快速铸造工艺
CN114907133A (zh) 一种硅基陶瓷型芯材料、制备方法以及硅基陶瓷型芯
CN112239369B (zh) 一种梯度空心陶瓷型芯及其制备方法
CN111992674B (zh) 一种轻合金铸件用高强韧易脱除复合陶瓷型芯的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant