CN114956845A - 一种宽温域自愈合改性陶瓷基复合材料的制备方法 - Google Patents

一种宽温域自愈合改性陶瓷基复合材料的制备方法 Download PDF

Info

Publication number
CN114956845A
CN114956845A CN202210736421.5A CN202210736421A CN114956845A CN 114956845 A CN114956845 A CN 114956845A CN 202210736421 A CN202210736421 A CN 202210736421A CN 114956845 A CN114956845 A CN 114956845A
Authority
CN
China
Prior art keywords
zrb
silicon carbide
mosi
temperature
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210736421.5A
Other languages
English (en)
Inventor
周怡然
焦健
杨金华
刘虎
艾莹珺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AECC Beijing Institute of Aeronautical Materials
Original Assignee
AECC Beijing Institute of Aeronautical Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AECC Beijing Institute of Aeronautical Materials filed Critical AECC Beijing Institute of Aeronautical Materials
Priority to CN202210736421.5A priority Critical patent/CN114956845A/zh
Publication of CN114956845A publication Critical patent/CN114956845A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts
    • C04B2235/9684Oxidation resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种宽温域自愈合改性陶瓷基复合材料制备方法,具体为:在高残炭树脂中添加造孔剂、ZrB2粉体与SiC纤维,制成预浸料,先后经历固化成型、炭化,待基体中气态小分子物质挥发,热解完全,得到以C、ZrB2为骨架结构的SiC纤维/C‑ZrB2多孔体,最后在将Si‑MoSi2合金熔融渗入多孔体,从而得到自愈合改性的碳化硅纤维增强碳化硅陶瓷基复合材料。本发明模拟生物自愈合过程,在基体中引入能够在不同温度段发生氧化的自愈合组元ZrB2及MoSi2,通过氧化后生成的B2O3、SiO2等黏流态物质封填裂纹,从而阻止环境介质在材料内部扩散,实现复合材料在更宽温域范围内发生自愈合响应,延长材料的使用寿命。

Description

一种宽温域自愈合改性陶瓷基复合材料的制备方法
技术领域
本发明涉及陶瓷基复合材料技术领域,尤其涉及一种宽温域自愈合改性陶瓷基复合材料的制备方法。
背景技术
陶瓷基复合材料(CMCs)是在陶瓷基体中引入增强材料,形成以引入的增强材料为分散相,以陶瓷基体为连续相的复合材料,其中分散相可以为连续纤维、颗粒或者晶须。CMCs在保留陶瓷材料耐高温、抗氧化、耐磨耗以及耐腐蚀等优点的同时,还能够充分发挥陶瓷纤维增强增韧作用,成为制备航空发动机热端构件最佳的耐高温材料。
目前,在航空领域研究较多的主要是连续纤维增强的CMCs,尤其是碳化硅纤维增强碳化硅基复合材料(简称SiC/SiC复合材料)。SiC/SiC复合材料长时耐温能力>1200℃,较传统的高温合金提高了150℃以上;密度低,约为高温合金的1/3~1/4,是新型航空发动机热端部件的标志性材料。陶瓷基复合材料中由于基体裂纹的存在,其相互交织连通,成为外界高温燃气进入复合材料内部的通道。在服役过程中,具有氧化性、腐蚀性的高温燃气将快速氧化纤维界面层,随后进一步侵蚀纤维,造成复合材料性能加速退化,从而难以满足应用的需求。因此,陶瓷基复合材料存在的裂纹是影响其可靠性和使用寿命的症结,必须采取相应的措施加以应对。
自愈合实现的关键是玻璃态物质,利用其低温下为固态、高温下为黏流态的特性,来实现裂纹的愈合。目前的自愈合单元,无论是硅基还是硼基,主要针对某一特定温区作用,且愈合温区范围较窄,但是在材料实际使用工况中需要更宽温域的防护。
SiC/SiC复合材料本身具有优异的抗氧化性,因为SiC基体在高温下将氧化得到玻璃态SiO2封填基体裂纹从而阻碍氧化介质进一步扩散。但是SiC在氧化环境下响应温度较高,1100℃时仅仅在表面形成一层薄薄的氧化膜。当温度达到1300℃时,氧化速率才进一步加快。但受熔渗工艺及内部结构等因素的影响,SiC/SiC复合材料不可避免地存在孔隙和微裂纹等结构缺陷,因此在较低使用温度时(例如800℃),就需要基体材料能够发生自愈合响应。另外,在面临更高使用温度时(例如大于1300℃),也仍然需要材料具有较好的抗氧化性。因此,提供一种适用于更宽温域的自愈合改性陶瓷基复合材料具有重要意义。
发明内容
本发明解决的技术问题在于提供一种宽温域自愈合改性陶瓷基复合材料的制备方法,本申请制备了一种宽温域范围内具有较好抗氧化性的碳化硅纤维增强碳化硅陶瓷基复合材料。
有鉴于此,本申请提供了一种宽温域自愈合改性陶瓷基复合材料的制备方法,包括以下步骤:
A)将高残炭树脂、造孔剂、ZrB2粉和有机溶剂混合后球磨,得到混合料浆;
B)将所述混合料浆涂覆于碳化硅纤维表面,烘干,得到预浸料;
C)将所述预浸料进行热压,得到预制体,将所述预制体进行炭化,得到碳化硅纤维/C-ZrB2多孔体;
D)将Si-MoSi2合金在所述碳化硅纤维/C-ZrB2多孔体中进行熔渗反应,得到自愈合改性陶瓷基复合材料。
优选的,步骤A)中,所述造孔剂选自聚乙二醇、聚甲基丙烯酸甲酯、聚乙烯醇和聚乙烯醇缩丁醛中的一种或多种,所述高残炭树脂选自酚醛树脂和酚醛树脂衍生物中的一种,所述有机溶剂选自乙醇、甲醇、丙酮、异丙醇、乙酸丁酯和醋酸乙酯中的一种或多种;所述高残炭树脂、造孔剂、有机溶剂和ZrB2粉的质量比为(100~150):(10~30):(200~300):(30~50)。
优选的,所述ZrB2粉的粒径为5~10μm,纯度不小于99.9%。
优选的,所述球磨的转速为500~1500r/min,时间为3~6h,磨球为碳化硅球,磨球的直径为5~15mm,球料比为(1~6):1。
优选的,步骤B)中,所述烘干的温度为40~100℃,时间为1~5h,所述碳化硅纤维为所述预浸料体积分数的20%~50%。
优选的,所述热压的温度为150~200℃,时间为1~6h。
优选的,所述炭化在惰性气氛下进行,所述炭化的温度为500~1000℃,时间为50~200min。
优选的,所述Si-MoSi2合金中Si粉和MoSi2粉的质量比为(8~10):1,所述Si粉的纯度不小于99.99%,所述MoSi2粉的纯度不小于99.99%。
优选的,所述Si-MoSi2合金与所述碳化硅纤维/C-ZrB2多孔体的质量比为(1~2):1。
优选的,所述熔渗反应的温度为1400~1500℃,时间为5~20min。
本申请提供了一种自愈合改性陶瓷基复合材料的制备方法,其首先制备了碳化硅纤维/C-ZrB2多孔体,再利用Si-MoSi2合金在所述碳化硅纤维/C-ZrB2多孔体中进行熔渗反应,即可得到自愈合改性陶瓷基复合材料;本申请在碳化硅纤维中引入在不同温度段发生氧化的自愈合组元ZrB2和MoSi2,通过氧化后生成的B2O3、SiO2等黏流态物质封填裂纹,从而阻止环境介质进一步在材料内部扩散,实现复合材料在800℃~1500℃的宽温域范围内发生自愈合响应,延长材料的使用寿命;同时熔渗阶段采用Si-MoSi2合金进行熔渗反应,Si将优先与C反应生成SiC,基体中剩余的Si将与Mo结合为MoSi2,避免以Si单质的形式存在,从而制约复合材料的高温性能;本申请制备的复合材料中SiC、ZrB2及MoSi2之间有相匹配的热膨胀系数,热力学上彼此之间能够稳定共存,从而使得复合材料在宽温域范围内能够表现出较好的抗氧化性。
附图说明
图1为本发明实施例制备的复合材料的弯曲强度曲线图;
图2为本发明实施例1制备的复合材料和现有技术中复合材料的自愈合效果图像;
图3为本发明实施例1制备的自愈合陶瓷基复合材料在1500℃下剩余强度柱形图;
图4为对比例中Si/MoSi2<8~10的熔渗合金照片;
图5为对比例中Si/MoSi2>8~10时制备的复合材料断口照片。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
由于陶瓷基复合材料基体中不可避免的存在裂纹,其相互交织连通,成为外界环境介质进入复合材料内部的通道。在服役过程中,具有氧化性、腐蚀性的高温燃气将快速氧化纤维界面层,随后进一步侵蚀纤维,造成复合材料性能加速退化,从而难以满足应用的需求。目前的自愈合改性陶瓷基复合材料主要针对某一特定温区发生愈合响应,且愈合温区范围较窄,但是在材料实际使用工况中需要更宽温域的防护。鉴于此,本申请提供了一种宽温域自愈合改性陶瓷基复合材料的制备方法,其通过SiC、ZrB2及MoSi2三者形成热平衡,且部分组元为自愈合组元,最终使得自愈合改性陶瓷基复合材料具有宽温域范围内的抗氧化性。具体的,本发明实施例公开了一种宽温域自愈合改性陶瓷基复合材料的制备方法,包括以下步骤:
A)将高残炭树脂、造孔剂、ZrB2粉和有机溶剂混合后球磨,得到混合料浆;
B)将所述混合料浆涂敷于碳化硅纤维表面,烘干,得到预浸料;
C)将所述预浸料进行热压,得到预制体,将所述预制体进行炭化,得到碳化硅纤维/C-ZrB2多孔体;
D)将Si-MoSi2合金在所述碳化硅纤维/C-ZrB2多孔体中进行熔渗反应,得到自愈合改性陶瓷基复合材料。
本申请在制备自愈合改性陶瓷基复合材料的过程中,首先将原料混合,即将高残炭树脂、造孔剂、ZrB2粉和有机溶剂混合后球磨,得到混合料浆;在此过程中,所述高残炭树脂选自酚醛树脂和酚醛树脂衍生物中的一种,所述有机溶剂选自乙醇、甲醇、丙酮、异丙醇、乙酸丁酯和醋酸乙酯中的一种或多种;所述造孔剂选自聚乙二醇、聚甲基丙烯酸甲酯、聚乙烯醇和聚乙烯醇缩丁醛中的一种或多种,在具体实施例中,所述造孔剂选自聚乙二醇。所述高残炭树脂、造孔剂、有机溶剂和ZrB2粉的质量比为(100~150):(10~30):(200~300):(30~50);更具体地,所述高残炭树脂、造孔剂、有机溶剂和ZrB2粉的质量比为(110~140):(12~25):(220~280):(35~45)。所述ZrB2粉的粒径为5~10μm,纯度不小于99.9%。
在上述原料混合的过程中,所述球磨为本领域技术人员熟知的球磨方式,所述球磨的转速为500~1500r/min,时间为3~6h,磨球为碳化硅球,磨球的直径为5~15mm,球料比为(1~6):1;更具体地,所述球磨的转速为600~1200r/min,时间为4~5h,磨球的直径为8~12mm,球料比为(2~5):1。
在得到料浆之后,本申请然后将所述混合料浆涂覆于碳化硅纤维表面,烘干,以使其中的溶剂挥发,得到纤维预浸料。所述烘干具体在烘箱中进行,所述烘干的温度为40~100℃,时间为1~5h,所述碳化硅纤维为所述预浸料体积分数的20%~50%;更具体地,所述烘干的温度为50~80℃,时间为2~4h,所述碳化硅纤维为所述预浸料体积分数的25%~40%。
本申请然后将上述纤维预浸料进行热压,得到预制体,再将所述预制体进行炭化,得到碳化硅纤维/C-ZrB2多孔体;此过程中,所述热压具体采用热压机固化成型,所述热压的温度为150~200℃,时间为1~6h;更具体地,所述热压的温度为150~180℃,时间为2~5h;所述热压的过程中,造孔剂进行造孔,使得高残炭树脂多孔化。在后续的过程中,高残炭树脂炭化,由此得到碳化硅纤维/C-ZrB2多孔体;所述炭化的温度为500~1000℃,时间为50~200min;更具体地,所述炭化的温度为700~800℃,时间为60~120min;所述炭化在惰性气氛下进行。
按照本发明,最后将Si-MoSi2合金在所述碳化硅纤维/C-ZrB2多孔体中进行熔渗反应,得到自愈合改性陶瓷基复合材料;此过程中,Si-MoSi2合金中Si粉和MoSi2粉的质量比为(8~10):1,所述Si粉的纯度不小于99.99%,所述MoSi2粉的纯度不小于99.99%;所述Si-MoSi2合金与所述碳化硅纤维/C-ZrB2多孔体的质量比为(1~2):1。所述熔渗为本领域技术人员熟知的技术手段,对其具体操作方式本申请不进行特别的限制;在本申请中,所述熔渗反应在真空条件下进行,温度为1400~1500℃,时间为5~20min。
在本申请中,ZrB2是自愈合组元,在700℃下就将发生氧化生成ZrO2和B2O3,随着氧化进一步进行,ZrO2也将与B2O3结合生成共晶液相的ZrO2·B2O3;ZrB2在低温段能够发生氧化,填充微小的裂纹,从而阻挡氧气等环境介质进一步扩散;当温度到1100℃时,B2O3将开始挥发,将使得表面留下一层多孔的ZrO2层,不利于材料抗氧化性;由于体系中SiC的存在,其氧化的SiO2与B2O3结合成硅硼玻璃,将一定程度阻止B2O3挥发。进一步的,MoSi2与ZrB2、SiC的热膨胀系数相近,热力学上它们彼此之间也能够稳定共存。因此,随着温度进一步升高,B2O3挥发,SiC面临快速氧化,材料中形成了富SiO2层,MoSi2作为较好的增强体,及具备优异的抗氧化性,可使得复合材料基体在1300℃以上仍保持较好的力学性能。即使在更高的使用温度,由于MoSi2的添加,其在高温下氧化能够形成低挥发、高粘度的SiO2,也使得材料能够保持较好的抗氧化特性。
为了进一步理解本发明,下面结合实施例对本发明提供的自愈合改性陶瓷基复合材料的制备方法进行详细说明,本发明的保护范围不受以下实施例的限制。
实施例1
步骤1:将100g酚醛树脂中添加10g聚乙二醇,再加入200g无水乙醇使树脂充分溶解,随后加入30gZrB2粉体(5μm,99.9%),通过行星式球磨机分散;球磨条件为转速800r/min,球磨时间6h,磨球为碳化硅球,磨球直径8mm,球料比为6:1,制成混合料浆;
步骤2:将步骤1所制得的混合料浆涂覆于碳化硅纤维织物,置于40℃烘箱下干燥1h,得到所需预浸料;其中,碳化硅纤维织物占预浸料体积分数为20%;
步骤3:将步骤2得到的预浸料利用热压机进行热压成型,热压温度为150℃,时间为1h,得到预制体;
步骤4:将步骤3得到的预制体在700℃下,惰性气氛中炭化处理60min,制得碳化硅纤维/C-ZrB2多孔体;
步骤5:在真空条件下,将质量比为8:1的Si(99.99%)、MoSi2(99.99%)合金渗入碳化硅纤维/C-ZrB2多孔体,其中Si-MoSi2合金与多孔体的质量比为1:1;熔渗温度1400℃,反应时间20min,最终得到改性的自愈合陶瓷基复合材料。
实施例2
步骤1:将125g酚醛树脂中添加16g聚乙二醇,再加入270g乙酸丁酯使树脂充分溶解,随后加入35gZrB2粉体(7μm,99.99%),通过行星式球磨机分散;球磨条件为转速1000r/min,球磨时间3h,磨球为碳化硅球,磨球直径10mm,球料比为4:1,制成混合料浆;
步骤2:将步骤1所制得的混合料浆涂覆于碳化硅纤维织物,置于50℃烘箱下干燥2h,得到所需预浸料;其中,碳化硅纤维织物占预浸料体积分数为30%;
步骤3:将步骤2得到的预浸料利用热压机进行热压成型,热压温度为170℃,时间为3h,得到预制体;
步骤4:将步骤3得到的预制体在750℃下,惰性气氛中炭化处理80min,制得碳化硅纤维/C-ZrB2多孔体;
步骤5:在真空条件下,将质量比为9.5:1的Si(99.99%)、MoSi2(99.99%)合金渗入碳化硅纤维/C-ZrB2多孔体,其中Si-MoSi2合金与多孔体的质量比为1.5:1;熔渗温度1500℃,反应时间5min,最终得到改性的自愈合陶瓷基复合材料。
实施例3
步骤1:将150g酚醛树脂衍生物中添加30g聚乙二醇,再加入300g丙酮使树脂充分溶解,随后加入50gZrB2粉体(10μm,99.99%),通过行星式球磨机分散;球磨条件为转速1500r/min,球磨时间4h,磨球为碳化硅球,磨球直径15mm,球料比为6:1,制成混合料浆;
步骤2:将步骤1所制得的混合料浆涂覆于碳化硅纤维织物,置于60℃烘箱下干燥3h,得到所需预浸料,其中,碳化硅纤维织物占预浸料体积分数为50%;
步骤3:将步骤2得到的预浸料利用热压机进行热压成型,热压温度为180℃,时间为6h,得到预制体;
步骤4:将步骤3得到的预制体在800℃下,惰性气氛中炭化处理120min,制得碳化硅纤维/C-ZrB2多孔体;
步骤5:在真空条件下,将质量比为10:1的Si(99.99%)、MoSi2(99.99%)合金渗入碳化硅纤维/C-ZrB2多孔体,其中Si-MoSi2合金与多孔体的质量比为1.8:1,熔渗温度1470℃,反应时间15min,最终得到改性的自愈合陶瓷基复合材料。
图1分别为实施例1(1#)和实施例2(2#)制备的复合材料的弯曲强度曲线,由图1可知,本申请制备的自愈合陶瓷基复合材料具有优异的力学性能。
图2为本申请实施例1制备的自愈合陶瓷基复合材料(左图)和现有技术中SiC/SiC复合材料(右图)分别在800℃氧化100h后的自愈合效果的图像,由此可知,本申请提供的复合材料由于ZrB2的加入使得复合材料在低温阶段(800℃)表现出自愈合功效。
图3为本申请实施例1制备的自愈合陶瓷基复合材料SiC/SiC-ZrB2-MoSi2复合材料在1500℃下不同时间下剩余强度柱形图,由图3可知,本申请制备的复合材料在高温下强度衰减较小,表现出更好的抗氧化性能。
对比例
制备方法与实施例1相同,区别在于:当Si/MoSi2<8~10时,在设定熔渗温度下无法熔化,无法渗进多孔体发生反应生成,如图4所示。
当Si/MoSi2>8~10时,体系中MoSi2含量较少,无法起到自愈合功效,导致纤维被氧化失效,如图5所示。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种宽温域自愈合改性陶瓷基复合材料的制备方法,包括以下步骤:
A)将高残炭树脂、造孔剂、ZrB2粉和有机溶剂混合后球磨,得到混合料浆;
B)将所述混合料浆涂覆于碳化硅纤维表面,烘干,得到预浸料;
C)将所述预浸料进行热压,得到预制体,将所述预制体进行炭化,得到碳化硅纤维/C-ZrB2多孔体;
D)将Si-MoSi2合金在所述碳化硅纤维/C-ZrB2多孔体中进行熔渗反应,得到自愈合改性陶瓷基复合材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤A)中,所述造孔剂选自聚乙二醇、聚甲基丙烯酸甲酯、聚乙烯醇和聚乙烯醇缩丁醛中的一种或多种,所述高残炭树脂选自酚醛树脂和酚醛树脂衍生物中的一种,所述有机溶剂选自乙醇、甲醇、丙酮、异丙醇、乙酸丁酯和醋酸乙酯中的一种或多种;所述高残炭树脂、造孔剂、有机溶剂和ZrB2粉的质量比为(100~150):(10~30):(200~300):(30~50)。
3.根据权利要求1所述的制备方法,其特征在于,所述ZrB2粉的粒径为5~10μm,纯度不小于99.9%。
4.根据权利要求1所述的制备方法,其特征在于,所述球磨的转速为500~1500r/min,时间为3~6h,磨球为碳化硅球,磨球的直径为5~15mm,球料比为(1~6):1。
5.根据权利要求1所述的制备方法,其特征在于,步骤B)中,所述烘干的温度为40~100℃,时间为1~5h,所述碳化硅纤维为所述预浸料体积分数的20%~50%。
6.根据权利要求1所述的制备方法,其特征在于,所述热压的温度为150~200℃,时间为1~6h。
7.根据权利要求1所述的制备方法,其特征在于,所述炭化在惰性气氛下进行,所述炭化的温度为500~1000℃,时间为50~200min。
8.根据权利要求1所述的制备方法,其特征在于,所述Si-MoSi2合金中Si粉和MoSi2粉的质量比为(8~10):1,所述Si粉的纯度不小于99.99%,所述MoSi2粉的纯度不小于99.99%。
9.根据权利要求1所述的制备方法,其特征在于,所述Si-MoSi2合金与所述碳化硅纤维/C-ZrB2多孔体的质量比为(1~2):1。
10.根据权利要求1所述的制备方法,其特征在于,所述熔渗反应的温度为1400~1500℃,时间为5~20min。
CN202210736421.5A 2022-06-27 2022-06-27 一种宽温域自愈合改性陶瓷基复合材料的制备方法 Pending CN114956845A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210736421.5A CN114956845A (zh) 2022-06-27 2022-06-27 一种宽温域自愈合改性陶瓷基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210736421.5A CN114956845A (zh) 2022-06-27 2022-06-27 一种宽温域自愈合改性陶瓷基复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN114956845A true CN114956845A (zh) 2022-08-30

Family

ID=82965346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210736421.5A Pending CN114956845A (zh) 2022-06-27 2022-06-27 一种宽温域自愈合改性陶瓷基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN114956845A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118145992A (zh) * 2024-03-07 2024-06-07 江苏上瓷时代科技有限公司 一种耐高温氧化锆陶瓷材料及其加工工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316851A (en) * 1991-06-12 1994-05-31 General Electric Company Silicon carbide composite with metal boride coated fiber reinforcement
JPH08217576A (ja) * 1995-02-20 1996-08-27 Hitachi Ltd 耐熱耐酸化性高強度部材
CN1884204A (zh) * 2006-06-30 2006-12-27 中国科学院上海硅酸盐研究所 一种通过原位反应在纤维表面形成抗氧化结构的复合材料制备方法
CN105669231A (zh) * 2016-01-28 2016-06-15 陕西科技大学 一种碳纤维增强MoSi2-SiC陶瓷基复合材料的制备方法
CN106966741A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 碳纤维增强碳‑碳化硅双基体复合材料的制备方法
CN109354506A (zh) * 2018-10-22 2019-02-19 湖南国科碳陶新材料科技有限公司 一种高温抗氧化碳陶复合材料及其制备方法
CN111747764A (zh) * 2020-06-10 2020-10-09 中国航发北京航空材料研究院 原位生成ZrB2-ZrC的碳化硅纤维增强碳化硅复合材料制备方法
CN112142486A (zh) * 2020-09-11 2020-12-29 中国航发北京航空材料研究院 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5316851A (en) * 1991-06-12 1994-05-31 General Electric Company Silicon carbide composite with metal boride coated fiber reinforcement
JPH08217576A (ja) * 1995-02-20 1996-08-27 Hitachi Ltd 耐熱耐酸化性高強度部材
CN1884204A (zh) * 2006-06-30 2006-12-27 中国科学院上海硅酸盐研究所 一种通过原位反应在纤维表面形成抗氧化结构的复合材料制备方法
CN105669231A (zh) * 2016-01-28 2016-06-15 陕西科技大学 一种碳纤维增强MoSi2-SiC陶瓷基复合材料的制备方法
CN106966741A (zh) * 2016-06-03 2017-07-21 北京航空航天大学 碳纤维增强碳‑碳化硅双基体复合材料的制备方法
CN109354506A (zh) * 2018-10-22 2019-02-19 湖南国科碳陶新材料科技有限公司 一种高温抗氧化碳陶复合材料及其制备方法
CN111747764A (zh) * 2020-06-10 2020-10-09 中国航发北京航空材料研究院 原位生成ZrB2-ZrC的碳化硅纤维增强碳化硅复合材料制备方法
CN112142486A (zh) * 2020-09-11 2020-12-29 中国航发北京航空材料研究院 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
OMPRAKASH: ""Reactive Melt Infiltration Processing of Biomorphic Si–Mo–C Ceramics from Wood",Omprakash,《Journal of the American Ceramic Society》,第88期,第7卷,第1792–1798页", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》, vol. 7, no. 88, 24 January 2005 (2005-01-24) *
XIYUAN YAO: ""Oxidation and Mechanical Properties of SiC/SiCMoSi-ZrB Coating for Carbon/Carbon Composites",Xiyuan Yao,《材料科学技术(英文版) 》,第 30卷第02期,第123-127页", 《材料科学技术(英文版) 》 *
XIYUAN YAO: ""Oxidation and Mechanical Properties of SiC/SiCMoSi-ZrB Coating for Carbon/Carbon Composites",Xiyuan Yao,《材料科学技术(英文版) 》,第 30卷第02期,第123-127页", 《材料科学技术(英文版) 》, vol. 30, no. 02, 31 December 2014 (2014-12-31), pages 2 *
宋月清: "《人造金刚石工具手册》", 31 January 2014, 冶金工业出版社 *
曾毅: ""C/C复合材料SiC/ZrB2-MoSi2",曾 毅,《复合材料学报》第27卷,第3期,20101231", 《复合材料学报》 *
曾毅: ""C/C复合材料SiC/ZrB2-MoSi2",曾 毅,《复合材料学报》第27卷,第3期,20101231", 《复合材料学报》, 31 December 2010 (2010-12-31) *
朱继平: "《碳/碳复合材料AlPO4抗氧化陶瓷涂层研究》", 合肥工业大学出版社, pages: 159 - 133 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118145992A (zh) * 2024-03-07 2024-06-07 江苏上瓷时代科技有限公司 一种耐高温氧化锆陶瓷材料及其加工工艺

Similar Documents

Publication Publication Date Title
US11739027B2 (en) Method for fabricating a ceramic material
JP4014254B2 (ja) Si濃度段階的変化型Si−SiC材料及びSi濃度段階的変化型SiC繊維強化Si−SiC複合材料並びにこれらの製造方法
CN107226706B (zh) 具有单峰孔径分布和低纤维体积分数的陶瓷基质复合物
US6740408B2 (en) Protecting composite material parts against oxidation
CN109437943B (zh) 一种Cf/C-SiC-ZrB2复合材料及其制备方法
CN107353025A (zh) 一种耐1200℃抗氧化的陶瓷基复合材料的制备方法
EP2970017B1 (en) Sic based ceramic matrix composites with layered matrices and methods for producing sic based ceramic matrix composites with layered matrices
CN110776339B (zh) 一种用于C/ZrC-SiC复合材料的抗氧化涂层及其制备方法
CN112142486A (zh) 抗烧蚀碳化硅纤维增强陶瓷基复合材料的制备方法
JP4507138B2 (ja) セラミック系マトリックス複合材料の誘電特性の変更方法
CN110963799B (zh) 一种液相硅辅助成形热防护类Z-pins硅化物陶瓷棒结构的制备方法
CN114956845A (zh) 一种宽温域自愈合改性陶瓷基复合材料的制备方法
CN113788684B (zh) 一种梯度密度碳-陶瓷复合材料及其制备方法
CN112374917A (zh) 一种高温陶瓷涂层及其制备方法
CN113248283A (zh) 修补剂和碳基复合材料表面修补的方法
Cheng et al. Oxidation Behavior from Room Temperature to 1500° C of 3D‐C/SiC Composites with Different Coatings
Deng et al. Influence of B4C on oxidation resistance of PSN/borosilicate glass-B4C field-based repair coating of C/C aircraft brake materials at 700–900° C
Kim et al. Nicalon-fibre-reinforced silicon-carbide composites via polymer solution infiltration and chemical vapour infiltration
CN115636692A (zh) 一种耐高温、防氧化的陶瓷涂层及其制备方法和应用
EP0672637B1 (de) Faserverbundwerkstoff mit keramischer Matrix und Verfahren zu seiner Herstellung
CN113024259B (zh) 一种避免热不匹配的碳纤维增韧超高温陶瓷基复合材料及其制备方法
CN110981451A (zh) 一种含弹性结构界面的氧化物/氧化物陶瓷基复合材料的制备方法
CN113943160B (zh) 一种具有自修复功能的碳化硅陶瓷基复合材料制备方法
Semchenko et al. Protection of graphite and graphite-containing materials from oxidation.
JPH10167831A (ja) SiC繊維強化Si−SiC複合材料及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220830