CN114875113A - 一种筛选氮高效小麦品种的方法 - Google Patents

一种筛选氮高效小麦品种的方法 Download PDF

Info

Publication number
CN114875113A
CN114875113A CN202210458106.0A CN202210458106A CN114875113A CN 114875113 A CN114875113 A CN 114875113A CN 202210458106 A CN202210458106 A CN 202210458106A CN 114875113 A CN114875113 A CN 114875113A
Authority
CN
China
Prior art keywords
nitrogen
soil
activity
rhizosphere
screening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210458106.0A
Other languages
English (en)
Inventor
宋晓
黄绍敏
宋阿琳
张珂珂
范分良
黄晨晨
郭腾飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Plant Nutrition and Resource Environmentof of Henan Academy of Agricultural Sciences
Original Assignee
Institute of Plant Nutrition and Resource Environmentof of Henan Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Plant Nutrition and Resource Environmentof of Henan Academy of Agricultural Sciences filed Critical Institute of Plant Nutrition and Resource Environmentof of Henan Academy of Agricultural Sciences
Priority to CN202210458106.0A priority Critical patent/CN114875113A/zh
Publication of CN114875113A publication Critical patent/CN114875113A/zh
Priority to PCT/CN2023/091643 priority patent/WO2023208205A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/37Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving peptidase or proteinase
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0098Plants or trees
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials
    • G01N33/245Earth materials for agricultural purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/90219Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10)
    • G01N2333/90222Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3) in general
    • G01N2333/90225Oxidoreductases (1.) acting on diphenols and related substances as donors (1.10) with oxygen as acceptor (1.10.3) in general with a definite EC number (1.10.3.-)
    • G01N2333/90232Laccase (1.10.3.2)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/942Hydrolases (3) acting on glycosyl compounds (3.2) acting on beta-1, 4-glucosidic bonds, e.g. cellulase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/948Hydrolases (3) acting on peptide bonds (3.4)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Botany (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Environmental Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明公开了一种筛选氮高效小麦品种的方法,包括如下步骤:步骤1,选取若干个供试小麦品种,进行大田试验,设置2个供氮水平的施肥处理:不施氮肥处理N0、正常施氮肥处理N1;步骤2,测定N0和N1处理下供试小麦品种的根系活力、根际土壤酶活性,以及进行土壤微生物进行高通量测序;步骤3,分析步骤2中的测定数据,筛选出根系活力高、根际土壤酶活性高、根际微生物的丰富度指数高和多样性指数高的供试小麦品种,即为氮高效小麦品种。本发明筛选氮高效小麦品种的方法,筛选出的根系活力高、根际土壤酶活性高、根际微生物的丰富度指数高和多样性指数高的氮高效小麦品种,为从根际微域环境差异角度筛选氮高效小麦品种提供理论依据。

Description

一种筛选氮高效小麦品种的方法
技术领域
本发明涉及选种育种技术领域,尤其是涉及一种筛选氮高效小麦品种的方法。
背景技术
土壤酶和土壤微生物是土壤中多种生化反应、物质循环和能量代谢的重要参与者,在养分循环、分解有机质及降解污染物方面发挥关键作用,可以表征土壤肥力和土壤健康状况。根际是植物、土壤、微生物及其生长环境的一个重要衔接平台,是根系与土壤交界的微域。分析和比较不同作物的根际土壤酶活性及微生物群结构等微生态特性,有利于从微生态学角度提供作物低肥高效栽培理论依据。
小麦是中国重要的粮食作物之一,小麦产业发展直接关系到中国的粮食安全和社会稳定。近年来,中国小麦连年增产,但增产的同时伴随着氮肥的过量施用及肥效下降,从而影响生态环境的健康发展。例如,大量施用化肥导致了土壤酸化、温室效应及生物多样性丧失等一系列的生态环境问题。基于经济效益和生态环境保护的双重要求,相关学者已就小麦“肥药双减”问题开展了不同角度的研究。杨晓卡等从栽培措施、轮作体系上探讨出氮素表观损失量最低的高产高效模式。赵犇等构建了基于临界氮浓度的小麦地上部氮亏缺模型进行精准施肥。张娟娟等通过不同氮效率小麦品种的氮素营养诊断研究,发现不同品种的氮吸收利用效率、根系活力及耐低氮胁迫能力不同。但有关氮素高效利用机制的研究较少。近年来,粮食-土壤可持续生产力与植物根际微生物区系的关系逐渐被科研工作者关注。董航宇从根际微生态角度研究了土壤微生物、土壤酶活性与粳稻高效利用氮的关系。杨珍等基于作物根际微域探究植物病害发生机理,挖掘具有潜力的微生物资源;相反,通过根际微域中的土壤酶活性和微生物多样性也能体现出不同作物或者同一作物不同品种间的差异。目前关于小麦根际土壤微生态区系的研究多集中在氮素的吸收、利用及耕作方式方面,关于不同氮效率小麦品种的根际微生物和土壤酶活性差异的研究较少。
发明内容
有鉴于此,本发明的目的是针对现有技术的不足,提供一种筛选氮高效小麦品种的方法,筛选出的根系活力高、根际土壤酶活性高、根际微生物的丰富度指数高和多样性指数高的供试小麦品种即为氮高效小麦品种,为从根际微域环境差异角度筛选氮高效小麦品种提供理论依据。
为达到上述目的,本发明采用以下技术方案:一种筛选氮高效小麦品种的方法,包括如下步骤:步骤1,选取若干个供试小麦品种,进行大田试验,设置2个供氮水平的施肥处理:不施氮肥处理N0(0kg N/hm2)、正常施氮肥处理N1;
步骤2,测定N0和N1处理下供试小麦品种的根系活力、根际土壤酶活性,以及进行土壤微生物进行高通量测序;
步骤3,分析步骤2中的测定数据,筛选出根系活力高、根际土壤酶活性高、根际微生物的丰富度指数高和多样性指数高的供试小麦品种,即为氮高效小麦品种。
进一步地,步骤1中正常施氮肥处理N1中氮肥施用量为165kgN/hm2,氮肥基追比为5∶5,追肥于返青期开沟施入。
进一步地,步骤1中大田试验中试验小区随机排列,每个试验小区面积为6*9=54m2,行距20cm,重复3次,播种量为150kg/hm,10月中旬播种;磷肥和钾肥在播前作为基肥一次性施入,其中氮肥为尿素,磷肥为磷酸二氢钙687.5kg/hm2,钾肥为硫酸钾施用量144.74kg/hm2
进一步地,步骤2中测定根系活力的方法为:分别于返青期、拔节期、孕穗期、灌浆期、成熟期冲根,取根尖处5cm根系,采用改良TTC还原法测定根系活力。
进一步地,步骤2中测定根际土壤酶活性中土壤酶包括:β-葡萄糖苷酶、亮氨酸氨基肽酶和多酚氧化酶;选取孕穗期N0和N1处理下供试小麦品种根际土,土壤BG酶和LAP酶活性采用微孔板荧光法分析法测定,土壤POX酶活性采用微孔板比色法测定。
进一步地,步骤2中土壤微生物高通量测序方法为:利用Illumina MiSeq平台标准操作规程,对孕穗期N0和N1处理下供试小麦品种根际土土壤微生物群落进行测序;PCR扩增16S rRNA基因的V3-V4高变区以及ITS区域,对于每个DNA样品,在ABI GeneAmp 9700PCR系统上使用TransStart Fastpfu DNA聚合酶对三个重复进行独立的PCR扩增,使用AxyPrepPCR纯化试剂盒进行纯化,并使用Illumina MiSeq平台进行双末端测序。
进一步地,步骤3中分析步骤2中根系活力的测定数据方法为:分析不同供试小麦品种根系活力均随着生育进程的变化趋势;对比在N0和N1处理下不同供试小麦品种的根系活力数值。
进一步地,步骤3中分析步骤2中根际土壤酶活性的测定数据方法为:选取孕穗期N0和N1处理下根际土壤酶活性数值,对比不同供试小麦品种之间的根际土壤酶活性数值。
进一步地,步骤3中分析步骤2中土壤微生物高通量测序数据方法为:1)测序结果首先使用QIIME对原始数据进行拼接,过滤,并去除嵌合体;挑出序列长度大于200bp,Barcode和引物序列无错误碱基,平均质量得分Q≥25的高质量序列;采用USEARCH软件在97%的阈值下划分分类操作单元,根据Silva数据库,比对OTU代表序列并进行分类,利用Mothur软件计算Shannon、Simpson多样性指数及Chao1、ACE丰富度指数,用于评价细菌α-多样性;2)根据根际土壤细菌群落在门水平上的相对丰度,以及根际土壤优势细菌属的相对丰度,分析供试小麦品种根际土壤细菌群落结构。
本发明的有益效果是:
本发明筛选氮高效小麦品种的方法综合分析不同氮效率品种小麦根系活力差异及其对根际土壤酶活性和微生物群落多样性的影响,得出氮高效小麦品种能够增强土壤酶活性、提高细菌群落多样性及改善细菌群落组成。本发明筛选出的根系活力高、根际土壤酶活性高、根际微生物的丰富度指数高和多样性指数高的供试小麦品种,可以与已知的不同氮效率小麦品种相互印证,为从根际微域环境差异角度筛选氮高效小麦品种提供理论依据。
附图说明
附图1为本发明不同氮效率小麦品种根系活力的差异(2018-2020两年的平均数据);
附图2为本发明不同氮效率小麦品种的根际土壤细菌群落在门水平上的相对丰度;
附图3为本发明不同氮效率小麦品种的根际土壤优势细菌属的相对丰度。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1
一种筛选氮高效小麦品种的方法,包括如下步骤:步骤1,选取若干个供试小麦品种,进行大田试验,设置2个供氮水平的施肥处理:不施氮肥处理N0(0kg N/hm2)、正常施氮肥处理N1;
步骤2,测定N0和N1处理下供试小麦品种的根系活力、根际土壤酶活性,以及进行土壤微生物进行高通量测序;
步骤3,分析步骤2中的测定数据,筛选出根系活力高、根际土壤酶活性高、根际微生物的丰富度指数高和多样性指数高的供试小麦品种,即为氮高效小麦品种。
实施例2
本实施例与实施例1的不同之处在于:步骤1中正常施氮肥处理N1中氮肥施用量为165kgN/hm2,氮肥基追比为5∶5,追肥于返青期开沟施入。氮肥为尿素(含N46%)。
实施例3
本实施例与实施例2的不同之处在于:步骤1中大田试验中试验小区随机排列,每个试验小区面积为6*9=54m2,行距20cm,重复3次,播种量为150kg/hm,10月中旬播种。磷肥和钾肥在播前作为基肥一次性施入,磷肥为磷酸二氢钙(含P2O5 12%)687.5kg/hm2,钾肥为硫酸钾(含K2O 57%)144.74kg/hm2,其他栽培措施同一般高产田管理。
实施例4
本实施例与实施例1的不同之处在于:步骤2中测定根系活力的方法为:分别于返青期、拔节期、孕穗期、灌浆期、成熟期冲根,取根尖处5cm根系,采用改良TTC还原法测定根系活力。
实施例5
本实施例与实施例1的不同之处在于:步骤2中测定根际土壤酶活性的方法为:根际土于小麦孕穗期,每个试验小区内随机选取3个点,将植株连根挖出,采用抖土法收集根际土,根际土距离根系周围0~5mm,于4℃条件下保存并尽快带回试验室,过2mm筛后,除去根系残体,分成两部分,一部分自然风干过0.25mm筛,用于测定土壤养分含量;一部分鲜样保存在–80℃冰箱,用于测定土壤细菌群落和根际土壤酶活性,土壤酶包括:β-葡萄糖苷酶(B-glocusidase,简称BG)、亮氨酸氨基肽酶(leucine amiopeptidase,简称LAP)和多酚氧化酶(简称POX)。
土壤BG酶和LAP酶活性采用微孔板荧光法分析法,测定原理是BG酶分解底物生成对-硝基苯酚,后者在400nm有最大吸收峰;LAP酶分解底物生成对硝基苯胺,后者在405nm有最大吸收峰。
土壤POX酶活性采用微孔板比色法,测定原理是POX酶可催化底物生成有色产物,其显色物质在460nm处有最大吸收峰。BG、LAP和POX酶三种酶的底物见表1。
表1土壤酶名称、缩写、编号和底物
Figure BDA0003621155400000061
根据测定原理,使用酶标仪(Labsystems Multiskan MS,芬兰)在特定波长下读取吸光值,通过测定吸光值升高速率来计算各种土壤酶活性。所得结果统一单位为nmol/H/g,即每小时每克鲜土分解相应底物产生特定产物的物质的量。
实施例6
本实施例与实施例5的不同之处在于:步骤2中土壤微生物高通量测序方法为:利用Illumina MiSeq平台(Illumina Inc.,San Diego,CA,USA)标准操作规程,对土壤微生物群落进行测序。PCR扩增16S rRNA基因的V3-V4高变区以及ITS区域,对于每个DNA样品,在ABI GeneAmp 9700PCR系统(Applied Biosystems,Foster City,CA,USA)上使用TransStart Fastpfu DNA聚合酶对三个重复进行独立的PCR扩增,使用AxyPrep PCR纯化试剂盒(Axygen Biosciences,Union City,CA,USA)进行纯化,并使用Illumina MiSeq平台进行双末端测序。
实施例7
本实施例与实施例6的不同之处在于:步骤3中分析步骤2中根系活力的测定数据方法为:分析不同供试小麦品种根系活力均随着生育进程的变化趋势;对比在N0和N1处理下不同供试小麦品种的根系活力数值。
选取许科168和郑品麦8号作为供试小麦品种,测得两个小麦品种的根系活力如图1所示,许科168和郑品麦8号的根系活力均随着生育进程呈先增加后降低的趋势,孕穗期的根系活力最强。
根系是植物的重要作用器官,具有固定和支撑植物的功能,影响植物对养分、水分和矿物质等的吸收,同时又是多离种离子、有机酸、氨基酸等合成的重要场所。小麦属于须根系作物,根系活力的大小一定程度反映了根系新陈代谢活动的强弱。国内外学者研究发现,根系活力与作物的品种、土壤类型、肥水措施及自身基因遗传性状等密切相关;它反映了作物根系吸收、合成、呼吸和氧化能力等,客观体现了根系新陈代谢能力的强弱。熊淑萍等研究认为,氮高效基因型小麦具有较高的根系活力及根系代谢能力。本研究结果也证实了这一点。
N0和N1处理下,许科168根系活力均高于郑品麦8号,平均增加幅度分别为16.76-70.14%和14.44-37.04%;其中N0处理下,拔节期-成熟期许科168的根系活力显著高于郑品麦8号,N1处理下,除了拔节期和孕穗期,其它生育期两品种间的根系活力差异不显著。与N0处理相比,N1处理下许科168的根系活力平均增加了16.75-44.56%,郑品麦8号平均增加了0.97-42.63%。可知不论在低氮NO或高氮N1下,氮高效小麦品种许科168的根系活力均高于氮低效小麦品种郑品麦8号,低氮处理下差异明显,达到5%的显著水平。
实施例8
本实施例与实施例7的不同之处在于:步骤3中分析步骤2中根际土壤酶活性的测定数据方法为:挑选出孕穗期N0和N1处理下,许科168和郑品麦8号的根际土壤酶活性变化结果表明,与郑品麦8号相比,两种施肥处理下,许科168的BG、LAP和POX酶活性均增加;N0处理下增加幅度分别为59.38%、34.43%和30.50%,而且达到差异显著水平;N1处理下增加幅度不明显,分别为9.31%、18.88%和9.05%。
表2许科168和郑品麦8号根际土壤酶活性的差异(2018-2020两年的平均数据)
Figure BDA0003621155400000081
土壤酶是由动物、植物和微生物产生的,其酶活性是表征土壤养分循环及微生物代谢活性的关键指标。不仅是土壤中物质循环和能量转换的重要参与者,还是土壤中进行一切生化反应的催化剂。研究表明,BG、LAP和POX参与碳循环和氮循环末端的催化反应,能够极好的反映土壤养分的代谢水平。根际土壤酶活性的高低与土壤养分的矿化量及有机质的分解程度密切相关,酶活性的提高促进作物对养分的吸收。本研究结果表明,施用氮肥提高了土壤酶活性,这可能是由于微生物通过同化利用这些施入的氮素来促进自身的生长,导致产生的酶数量和种类均显著增加所致。正常施氮肥N1和不施氮肥N0条件下,氮高效品种许科168均表现出了较高的土壤酶活性,即低氮胁迫下,氮高效品种许科168根际土壤中BG、POX和LAP依然保持较高的活性,较高的土壤酶活性代表土壤的物质和能量转化都很强盛,从而促进了植株的良好生长。这说明氮高效小麦品种许科168在低氮胁迫条件下具有良好的适应能力。
低氮条件下,氮高效小麦品种许科168的根际β-葡萄糖苷酶、亮氨酸氨基肽酶和多酚氧化酶活性分别比氮低效小麦品种郑品麦8号高出59.38%、34.43%和30.50%。可知,不论在低氮NO或高氮N1下,氮高效小麦品种许科168的根际土壤中BG、POX和LAP酶活性均高于氮低效小麦品种郑品麦8号。
实施例9
本实施例与实施例8的不同之处在于:步骤3中分析步骤2中土壤微生物高通量测序数据方法为:1)测序结果首先使用QIIME(Quantitative Insights Into MicrobialEcology)(v1.2.1)对原始数据进行拼接,过滤,并去除嵌合体。挑出序列长度大于200bp,Barcode和引物序列无错误碱基,平均质量得分Q≥25的高质量序列。采用USEARCH软件在97%的阈值下划分分类操作单元(简称OTU)。根据Silva数据库,比对OTU代表序列并进行分类。利用Mothur软件计算Shannon、Simpson多样性指数及Chao1、ACE丰富度指数,用于评价细菌α-多样性;2)根据根际土壤细菌群落在门水平上的相对丰度,以及根际土壤优势细菌属的相对丰度,分析许科168和郑品麦8号根际土壤细菌群落结构。
从表3不同氮处理下土壤细菌α-多样性特征可以看出,氮高效小麦品种许科168的丰富度指数(Chao1指数和ACE指数)显著高于氮低效小麦品种郑品麦8号,增加幅度分别为7.22%、7.35%和12.95%,其中Shannon指数达到5%的差异显著水平。可知在N0处理下,许科168的丰富度指数(Chao1指数和ACE指数)显著高于郑品麦8号,许科168多样性指数的Shannon指数和Simpson指数均高于郑品麦8号。在N1处理下,许科168和郑品麦8号的丰富度指数和多样性指数差异不明显。
表3许科168和郑品麦8号根际土壤细菌α-多样性特征
Figure BDA0003621155400000101
如图2所示,通过对许科168和郑品麦8号土壤细菌群落在门水平上进行分类,2个处理共含有28个门,相对丰度大于1%的门有11个,其中酸杆菌门、放线菌门、拟杆菌门、变形菌门和奇古菌门为优势门,相对丰度为84.36%-88.20%。
与N0处理相比,N1处理下的小麦品种许科168的酸杆菌门和疣微菌门的相对丰度分别显著降低了38.68%和28.16%,拟杆菌门、绿湾菌门和厚壁菌门相对丰度分别显著增加了17.68%、66.50%和59.68%;而郑品麦8号的酸杆菌门、浮霉菌门和疣微菌门则显著增加了62.36%、40.79%和50.18%,绿湾菌门显著降低了32.84%。
同一处理下,两品种优势门丰度也有差别,N0处理下,许科168的酸酐菌门比郑品麦8号增加了66.21%,奇古菌门降低了11.74%,N1处理下许科168的酸酐菌门比郑品麦8号降低了37.23%,奇古菌门则增加了13.30%,其它差别不明显。
进一步对比分析,2个处理共含有857个属,其中GP6属、亚硝基球藻和未分类细菌属为优势属,如图3所示。
与郑麦品8号相比,在N1处理下,许科168根际土壤亚硝基球藻属显著增加了21.79%,未分类细菌属显著降低了27.63%,GP6属降低了9.49%;N0处理下,许科168根际土壤的亚硝基球藻显著增加了38.06%,未分类细菌属增加了12.92%,GP6属显著降低了21.33%。
土壤微生物是农田土壤生态系统中最活跃的重要成分之一,其种类丰富、数量繁多,在土壤有机质矿化分解及腐殖酸形成中扮演重要角色。微生物的多样性和群落的丰富度被视为衡量土壤肥力状况的重要指标。植物种类与其根际微生物群落结构及丰度有一定相关性。农泽梅等研究认为不同品种间根系微生物主要菌群丰度存在显著差异。本次研究结果也证实了这个观点。
基于高通量测序分析结果,N0处理下,许科168根际土壤酸杆菌门相对丰度显著高于郑品麦8号,而N1处理下相反。这可能是因为酸杆菌门属于贫营养型菌,生长速率缓慢、富集在养分含量较低环境中,而N0处理下氮高效品种许科168的根系与根际土壤的相互作用有利于根际微生物的生长,从而提高了根际土壤微生物的活性。有学者认为,酸杆菌门和奇古菌门在旱地作物土壤中是正相关关系,而本研究结果显示,N0处理下许科168根际土壤奇古菌门的相对丰度明显低于郑品麦8号,这可能与选择的生育时期及土壤环境有关,因为不同氮效率小麦品种吸收土壤有效氮程度不同,影响了土壤氮库的平衡,不同程度的改变了土壤性质,从而影响土壤微生物群落。
进一步分析发现,两种氮处理下,许科168和郑品麦8号的优势属GP6属、亚硝基球藻属等都有不同程度的差异。另外,基于高通量测序分析结果,不同氮肥处理间主要菌群种落基本相似,其主要差异表现在菌群丰度上,在低氮处理下不同氮效率小麦品种根际微生物的丰富度指数和多样性指数存在明显差异,高氮处理下,差异不明显,其根本原因在于不同氮效率小麦品种的根系活力、根际土壤酶活性等的差异影响了土壤细菌群落结构的分布。
高通量测序分析结果显示,2个不同品种根际土壤细菌种群结构存在一定差异,与郑品麦8号相比,许科168显著提高了细菌群落α-多样性。同一处理,两品种的优势门丰度有一定差别,N0处理下,许科168的酸酐菌门比郑品麦8号增加了66.21%,奇古菌门降低了11.74%,N1处理下许科168的酸酐菌门比郑品麦8号降低了37.23%,奇古菌门则增加了13.30%,其它差别不明显;GP6属、亚硝基球藻和未分类细菌属为优势属,与氮低效品种郑麦品8号相比,N1处理下,许科168根际土壤亚硝基球藻属显著增加了21.79%;N0处理下,显著增加了38.06%。因此,本次研究结果证实了氮高效小麦品种能够提高细菌群落多样性及改善细菌群落组成。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (9)

1.一种筛选氮高效小麦品种的方法,其特征在于:包括如下步骤:步骤1,选取若干个供试小麦品种,进行大田试验,设置2个供氮水平的施肥处理:不施氮肥处理N0(0kg N/hm2)、正常施氮肥处理N1;
步骤2,测定N0和N1处理下供试小麦品种的根系活力、根际土壤酶活性,以及进行土壤微生物进行高通量测序;
步骤3,分析步骤2中的测定数据,筛选出根系活力高、根际土壤酶活性高、根际微生物的丰富度指数高和多样性指数高的供试小麦品种,即为氮高效小麦品种。
2.根据权利要求1所述的筛选氮高效小麦品种的方法,其特征在于:步骤1中正常施氮肥处理N1中氮肥施用量为165kgN/hm2,氮肥基追比为5∶5,追肥于返青期开沟施入。
3.根据权利要求2所述的筛选氮高效小麦品种的方法,其特征在于:步骤1中大田试验中试验小区随机排列,每个试验小区面积为6*9=54m2,行距20cm,重复3次,播种量为150kg/hm,10月中旬播种;磷肥和钾肥在播前作为基肥一次性施入,其中氮肥为尿素,磷肥为磷酸二氢钙687.5kg/hm2,钾肥为硫酸钾施用量144.74kg/hm2
4.根据权利要求1所述的筛选氮高效小麦品种的方法,其特征在于:步骤2中测定根系活力的方法为:分别于返青期、拔节期、孕穗期、灌浆期、成熟期冲根,取根尖处5cm根系,采用改良TTC还原法测定根系活力。
5.根据权利要求1所述的筛选氮高效小麦品种的方法,其特征在于:步骤2中测定根际土壤酶活性中土壤酶包括:β-葡萄糖苷酶、亮氨酸氨基肽酶和多酚氧化酶;选孕穗期N0和N1处理下供试小麦品种根际土,土壤BG酶和LAP酶活性采用微孔板荧光法分析法测定,土壤POX酶活性采用微孔板比色法测定。
6.根据权利要求1所述的筛选氮高效小麦品种的方法,其特征在于:步骤2中土壤微生物高通量测序方法为:利用Illumina MiSeq平台标准操作规程,对孕穗期N0和N1处理下供试小麦品种根际土土壤微生物群落进行测序;PCR扩增16S rRNA基因的V3-V4高变区以及ITS区域,对于每个DNA样品,在ABI GeneAmp 9700PCR系统上使用TransStart Fastpfu DNA聚合酶对三个重复进行独立的PCR扩增,使用AxyPrep PCR纯化试剂盒进行纯化,并使用Illumina MiSeq平台进行双末端测序。
7.根据权利要求4所述的筛选氮高效小麦品种的方法,其特征在于:步骤3中分析步骤2中根系活力的测定数据方法为:分析不同供试小麦品种根系活力均随着生育进程的变化趋势;对比在N0和N1处理下不同供试小麦品种的根系活力数值。
8.根据权利要求5所述的筛选氮高效小麦品种的方法,其特征在于:步骤3中分析步骤2中根际土壤酶活性的测定数据方法为:选取孕穗期N0和N1处理下根际土壤酶活性数值,对比不同供试小麦品种之间的根际土壤酶活性数值。
9.根据权利要求6所述的筛选氮高效小麦品种的方法,其特征在于:步骤3中分析步骤2中土壤微生物高通量测序数据方法为:1)测序结果首先使用QIIME对原始数据进行拼接,过滤,并去除嵌合体;挑出序列长度大于200bp,Barcode和引物序列无错误碱基,平均质量得分Q≥25的高质量序列;采用USEARCH软件在97%的阈值下划分分类操作单元,根据Silva数据库,比对OTU代表序列并进行分类,利用Mothur软件计算Shannon、Simpson多样性指数及Chao1、ACE丰富度指数,用于评价细菌α-多样性;2)根据根际土壤细菌群落在门水平上的相对丰度,以及根际土壤优势细菌属的相对丰度,分析供试小麦品种根际土壤细菌群落结构。
CN202210458106.0A 2022-04-28 2022-04-28 一种筛选氮高效小麦品种的方法 Pending CN114875113A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210458106.0A CN114875113A (zh) 2022-04-28 2022-04-28 一种筛选氮高效小麦品种的方法
PCT/CN2023/091643 WO2023208205A1 (zh) 2022-04-28 2023-04-28 一种筛选氮高效小麦品种的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210458106.0A CN114875113A (zh) 2022-04-28 2022-04-28 一种筛选氮高效小麦品种的方法

Publications (1)

Publication Number Publication Date
CN114875113A true CN114875113A (zh) 2022-08-09

Family

ID=82672087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210458106.0A Pending CN114875113A (zh) 2022-04-28 2022-04-28 一种筛选氮高效小麦品种的方法

Country Status (2)

Country Link
CN (1) CN114875113A (zh)
WO (1) WO2023208205A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208205A1 (zh) * 2022-04-28 2023-11-02 河南省农业科学院植物营养与资源环境研究所 一种筛选氮高效小麦品种的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816618A (zh) * 2020-12-29 2021-05-18 河南省农业科学院植物营养与资源环境研究所 一种氮高效小麦品种的筛选方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8692070B2 (en) * 2009-11-04 2014-04-08 Iowa Corn Promotion Board Plants with improved nitrogen utilization and stress tolerance
CN114875113A (zh) * 2022-04-28 2022-08-09 河南省农业科学院植物营养与资源环境研究所 一种筛选氮高效小麦品种的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112816618A (zh) * 2020-12-29 2021-05-18 河南省农业科学院植物营养与资源环境研究所 一种氮高效小麦品种的筛选方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
公华锐等: ""秸秆还田配施有机无机肥料对冬小麦土壤水氮变化及其微生物群落和活性的影响", 生态学报, vol. 39, no. 6, 21 December 2018 (2018-12-21), pages 2206 *
张传更等: "水分管理措施对施用有机肥麦田土壤酶活性和微生物群落结构的影响", 灌溉排水学报, vol. 37, no. 2, 16 October 2017 (2017-10-16), pages 3 *
熊淑萍;吴克远;王小纯;张捷;杜盼;吴懿鑫;马新明;: "不同氮效率基因型小麦根系吸收特性与氮素利用差异的分析", 中国农业科学, no. 12, 20 June 2016 (2016-06-20), pages 2269 *
竺伟民等: "化肥合理施用问答", 31 July 1983, 安徽科学技术出版社, pages: 98 *
赵孟阳;阴法庭;王江丽;: "春小麦-青贮玉米前茬不同施氮量对土壤微生物多样性及脲酶活性的影响", 黑龙江农业科学, no. 11, 10 November 2018 (2018-11-10) *
郭天财;宋晓;马冬云;查菲娜;岳艳军;张煜;李耀昭;: "氮素营养水平对小麦根际微生物及土壤酶活性的影响", 水土保持学报, no. 03, 30 June 2006 (2006-06-30), pages 129 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023208205A1 (zh) * 2022-04-28 2023-11-02 河南省农业科学院植物营养与资源环境研究所 一种筛选氮高效小麦品种的方法

Also Published As

Publication number Publication date
WO2023208205A1 (zh) 2023-11-02

Similar Documents

Publication Publication Date Title
Tao et al. Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification
Li et al. Blended controlled-release nitrogen fertilizer with straw returning improved soil nitrogen availability, soil microbial community, and root morphology of wheat
Tang et al. Impact of fertilization regimes on diazotroph community compositions and N2-fixation activity in paddy soil
Chen et al. Shifts in soil microbial community, soil enzymes and crop yield under peanut/maize intercropping with reduced nitrogen levels
Yang et al. Response of bacteria harboring nirS and nirK genes to different N fertilization rates in an alkaline northern Chinese soil
Weifeng et al. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil
Yang et al. Diazotroph abundance and community structure are reshaped by straw return and mineral fertilizer in rice-rice-green manure rotation
Zhou et al. Increasing atmospheric deposition nitrogen and ammonium reduced microbial activity and changed the bacterial community composition of red paddy soil
Wang et al. Effect of Trichoderma viride biofertilizer on ammonia volatilization from an alkaline soil in Northern China
Wolińska Metagenomic achievements in microbial diversity determination in croplands: A review
Ma et al. Controlled-release nitrogen fertilizer application mitigated N losses and modified microbial community while improving wheat yield and N use efficiency
Ikoyi et al. Sulfate fertilization supports growth of ryegrass in soil columns but changes microbial community structures and reduces abundances of nematodes and arbuscular mycorrhiza
Jin et al. Partial substitution of chemical fertilizer with organic fertilizer and slow-release fertilizer benefits soil microbial diversity and pineapple fruit yield in the tropics
Li et al. Different crop rotation systems change the rhizosphere bacterial community structure of Astragalus membranaceus (Fisch) Bge. var. mongholicus (Bge.) Hsiao
Zeng et al. Suppressed phosphorus-mineralizing bacteria after three decades of fertilization
WO2023208205A1 (zh) 一种筛选氮高效小麦品种的方法
Liu et al. Effects of Sugarcane and soybean intercropping on the nitrogen-fixing bacterial community in the Rhizosphere
Zhao et al. Response of apple orchard bacteria co-occurrence network pattern to long-term organic fertilizer input
Fu et al. Growth, nutrient uptake and transcriptome profiling of rice seedlings in response to mixed provision of ammonium-and nitrate-nitrogen
Wang et al. Returned straw reduces nitrogen runoff loss by influencing nitrification process through modulating soil C: N of different paddy systems
Yu et al. Contrasting responses of fungal and bacterial communities to biogas slurry addition in rhizospheric soil of poplar plantations
Li et al. Legacy effects of wheat season organic fertilizer addition on microbial co-occurrence networks, soil function, and yield of the subsequent maize season in a wheat-maize rotation system
Cao et al. Italian ryegrass (Lolium multiflorum L.)-rice (Oryza sativa L.) rotation promotes the nitrogen cycle in the rice rhizosphere through dominant ammonia-oxidizing bacteria
Xu et al. The effects of cultivation patterns and nitrogen levels on fertility and bacterial community characteristics of surface and subsurface soil
He et al. Maize genotypes regulate the feedbacks between maize nitrogen uptake and soil nitrogen transformations

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination