CN114950567B - 一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用 - Google Patents

一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用 Download PDF

Info

Publication number
CN114950567B
CN114950567B CN202210732882.5A CN202210732882A CN114950567B CN 114950567 B CN114950567 B CN 114950567B CN 202210732882 A CN202210732882 A CN 202210732882A CN 114950567 B CN114950567 B CN 114950567B
Authority
CN
China
Prior art keywords
mil
pdi
compound
base pair
lewis acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210732882.5A
Other languages
English (en)
Other versions
CN114950567A (zh
Inventor
梁若雯
王诗惠
颜桂炀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningde Normal University
Original Assignee
Ningde Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningde Normal University filed Critical Ningde Normal University
Priority to CN202210732882.5A priority Critical patent/CN114950567B/zh
Publication of CN114950567A publication Critical patent/CN114950567A/zh
Application granted granted Critical
Publication of CN114950567B publication Critical patent/CN114950567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/46Titanium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用,MIL‑125(Ti)‑NH2通过溶剂热法合成,将钛酸四丁酯和2‑氨基对苯二甲酸溶于N,N‑二甲基甲酰胺(DMF)与甲醇的混合溶液中(体积比为9:1),经过150℃反应,分离洗涤后真空干燥获得MIL‑125(Ti)‑NH2样品;将不同质量的PDI加入至MIL‑125(Ti)‑NH2水溶液中,通过氨化反应,得到受阻Lewis酸碱对PDI@MIL‑125(Ti)‑NH2复合光催化剂。此光催化剂具有多空结构和多活性位点,具有良好的光催化活性,首次将受阻Lewis酸碱对结构应用在MOFs结构中,具有良好的应用前景。

Description

一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用
技术领域
本发明属于催化剂设计制备和液相含氮化物脱除领域,具体涉及一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用。
背景技术
水质变差极大地影响了人类生计以及人类生活福祉,水环境复杂且多变,有各种污染因素,比如细菌感染、染料污染、硝酸盐、重金属等等。金黄色葡萄球菌是最常见的病原体之一,容易引发传染病。它可以引起,肺部的化脓性的病变,还可以引起浅析性的这种多脏器的损伤,比如关节炎,或者化脓性心内膜炎。另外,六价铬(Cr(VI))作为水环境一种普遍存在的重金属离子,已经成为一种工业生产中代谢出的主要环境污染物质,它的排放主要是来源于印染、电镀、皮革鞣制等行业。含Cr(VI)废水对环境和人类危害不可小觑,其不仅对生态系统有着持久的危害性,并且易在食物链中蓄积,若长期接触对人体有致癌危险。目前,用于处理废水的方法主要有:物理吸附法、沉淀法、离子交换法、光催化还原方法等。在众多处理方法中,光催化技术作为一种能实现利用太阳能,绿色且高效。然而常规的以TiO2为代表的光催化剂在反应过程中存在太阳能利用率低和量子效率低等问题,严重制约了光催化技术的实际应用。
金属-有机骨架材料(MOFs)作为一类具有三维网络结构的微孔-介孔的杂化材料,具有比表面积大、孔隙率高、结构丰富多样并且灵活可调等特点,具有潜在的实际应用前景。在众多的MOFs光催化剂中,MIL-125(Ti)-NH2存在大量的Ti-O簇可被可见光直接激发,且Ti-O团簇是有吸引力的二级结构单元,通过充当TiO2纳米粒子的类似物,可以实现优异的化学稳定性和光催化性能。除此之外,MIL-125(Ti)-NH2具有多种不同的性能,常用于催化和光催化反应中。且其不饱和的金属中心是一种天然的Lewis酸,氨基官能团具备分子连接器的功能,因此我们通过桥联第二组分PDI,构筑受阻Lewis酸碱对结构,MIL-125(Ti)-NH2作为Lewis酸位点,PDI作为Lewis碱位点,配体的大空阻阻碍酸碱位点的中和反应,总而构筑出了具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料,电子向作为Lewis酸的MIL-125(Ti)-NH2转移,空穴向PDI转移,优化电子空穴分离路径,并将得到的复合物用于处理复杂的水环境。
发明内容
本发明的目的在于提供一种具有受阻Lewis酸碱对结构的复合光催化材料,此复合光催化剂具有良好的多孔结构、活性位点多、光催化性能好,能够有效实现水污染中金黄色葡萄球菌的消灭以及重金属六价铬的还原。
为实现上述目的,本发明采用如下技术方案:
本发明公开了一种具有受阻Lewis酸碱对结构的复合光催化材料,包括金属有机框架材料MIL-125(Ti)-NH2以及负载于所述金属有机框架材料上的PDI。
进一步的,一种具有受阻Lewis酸碱对结构的复合光催化材料,由以下方法制得:
S1、钛酸四丁酯与2-氨基对苯二甲酸溶解于N,N-二甲基甲酰胺中与甲醇形成混合物,其中,所述N,N-二甲基甲酰胺在混合物中体积含量为90~92%,所述2-氨基对苯二甲酸的摩尔含量与所述钛酸四丁酯的摩尔含量为3:1;
S2、将步骤S1制得混合物加热到150℃反应,冷却后得到黄色固体产物;
S3、将所述黄色固体产物离心分离,并用甲醇交换洗涤除去产物MIL-125(Ti)-NH2孔道内残留的DMF,最后真空干燥获得MIL-125(Ti)-NH2样品;
S4、将PDI负载于所述MIL-125(Ti)-NH2样品中,形成PDI@IL-125(Ti)-NH2复合光催化剂。
进一步的,在步骤S2中,将所述混合物加热到150℃反应72小时。
进一步的,步骤S4的具体步骤为:将0.1g MIL-125(Ti)-NH2样品分散于30mL去离子水中,超声分散,并加入PDI溶液,混合搅拌后加入一定体积的硝酸溶液后水浴加热;然后用去离子水超声洗涤,并离心,最后真空烘干得到不同质量比的PDI@MIL-125(Ti)-NH2复合光催化剂。
进一步的,所述PDI溶液的浓度为10g/L。
进一步的,所述硝酸溶液的量为40~240μL。
进一步的,所述PDI与MIL-125(Ti)-NH2样品的质量比为0.01~0.06。
进一步的,所述步骤S4的水浴加热的时间温度为90min,60℃
本发明还公开了一种具有受阻Lewis酸碱对结构的复合光催化材料在处理污染水方面的应用。
本发明的显著优点在于:
1、本发明以钛酸四丁脂为钛源,以2-氨基对苯二甲酸为配体,通过简单的溶剂热法得到比表面积大、结构丰富可调的MIL-125(Ti)-NH2金属有机框架材料,具有良好的光催化活性。
2、本发明采用3,4,9,10-苝四羧基二亚胺(PDI)修饰MIL-125(Ti)-NH2,通过氨化反应桥联的方式将PDI负载到带有氨基的MIL-125(Ti)-NH2上,有效优化了复合催化剂的电子空穴分离路径,从而进一步提高电子空穴分离效率,利于金黄色葡萄球菌的灭活以及六价铬的降解。本发明提供的具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料可以应用于金黄色葡萄球菌的灭活以及六价铬的降解中,在可见光分别照射15min和50min,细菌灭活率和六价铬还原率分别达到99%和90%以上。
附图说明
图1为本发明实施例1制得MIL-125(Ti)-NH2和实施例2(B4)以及PDI的SEM图;
图2为本发明实施例1制得的MIL-125(Ti)-NH2和实施例2制得的不同比例PDI@MIL-125(Ti)-NH2以及PDI的X射线粉末衍射图;
图3为本发明实施例1制得的MIL-125(Ti)-NH2和实施例2(B4)以及PDI的傅里叶红外图;
图4为本发明实施例1制得的MIL-125(Ti)-NH2和实施例2制得的不同比例PDI@MIL-125(Ti)-NH2以及PDI的可见光光催化灭活细菌性能图;
图5为本发明实施例1制得的MIL-125(Ti)-NH2和实施例2制得的不同比例PDI@MIL-125(Ti)-NH2以及PDI的可见光光催化还原六价铬性能图;
图6为实施例2(B2和B4)的反应前后的X射线粉末衍射图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1:
将二氨基对苯二甲酸(2.174g,12mmol)和钛酸四丁酯(1.36mL,3mmol)溶解在含有N,N二甲基甲酰胺(54mL)和无水甲醇(6mL)的溶液中。将得到的混合物匀速搅拌1小时以形成均匀的溶液,然后转移到四氟乙烯内衬反应釜中。在600rpm下搅拌30分钟后,将四氟乙烯内衬反应釜密封在不锈钢套中,并在150℃下加热72h。经过热处理后,使高压釜自然冷却至室温,离心制得产物,当天用N,N二甲基甲酰胺和无水甲醇分别洗涤数3次,然后每隔24小时用无水甲醇洗涤一次(总共3次),再在70℃下真空干燥,得到黄色MIL-125(Ti)-NH2粉末。
实施例B1~B4:
将二氨基对苯二甲酸(2.174g,12mmol)和钛酸四丁酯(1.36mL,3mmol)溶解在含有N,N二甲基甲酰胺(54mL)和无水甲醇(6mL)的溶液中。将得到的混合物匀速搅拌1小时以形成均匀的溶液,然后转移到四氟乙烯内衬反应釜中。在600rpm下搅拌30分钟后,将四氟乙烯内衬反应釜密封在不锈钢套中,并在150℃下加热72h。经过热处理后,使高压釜自然冷却至室温,离心制得产物,当天用N,N二甲基甲酰胺和无水甲醇分别洗涤数3次,然后每隔24小时用无水甲醇洗涤一次(总共3次),再在70℃下真空干燥,得到黄色MIL-125(Ti)-NH2粉末。用酸催化氨化法制备了具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料。步骤为,将100mg MIL-125(Ti)-NH2分散在的30mL去离子水中并超声5min,接着将含有1mgPDI单体的PDI溶液加入至上述溶液中并搅拌60min,随后向混合物中加入40μL的4mol/LHNO3溶液并在60℃下搅拌1.5小时进行氨化,洗涤至中性并在70℃下干燥后,得到浅绿色复合光催化材料表示为1%PDI@MIL-125(Ti)-NH2(B1)。同样,分别使用2mg,4mg和6mg PDI单体制备2%PDI@MIL-125(Ti)-NH2(B2),4%PDI@MIL-125(Ti)-NH2(B3)和6%PDI@MIL-125(Ti)-NH2(B4)。
如图1所示为本发明实施例1制得MIL-125(Ti)-NH2和实施例2(B4)以及PDI的SEM图。制备的MIL-125(Ti)-NH2具有规则的圆盘形状,圆盘的直径约为200-500nm。原始PDI的直径为15-30nm。随着PDI负载的增加,PDI倾向于形成棒状结构,并紧密附着在复合光催化材料中的MIL-125(Ti)-NH2上,且棒状结构在6%PDI@MIL-125(Ti)-NH2中占主导地位。
如图2所示,为本发明实施例1制得的MIL-125(Ti)-NH2和实施例2制得的不同比例PDI@MIL-125(Ti)-NH2以及PDI的X射线粉末衍射图。MIL-125(Ti)-NH2中所有衍射峰的位置与其理论峰位置非常吻合,说明合成成功。具有不同PDI负载的PDI@MIL-125(Ti)-NH2纳米复合光催化材料表现出相似的XRD图谱,表明MIL-125(Ti)-NH2框架的完整性得以保持。值得注意的是,由于PDI负载相对较低,在PDI负载浓度为1%、2%和4%和6%的复合光催化材料中未观察到27.1°处的特征PDI峰。
如图3所示,为本发明实施例1制得的MIL-125(Ti)-NH2和实施例2(B4)以及PDI的傅里叶红外图.在6%PDI@MIL-125(Ti)-NH2的FT-IR光谱中,发现了MIL-125(Ti)-NH23455,1681,1420,1256,和749cm-1)和PDI(1681,1586,1442,和1357cm-1)的特征峰,证实了复合光催化材料中PDI和MIL-125(Ti)-NH2的存在。
试验例光催化灭活金黄色葡萄球菌
方法:将催化剂(10mg)分散在40mL生理盐水溶液(0.9%NaCl通过高压灭菌器灭菌)中;然后,加入100μL复苏细菌。在黑暗和光照(λ≥420nm)中以一定的时间间隔取样1mL悬浮液。然后,将100μL用盐水溶液稀释的样品铺展到琼脂平板上并在37℃下孵育18小时以评估金黄色葡萄球菌的浓度。采用平板计数法对催化剂灭活性能进行估算。
如图4所示,为本发明实施例1制得的MIL-125(Ti)-NH2和实施例2制得的不同比例PDI@MIL-125(Ti)-NH2以及PDI的可见光光催化灭活细菌性能图。原始MIL-125(Ti)-NH2和PDI表现出非常低的光催化活性,可见光照射15min后细菌存活率分别为40%和49%。相比之下,当使用6%PDI@MIL-125(Ti)-NH2作为光催化剂时,几乎没有细菌可以存活,说明MIL-125(Ti)-NH2与PDI形成复合物后光催化活性显着增强。
试验例光催化还原六价铬
方法:
使用带有420nm截止滤光片的300W氙灯作为可见光源。将光催化剂(20mg)加入40mL 20mg·L-1(K2Cr2O7/H2O)六价铬溶液中,使用0.2mol·L-1H2SO4溶液调节pH为4。在照射之前,将反应溶液在黑暗中搅拌60分钟以达到吸附-解吸平衡。取出1.5mL悬浮液,并以一定的时间间隔取样离心。在540nm处用二苯基卡巴肼法,使用紫外可见分光光度计测定Cr(VI)浓度。
还原率的计算公式:还原率=(At/A0)×100%。其中A0表示为进行1h暗反应该体系达到吸附-脱附平衡后,试样的吸光度;At表示光照时间为t时测得的试样吸光度。
如图5所示,为本发明实施例1制得的MIL-125(Ti)-NH2和实施例2制得的不同比例PDI@MIL-125(Ti)-NH2以及PDI的可见光光催化还原六价铬性能图。纯MIL-125(Ti)-NH2和PDI在50min可见光照射后还原率降低70%和18%,而使用PDI@MIL-125(Ti)-NH2时,Cr(VI)的还原率显著提高,2%PDI负载的复合物的还原率达到最高,为90%。此外,更高浓度的负载使还原率开始下降,可能是MIL-125(Ti)-NH2作为主要的六价铬还原的活性位点,更高的PDI负载影响了MIL-125(Ti)-NH2的活性位点。
如图6所示,为实施例2(B2和B4)的反应前后的粉末XRD图。可以看出,经过光催化灭活金黄色葡萄球菌实验和光催化还原六价铬实验,PDI@MIL-125(Ti)-NH2复合光催化材料的晶型并没有太大的改变,说明可重复利用性强。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (7)

1.一种具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料在处理污染水方面的应用,其特征在于:在水污染中金黄色葡萄球菌的消灭或者重金属六价铬的还原的应用;
所述复合光催化材料包括金属有机框架材料MIL-125(Ti)-NH2以及负载于所述金属有机框架材料上的PDI;
复合光催化材料由以下方法制得:
S1、钛酸四丁酯与2-氨基对苯二甲酸溶解于N,N-二甲基甲酰胺中与甲醇形成混合物,其中,所述N,N-二甲基甲酰胺在混合物中体积含量为90~92%,所述2-氨基对苯二甲酸的摩尔含量与所述钛酸四丁酯的摩尔含量比为3:1;
S2、将步骤S1制得混合物加热到150℃反应,冷却后得到黄色固体产物;
S3、将所述黄色固体产物离心分离,并用甲醇交换洗涤除去产物MIL-125(Ti)-NH2孔道内残留的DMF,最后真空干燥获得MIL-125(Ti)-NH2样品;
S4、将PDI负载于所述MIL-125(Ti)-NH2样品中,形成PDI@MIL-125(Ti)-NH2复合光催化剂。
2.根据权利要求1所述一种具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料在处理污染水方面的应用,其特征在于:在步骤S2中,将所述混合物加热到150℃反应72小时。
3.根据权利要求2所述一种具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料在处理污染水方面的应用,其特征在于,步骤S4的具体步骤为:将0.1g MIL-125(Ti)-NH2样品分散于30mL去离子水中,超声分散,并加入PDI溶液,混合搅拌后加入一定体积的硝酸溶液后水浴加热;然后用去离子水超声洗涤,并离心,最后真空烘干得到不同质量比的PDI@MIL-125(Ti)-NH2复合光催化剂。
4.根据权利要求3所述一种具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料在处理污染水方面的应用,其特征在于:所述PDI溶液的浓度为10g/L。
5.根据权利要求4所述一种具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料在处理污染水方面的应用,其特征在于:所述硝酸溶液的量为40~240μL。
6.根据权利要求5所述一种具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料在处理污染水方面的应用,其特征在于:所述PDI与MIL-125(Ti)-NH2样品的质量比为0.01~0.06。
7.根据权利要求6所述一种具有受阻Lewis酸碱对结构的PDI@MIL-125(Ti)-NH2复合光催化材料在处理污染水方面的应用,其特征在于:所述步骤S4的水浴加热的时间温度为90min,60℃。
CN202210732882.5A 2022-06-27 2022-06-27 一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用 Active CN114950567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210732882.5A CN114950567B (zh) 2022-06-27 2022-06-27 一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210732882.5A CN114950567B (zh) 2022-06-27 2022-06-27 一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用

Publications (2)

Publication Number Publication Date
CN114950567A CN114950567A (zh) 2022-08-30
CN114950567B true CN114950567B (zh) 2023-03-28

Family

ID=82965128

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210732882.5A Active CN114950567B (zh) 2022-06-27 2022-06-27 一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用

Country Status (1)

Country Link
CN (1) CN114950567B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357929A1 (en) * 2017-02-02 2018-08-08 Centre National De La Recherche Scientifique Low temperature process for the synthesis of mof carboxylate nanoparticles
EP3424594A1 (en) * 2017-07-06 2019-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Photocatalytic system comprising a titanium-based mof
CN110465544A (zh) * 2019-09-25 2019-11-19 常熟理工学院 一种修复六价铬污染耕地土壤的方法
CN111359664A (zh) * 2020-03-11 2020-07-03 浙江工商大学 一种Ti基MOF复合材料及其制备方法和应用
CN112718009A (zh) * 2020-12-23 2021-04-30 南京师范大学 一种pdi/mof异质结光催化剂及其制备方法与使用方法
CN114632548A (zh) * 2022-03-07 2022-06-17 河南师范大学 一步合成α-TiO2@NH2-MIL-125复合光催化材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357929A1 (en) * 2017-02-02 2018-08-08 Centre National De La Recherche Scientifique Low temperature process for the synthesis of mof carboxylate nanoparticles
EP3424594A1 (en) * 2017-07-06 2019-01-09 Ecole Polytechnique Federale De Lausanne (Epfl) Photocatalytic system comprising a titanium-based mof
CN110465544A (zh) * 2019-09-25 2019-11-19 常熟理工学院 一种修复六价铬污染耕地土壤的方法
CN111359664A (zh) * 2020-03-11 2020-07-03 浙江工商大学 一种Ti基MOF复合材料及其制备方法和应用
CN112718009A (zh) * 2020-12-23 2021-04-30 南京师范大学 一种pdi/mof异质结光催化剂及其制备方法与使用方法
CN114632548A (zh) * 2022-03-07 2022-06-17 河南师范大学 一步合成α-TiO2@NH2-MIL-125复合光催化材料的方法

Also Published As

Publication number Publication date
CN114950567A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN108772108B (zh) 一种可见光响应的二氧化钛纳米线/金属有机骨架/碳纳米纤维膜及其制备方法及应用
Song et al. Facile synthesis a novel core–shell amino functionalized MIL-125 (Ti) micro-photocatalyst for enhanced degradation of tetracycline hydrochloride under visible light
CN107285452B (zh) 一种快速降解抗生素的方法
CN107617447B (zh) 一种Ag@MOFs/TiO2光催化剂的制备方法与应用
Li et al. Metal–organic frameworks doped with metal ions for efficient sterilization: Enhanced photocatalytic activity and photothermal effect
Mao et al. PAN supported Ag-AgBr@ Bi20TiO32 electrospun fiber mats with efficient visible light photocatalytic activity and antibacterial capability
Lin et al. Boron-and phenyl-codoped graphitic carbon nitride with greatly enhanced light responsive range for photocatalytic disinfection
CN107890877B (zh) 一种Bi3O4Cl/CdS复合材料及制备方法和用途
CN113244962B (zh) 一种产生单线态氧的锆卟啉基mof-石墨烯复合光催化剂的制备方法及应用
CN106622128A (zh) 一种用于空气净化的复合纳米材料及其制备方法
CN112225893B (zh) 一种基于卟啉和海因的多孔有机聚合物及其制备方法和应用
Zhang et al. Extensive solar light utilizing by ternary C-dots/Cu2O/SrTiO3: Highly enhanced photocatalytic degradation of antibiotics and inactivation of E. coli
CN114904582A (zh) 具有灭菌性能的锆卟啉基MOF/Ag2O-Ag光催化复合材料及其制备方法和应用
CN109603906B (zh) 一种蒽醌-2-磺酸钠/氧化石墨烯复合光催化杀菌剂及其制备方法和应用
CN112275301A (zh) 一种花状Bi2S3负载Fe掺杂Bi2MoO6复合光催化剂的制法和应用
Wang et al. Facile fabrication of the Ag nanoparticles decorated graphitic carbon nitride photocatalyst film for indoor air purification under visible light
CN115888823A (zh) 一种用于原位合成过氧化氢的可见光光催化剂及其制备方法与应用
CN107376950B (zh) 一种纳米复合光催化薄膜材料及其制备方法
CN111744503A (zh) 一种Z型异质结MoS2/Bi2WO6复合光催化剂及其制备方法和应用
CN111495408A (zh) 一种可见光光催化杀菌剂及其制备方法和应用
CN111213675A (zh) 一种水溶性共轭聚噻吩/二硫化钼复合光催化杀菌剂及其制备方法与应用
CN113842953A (zh) NH2-MIL-88B(Fe)@TpCp-COFs核壳复合光芬顿催化剂及制备方法
CN114950567B (zh) 一种具有受阻Lewis酸碱对结构的复合光催化材料及其应用
CN110938230B (zh) 一种兼具高催化性能和抗菌性能的多功能发泡天然橡胶及其制备方法
CN115430451B (zh) 铁钛共掺杂的多孔石墨相氮化碳光芬顿催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant