CN114959575B - 一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用 - Google Patents

一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用 Download PDF

Info

Publication number
CN114959575B
CN114959575B CN202210589861.2A CN202210589861A CN114959575B CN 114959575 B CN114959575 B CN 114959575B CN 202210589861 A CN202210589861 A CN 202210589861A CN 114959575 B CN114959575 B CN 114959575B
Authority
CN
China
Prior art keywords
layer
alcrsion
functional layer
wear
film sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210589861.2A
Other languages
English (en)
Other versions
CN114959575A (zh
Inventor
潘德成
张�林
李明喜
王启民
张世宏
郑军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202210589861.2A priority Critical patent/CN114959575B/zh
Publication of CN114959575A publication Critical patent/CN114959575A/zh
Application granted granted Critical
Publication of CN114959575B publication Critical patent/CN114959575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及表面涂层技术领域,具体涉及一种薄膜传感器用绝缘耐磨防护涂层及其制备方法,该涂层由下而上依次包括金属衬底、CrN过渡层、AlCrN支撑层、AlCrSiON功能层,在氩离子刻蚀清洗后的金属衬底表面,采用电弧离子镀技术首先沉积0.2μm厚的CrN过渡层,然后沉积0.7μm厚的AlCrN支撑层,最后沉积0.5~3μm厚的AlCrSiON功能层厚度,所述AlCrSiON功能层主要由fcc‑(Al,Cr)N和fcc‑(Al,Cr)2O3混合相组成,通过实验证明,通过上述方案得到的绝缘耐磨涂层不仅具有优异的界面结合性能和耐磨损性能,而且具有较高的电阻值和电阻率,适用于薄膜传感器的表面防护。

Description

一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用
技术领域
本发明涉及表面涂层技术领域,具体涉及一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用。
背景技术
发展智能制造是制造业创新升级的主攻方向,智能化进程离不开传感器。薄膜传感器因具有较高的精度和线性特征、体积小等优点,在智能制造行业中备受关注。为了精准反映加工工具和机械零部件的温度、压力等实时工作状态,需要发展融合耐磨防护与薄膜传感器于一体、结构功能一体化的先进传感器技术。
薄膜传感器主要由绝缘层/传感功能层/绝缘层多层结构薄膜组成,对于金属工件而言,绝缘层起到至关重要的作用,既要稳定信号传输又要具有一定的耐磨防护功能。薄膜传感器绝缘层电阻直接影响了传感器输出信号的稳定性,目前薄膜传感器绝缘层大多采用氧化物陶瓷薄膜如氧化铝、氧化硅和氧化铬等。然而,这些氧化物陶瓷材料无法适应苛刻的摩擦磨损环境,同时受制备技术的限制,如热蒸发氧化铝薄膜存在结构疏松或微裂纹缺陷容易漏电短路,导致薄膜传感器失效。而嵌入式薄膜传感器是采用气相沉积技术将传感功能薄膜埋入工件表面硬质耐磨防护薄膜下,需要在绝缘层表面制备硬质防护薄膜,但氧化物绝缘薄膜制备工艺复杂且不稳定,且氮化物耐磨防护薄膜与氧化物绝缘层之间的界面结合较差,耐磨防护膜层容易剥落,导致薄膜传感器难以满足工业使用要求。
鉴于上述缺陷,本发明创作者经过长时间的研究和实践终于获得了本发明。
发明内容
本发明的目的在于解决氧化物绝缘薄膜制备工艺复杂且不稳定,且氮化物耐磨防护薄膜与氧化物绝缘层之间的界面结合较差,耐磨防护膜层容易剥落,导致薄膜传感器难以满足工业使用要求的问题,提供了一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用。
为了实现上述目的,本发明公开了一种薄膜传感器用绝缘耐磨防护涂层,由下至上依次包括金属衬底、CrN过渡层、AlCrN支撑层、AlCrSiON功能层,所述AlCrN支撑层中各元素含量为Al:20-30%、Cr:16-22%、N:45-56%,所述AlCrSiON功能层中各元素含量为Al:30-40%、Cr:7-16%、Si:1-5%、O:40-55%、N:1-10%,所述AlCrSiON功能层的组织包括fcc-(Al,Cr)N和fcc-(Al,Cr)2O3混合相。
所述CrN过渡层厚度为0.1~0.5μm,所述AlCrN支撑层厚度为0.5~2.0μm,所述AlCrN支撑层厚度为0.5~2.0μm。
所述的金属衬底为金属敏感薄膜、硬质合金、模具钢、不锈钢中的任意一种。
本发明还公开了上述薄膜传感器用绝缘耐磨防护涂层的制备方法,包括以下步骤:
S1:加热抽真空:将乙醇超声清洗后的金属衬底放入电弧离子镀设备中进行加热并抽真空,真空室加热温度200~500℃,真空腔室本底真空达到1×10-3Pa以下;
S2:离子刻蚀清洗:通入Ar气,氩气气体流量为50~150sccm,开启离子源,离子源电流为40A~110A,基体负偏压幅值为-200V~-300V,氩离子刻蚀清洗时间为5min~30min;
S3:制备CrN过渡层:通入N2气,保持气压为3.5Pa,开启纯金属Cr靶,弧流为80~140A,基体偏压为-50~-200V,沉积时间为20~60min,在金属衬底表面制备CrN过渡层;
S4:制备AlCrN支撑层:通入氮气,保持气压为3.5Pa,开启AlCr合金靶,弧流为100~140A,基体偏压为-50~-200V,沉积时间为30~120min,在CrN过渡层表面沉积AlCrN支撑层;
S5:制备AlCrSiON功能层:通入氧气和氮气,氧气流量20~100sccm,氮气流量为500~700sccm,保持气压为3.5Pa,开启AlCrSi合金靶,弧流为80~130A,基体偏压为-50~-200V,占空比为40~80%,沉积时间为30~180min,获得AlCrSiON耐磨绝缘功能层。
所述步骤S4中AlCr合金靶的Al与Cr原子数量比为70:30。
所述步骤S5中AlCrSi合金靶的Al、Cr与Si原子数量比为60:30:10。
本发明还公开了上述薄膜传感器用绝缘耐磨防护涂层在温度或压力薄膜传感器中的应用。
气相沉积AlCr基涂层表现优良的耐磨性能,尤其是添加合金元素Si,使得组织成为纳米复合结构,进一步提高耐磨性。通过设计过渡层/支撑层/绝缘耐磨功能层的复合结构,在保持力学性能的基础上,显著提高涂层的结合性能、耐磨性能和电绝缘性能。过渡层用来改善涂层与衬底的结合;支撑层使整个涂层的成分、结构和性能平缓过渡,缓解涂层应力,同时引入Al元素形成三元固溶体结构,提高膜层的热稳定性和抗氧化性能;最顶层是含有Si和O两种元素的功能层,形成致密的氮氧化物薄膜,结合了氮化物和氧化物的优良特性,不仅提高了耐磨损和抗氧化能力,而且改善了薄膜的电绝缘性能。
与现有技术比较本发明的有益效果在于:本发明用电弧离子镀技术制备的氮氧化合物绝缘耐磨防护涂层明显区别于纯氧化物陶瓷薄膜,制备工艺简单,涂层组织均匀致密,与金属衬底之间有较好的界面结合性能,添加适量的氧,形成氧化物组分,抑制了N原子和Al、Cr、Si的结合,极大的提高了涂层的电阻和电阻率。另外,由于氮气的通入,涂层中会含有少量的氮化物相,可以显著提升涂层的硬度以及耐磨性能。该涂层有望应用于温度或压力薄膜传感器领域,延长薄膜传感器服役寿命,提高薄膜传感器传输信号稳定性。
附图说明
图1为本发明的绝缘耐磨涂层结构示意图;
图2为实施例中的绝缘耐磨涂层的截面结构SEM图;
图5为实施例中的绝缘耐磨涂层的划痕结合力图;
图3为对比例中未实施绝缘功能层和实施例中实施绝缘功能层的防护涂层的XRD图谱;
图4为对比例中未实施绝缘功能层和实施例中实施绝缘功能层的防护涂层的拟合XPS图谱;
图6为对比例中未实施绝缘功能层和实施例中实施绝缘功能层的防护涂层的电阻值和电阻率;
图7为对比例中未实施绝缘功能层和实施例中实施绝缘功能层的防护涂层的摩擦磨损后磨痕曲线。
图中数字表示:
1-金属衬底;2-CrN过渡层;3-AlCrN支撑层;4-AlCrSiON功能层。
具体实施方式
以下结合附图,对本发明上述的和另外的技术特征和优点作更详细的说明。
实施例
一种薄膜传感器用绝缘耐磨防护涂层,该涂层由下到上包括金属衬底、CrN过渡层、AlCrN支撑层和AlCrSiON功能层,其结构示意图如图1所示,实施例中所述AlCr合金靶的Al与Cr原子数量比为70:30;AlCrSi合金靶的Al、Cr与Si原子数量比为60:30:10。涂层制备具体步骤如下:
S1,加热抽真空:将乙醇超声清洗后的抛光态硬质合金放入真空腔室基片台上,真空室加热至450℃,本底真空达到8×10-4Pa;
S2,离子刻蚀清洗:通入Ar气,氩气气体流量为100sccm,开启离子源,离子源电流为80A,基体负偏压幅值为-300V,氩离子刻蚀清洗时间为30min。
S3,制备CrN过渡层2:通入N2气,保持气压为3.5Pa,开启纯金属Cr靶,弧流为120A,基体偏压为-50V,沉积时间为20min,获得CrN过渡层。
S4,制备AlCrN支撑层3:通入氮气,保持气压为3.5Pa,开启AlCr合金靶,弧流为120A,基体偏压为-50V,沉积时间为40min,获得AlCrN支撑层。
S5,制备AlCrSiON功能层4:通入氧气和氮气,氧气流量50sccm,氮气流量为600sccm,保持气压为3.5Pa,开启AlCrSi合金靶,弧流为120A,基体偏压为-50V,占空比为80%,沉积时间为120min,获得AlCrSiON耐磨绝缘功能层。
在本实施例得到的耐磨绝缘涂层中,CrN过渡层与金属衬底界面结合良好,其厚度约为0.2μm;AlCrN支撑层厚度约为0.7μm;AlCrSiON功能层厚度约为1.7μm。按照原子数百分比计:CrN过渡层包括Cr 48%,N 52%;AlCrN支撑层包括Al 26%,Cr 16%,N 56%;AlCrSiON功能层包括Al 32%,Cr 10%,Si 2%,O 52%,N 4%。
图2为本实施例绝缘耐磨涂层的截面结构SEM图。
图3是本实施例绝缘耐磨涂层的结合力图,绝缘耐磨涂层与硬质合金基体的结合力(临界载荷)达到92.5N。
对比例
本实施例中的功能层不含氧,该涂层由下到上包括金属衬底、CrN过渡层、AlCrN支撑层和AlCrSiN功能层,实施例中所述AlCr合金靶的Al与Cr原子数量比为70:30;AlCrSi合金靶的Al、Cr与Si原子数量比为60:30:10。涂层制备具体步骤如下:
S1,加热抽真空:将乙醇超声清洗后的抛光态硬质合金放入真空腔室基片台上,真空室加热至450℃,本底真空达到8×10-4Pa;
S2,离子刻蚀清洗:通入Ar气,氩气气体流量为100sccm,开启离子源,离子源电流为80A,基体负偏压幅值为-300V,氩离子刻蚀清洗时间为30min。
S3,制备CrN过渡层2:通入N2气,保持气压为3.5Pa,开启纯金属Cr靶,弧流为120A,基体偏压为-50V,沉积时间为20min,获得CrN过渡层。
S4,制备AlCrN支撑层3:通入氮气,保持气压为3.5Pa,开启AlCr合金靶,弧流为120A,基体偏压为-50V,沉积时间为40min,获得AlCrN支撑层。
S5,制备AlCrSiN功能层4:通入氮气,氮气流量为670sccm,保持气压为3.5Pa,开启AlCrSi合金靶,弧流为120A,基体偏压为-50V,占空比为80%,沉积时间为120min,获得AlCrSiN功能层。
对比实施例和对比例的两种涂层,进行测试如下:
图4和5分别是两种工艺下涂层的XRD和XPS图谱,可以明显看出AlCrSiON涂层呈现氧化物晶体相结构。
图6是两种工艺下涂层的的电学性能,利用O元素的调控,AlCrSiON涂层电阻高达1.8MΩ,而AlCrSiN涂层电阻仅有3KΩ,可以看出高电阻的AlCrSiON涂层能够起到良好的绝缘作用,保证薄膜传感器的信号传输稳定性。
图7是两种工艺下涂层与氧化铝摩擦磨损后磨痕的二维形貌图,可以看出,AlCrSiON涂层具有更浅的磨痕深度,涂层具有优异的耐磨损性能。
以上所述仅为本发明的较佳实施例,对本发明而言仅仅是说明性的,而非限制性的。本专业技术人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变,修改,甚至等效,但都将落入本发明的保护范围内。

Claims (4)

1.一种薄膜传感器用绝缘耐磨防护涂层的制备方法,其特征在于,包括以下步骤:
S1,加热抽真空:将乙醇超声清洗后的抛光态硬质合金放入真空腔室基片台上,真空室加热至450℃,本底真空达到8×10-4 Pa;
S2,离子刻蚀清洗:通入Ar气,氩气气体流量为100sccm,开启离子源,离子源电流为80A,基体负偏压幅值为-300V,氩离子刻蚀清洗时间为30min;
S3,制备CrN过渡层:通入N2气,保持气压为3.5Pa,开启纯金属Cr靶,弧流为120A,基体偏压为-50V,沉积时间为20 min,获得CrN过渡层;
S4,制备AlCrN支撑层:通入氮气,保持气压为3.5Pa,开启AlCr合金靶,弧流为120A,基体偏压为-50V,沉积时间为40 min,获得AlCrN支撑层;
S5,制备AlCrSiON功能层:通入氧气和氮气,氧气流量50sccm,氮气流量为600sccm,保持气压为3.5Pa,开启AlCrSi合金靶,弧流为120A,基体偏压为-50V,占空比为80%,沉积时间为120min,获得AlCrSiON耐磨绝缘功能层;
所述步骤S4中AlCr合金靶的Al与Cr原子数量比为70:30;
所述步骤S5中AlCrSi合金靶的Al、Cr与Si原子数量比为60:30:10;
所述涂层由下至上依次包括金属衬底、CrN过渡层、AlCrN支撑层、AlCrSiON功能层,所述AlCrSiON功能层中原子数百分比为Al:30-40%、Cr:7-16%、Si:1-5%、O:40-55%、N:1-10%,所述AlCrSiON功能层的组织包括fcc-(Al,Cr)N和fcc-(Al,Cr)2O3混合相。
2.如权利要求1所述的一种薄膜传感器用绝缘耐磨防护涂层的制备方法,其特征在于,所述CrN过渡层厚度为0.2μm,所述AlCrN支撑层厚度为0.7μm,所述AlCrSiON功能层厚度为0.5~3.0μm。
3.如权利要求1所述的一种薄膜传感器用绝缘耐磨防护涂层的制备方法,其特征在于,所述的金属衬底为金属敏感薄膜、硬质合金、模具钢、不锈钢中的任意一种。
4.一种采用如权利要求1~3任一项所述的制备方法制得的薄膜传感器用绝缘耐磨防护涂层在温度或压力薄膜传感器中的应用。
CN202210589861.2A 2022-05-26 2022-05-26 一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用 Active CN114959575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210589861.2A CN114959575B (zh) 2022-05-26 2022-05-26 一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210589861.2A CN114959575B (zh) 2022-05-26 2022-05-26 一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN114959575A CN114959575A (zh) 2022-08-30
CN114959575B true CN114959575B (zh) 2024-01-02

Family

ID=82954881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210589861.2A Active CN114959575B (zh) 2022-05-26 2022-05-26 一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN114959575B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116657090B (zh) * 2023-08-01 2023-12-08 中国科学院宁波材料技术与工程研究所 一种复合防护涂层及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898445A (zh) * 2014-04-18 2014-07-02 常州多晶涂层科技有限公司 一种多层AlCrN切削刀具涂层及其制备方法
CN105177498A (zh) * 2015-05-21 2015-12-23 广东工业大学 一种AlCrSiON纳米复合刀具涂层及其制备方法
CN108796453A (zh) * 2018-05-30 2018-11-13 广东工业大学 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法
CN109161841A (zh) * 2018-07-27 2019-01-08 广东工业大学 一种AlCrN/AlCrSiN超硬纳米复合多层涂层及其制备方法和应用
CN109402564A (zh) * 2018-11-14 2019-03-01 天津职业技术师范大学 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN111500999A (zh) * 2020-06-15 2020-08-07 贵州大学 一种自润滑超硬涂层及其制备方法
CN111621752A (zh) * 2020-06-10 2020-09-04 天津职业技术师范大学(中国职业培训指导教师进修中心) AlCrSiN/AlCrN/AlCrON/AlCrN多层纳米复合涂层的制备工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103898445A (zh) * 2014-04-18 2014-07-02 常州多晶涂层科技有限公司 一种多层AlCrN切削刀具涂层及其制备方法
CN105177498A (zh) * 2015-05-21 2015-12-23 广东工业大学 一种AlCrSiON纳米复合刀具涂层及其制备方法
CN108796453A (zh) * 2018-05-30 2018-11-13 广东工业大学 一种高温耐磨的AlCrSiN纳米复合涂层及其制备方法
CN109161841A (zh) * 2018-07-27 2019-01-08 广东工业大学 一种AlCrN/AlCrSiN超硬纳米复合多层涂层及其制备方法和应用
CN109402564A (zh) * 2018-11-14 2019-03-01 天津职业技术师范大学 一种AlCrSiN和AlCrSiON双层纳米复合涂层及其制备方法
CN111621752A (zh) * 2020-06-10 2020-09-04 天津职业技术师范大学(中国职业培训指导教师进修中心) AlCrSiN/AlCrN/AlCrON/AlCrN多层纳米复合涂层的制备工艺
CN111500999A (zh) * 2020-06-15 2020-08-07 贵州大学 一种自润滑超硬涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高速切削刀具物理气相沉积涂层研究进展;王启民;黄健;王成勇;伍尚华;;航空制造技术(第14期);全文 *

Also Published As

Publication number Publication date
CN114959575A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US7816011B2 (en) Structural material of diamond like carbon composite layers
KR100610298B1 (ko) 우수한 내마모성, 내열성 및 기판과의 부착성을 가지는적층 피막 및 그 제조 방법
CN110777335B (zh) 耐温的碳涂层
JPH04311569A (ja) 硬質多層膜形成体およびその製造方法
CN106544631A (zh) 一种基体表面的碳化铬多层梯度复合涂层及其制备方法
CN114959575B (zh) 一种薄膜传感器用绝缘耐磨防护涂层、制备方法及其应用
JP2004169137A (ja) 摺動部材
Wang et al. Comparison of crack resistance between ternary CrSiC and quaternary CrSiCN coatings via nanoindentation
TW201236876A (en) Vacuum depositing articles and method for making same
KR20170133191A (ko) 고경도 TaC 코팅 탄소 재료 및 그 제조방법
CN109797370A (zh) 一种玻璃基透射可见光的dlc复合增硬薄膜及其制备方法
US8518534B2 (en) Coating, article coated with coating, and method for manufacturing article
JP3697221B2 (ja) 耐高温酸化に優れた高耐摩耗性・高硬度皮膜
US7488536B2 (en) Coating for a mechanical part, comprising at least one hydrogenated amorphous carbon, and method of depositing one such coating
JP2623611B2 (ja) 硬質炭素膜被覆を施した金属基体
JP3427448B2 (ja) 超薄膜積層体
KR102168776B1 (ko) 이중층 크롬 나이트라이드 코팅된 물품들 및 관련된 방법들
JPH0649645A (ja) 硬質多層膜形成体およびその製造方法
JP2969291B2 (ja) 耐摩耗性部材およびその製造法
CN111334769A (zh) 一种PbO-Cr2O3共掺杂薄膜及其制备方法与应用
JPS6252028B2 (zh)
JP2006169614A (ja) 金属複合ダイヤモンドライクカーボン(dlc)皮膜、その形成方法、及び摺動部材
KR101210118B1 (ko) 다층 박막의 표면을 가지는 금형
KR20070105614A (ko) 내산화성이 우수한 고온용 표면 피복용 박막
JP2005314758A (ja) ダイヤモンド状炭素膜を被覆した金属部材及び被覆形成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant