CN114808928A - Connecting joint of assembled pile plate structure and construction method - Google Patents
Connecting joint of assembled pile plate structure and construction method Download PDFInfo
- Publication number
- CN114808928A CN114808928A CN202210654418.9A CN202210654418A CN114808928A CN 114808928 A CN114808928 A CN 114808928A CN 202210654418 A CN202210654418 A CN 202210654418A CN 114808928 A CN114808928 A CN 114808928A
- Authority
- CN
- China
- Prior art keywords
- pile
- prefabricated
- prestressed
- plate
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010276 construction Methods 0.000 title claims abstract description 25
- 239000011178 precast concrete Substances 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 16
- 239000004567 concrete Substances 0.000 claims description 64
- 229910000831 Steel Inorganic materials 0.000 claims description 63
- 239000010959 steel Substances 0.000 claims description 63
- 230000002787 reinforcement Effects 0.000 claims description 41
- 238000004873 anchoring Methods 0.000 claims description 26
- 238000013461 design Methods 0.000 claims description 19
- 229920001971 elastomer Polymers 0.000 claims description 15
- 238000003466 welding Methods 0.000 claims description 8
- 239000004033 plastic Substances 0.000 claims description 7
- 229920003023 plastic Polymers 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 5
- 238000005452 bending Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 3
- 230000008439 repair process Effects 0.000 abstract description 16
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 239000011513 prestressed concrete Substances 0.000 abstract 3
- 238000007789 sealing Methods 0.000 abstract 1
- 210000001503 joint Anatomy 0.000 description 27
- 230000009471 action Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 9
- 230000005489 elastic deformation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 238000005381 potential energy Methods 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000009439 industrial construction Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000009417 prefabrication Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/24—Prefabricated piles
- E02D5/30—Prefabricated piles made of concrete or reinforced concrete or made of steel and concrete
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D13/00—Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
- E02D13/04—Guide devices; Guide frames
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D31/00—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution
- E02D31/08—Protective arrangements for foundations or foundation structures; Ground foundation measures for protecting the soil or the subsoil water, e.g. preventing or counteracting oil pollution against transmission of vibrations or movements in the foundation soil
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D33/00—Testing foundations or foundation structures
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/02—Sheet piles or sheet pile bulkheads
- E02D5/03—Prefabricated parts, e.g. composite sheet piles
- E02D5/10—Prefabricated parts, e.g. composite sheet piles made of concrete or reinforced concrete
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/02—Sheet piles or sheet pile bulkheads
- E02D5/03—Prefabricated parts, e.g. composite sheet piles
- E02D5/10—Prefabricated parts, e.g. composite sheet piles made of concrete or reinforced concrete
- E02D5/12—Locking forms; Edge joints; Pile crossings; Branch pieces
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/52—Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments
- E02D5/523—Piles composed of separable parts, e.g. telescopic tubes ; Piles composed of segments composed of segments
- E02D5/526—Connection means between pile segments
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D7/00—Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Piles And Underground Anchors (AREA)
Abstract
Description
技术领域technical field
本发明涉及装配式桩板路基结构领域,具体涉及一种装配式桩板结构连接节点及施工方法。The invention relates to the field of assembled pile-slab roadbed structures, in particular to a connection node of an assembled pile-slab structure and a construction method.
背景技术Background technique
装配式桩板路基结构近几年开始逐步应用于我国公路建设领域,该结构主要由预制桩基、预制板及桩板接头组成的框架结构体系,与传统路基相比,其代替了原有填土路基,实现了路基的快速工业化施工,具有节约土地资源,缩短工期、降低工程造价、路基结构沉降小等优势,因此在国家倡导绿色公路建设的背景下,具有良好的应用前景。The prefabricated pile-slab subgrade structure has been gradually applied in the field of highway construction in my country in recent years. The structure is mainly composed of a frame structure system consisting of prefabricated pile foundations, prefabricated slabs and pile-slab joints. Compared with the traditional subgrade, it replaces the original filling. The soil subgrade realizes the rapid industrial construction of the subgrade, and has the advantages of saving land resources, shortening the construction period, reducing the project cost, and small settlement of the subgrade structure.
由于桩板式路基是一种新型的路基形式,目前在公路工程中应用尚少,该结构采用预制管桩基础直接延伸至地面以上支撑预制板,所以预制管桩即要具有基础承上启下的作用,同时又需具有桥墩的承力作用,即应具有一定的抗压、抗弯和较强的抗剪承载能力。Since the pile-slab roadbed is a new type of roadbed, it is rarely used in highway engineering at present. The structure adopts the prefabricated pipe pile foundation to extend directly above the ground to support the prefabricated plate, so the prefabricated pipe pile should have the function of connecting the top and bottom of the foundation, and at the same time It also needs to have the bearing effect of the bridge pier, that is, it should have a certain compressive resistance, bending resistance and strong shear bearing capacity.
但现有常用的桩板结构在结构抗震方面尚考虑不足,其将地面以上管桩作为能力保护构件,将桩板现浇节点设计为塑性铰形成耗能机制,在地震荷载作用下,通过桩板连接节点的延性变形达到耗能目的,在地震荷载作用下,板桩连接节点损坏一般发生在管桩上,管桩损坏严重时有可能导致上部结构的坍塌,管桩损坏不大时,后期修复结构也需更换整根管桩,修复成本较高,因此这种设计为震后装配式桩板结构的节点修复和更换带来新的问题;同时现有桩板结构尚未考虑桩板连接节点的地震自复位功能设计,用以减少地震作用下桩板连接节点损坏和震后桩板节点修复工作;此外,桩板结构连接节点大多采用框架结构的现浇湿接头形成刚性节点,或采用H交叉钢板接头的半刚性节点,桩板节点施工需要现浇混凝土,影响施工效率。However, the existing commonly used pile-slab structures are still insufficient in terms of structural earthquake resistance. They use the pipe piles above the ground as capacity protection components, and design the cast-in-place joints of the piles as plastic hinges to form an energy dissipation mechanism. The ductile deformation of the plate connection node achieves the purpose of energy consumption. Under the action of the earthquake load, the damage of the plate pile connection node generally occurs on the pipe pile. When the pipe pile is seriously damaged, it may lead to the collapse of the superstructure. When the pipe pile is not damaged, the later stage The repair structure also needs to replace the whole pipe pile, and the repair cost is high, so this design brings new problems to the node repair and replacement of the post-earthquake assembled pile-slab structure; at the same time, the existing pile-slab structure has not considered the pile-slab connection node The earthquake self-resetting function design is designed to reduce the damage of pile-slab joints under earthquake action and the repair work of pile-slab joints after earthquakes; The construction of semi-rigid joints of cross-steel plate joints and pile-to-plate joints requires cast-in-place concrete, which affects the construction efficiency.
发明内容SUMMARY OF THE INVENTION
本发明的目的是:克服现有技术中存在的不足,提供一种装配式桩板结构连接节点及施工方法,该桩板连接节点整体采用预制装配化施工方式,可实现桩板结构节点的高效施工、提高桩板结构地震耗能能力、实现桩板连接节点地震自复位功能,有效降低震后结构的修复工作和构件更换成本。The purpose of the present invention is to overcome the deficiencies in the prior art, and to provide a prefabricated pile-slab structure connection node and a construction method. Construction, improve the seismic energy dissipation capacity of the pile-plate structure, realize the seismic self-reset function of the pile-plate connection node, and effectively reduce the repair work and component replacement cost of the post-earthquake structure.
为实现上述目的,本发明采用了以下技术方案:一种装配式桩板结构连接节点,包括位于上部的预制混凝土板,位于预制混凝土板下方的预制桩板接头,以及与预制桩板接头底部连接的预制PRC管桩;所述预制混凝土板的中部开设有横截面为圆形且上下贯通的预留孔洞,所述预留孔洞包括上部的大直径孔洞和下部的小直径孔洞,大直径孔洞的高度小于小直径孔洞的高度,所述预制桩板接头包括位于下部呈圆柱状的桩板接头柱体和上部呈圆台状的接头凸台,所述桩板接头柱体的上表面与接头凸台的底面固定连接,所述接头凸台插入小直径孔洞内部,所述预制混凝土板和预制桩板接头之间设置有具备弹性的垫圈,垫圈的底面与桩板接头柱体的上表面固定,垫圈的上表面与预制混凝土板的底面接触,垫圈呈圆形套设在接头凸台的外侧,垫圈的直径与桩板接头柱体的直径相同,所述大直径孔洞内沿小直径孔洞圆周外侧等距埋设有预应力管道,所述预应力管道向下穿过桩板接头柱体并插入预制PRC管桩内部,预应力管道内设置有预应力钢束,所述垫圈上环形等距开设有供预应力管道穿过的预应力孔洞,所述接头凸台与小直径孔洞之间填充有橡胶垫层。In order to achieve the above purpose, the present invention adopts the following technical scheme: a prefabricated pile-slab structure connection node, comprising a prefabricated concrete slab located at the upper part, a prefabricated pile-slab joint located below the prefabricated concrete slab, and a bottom connection with the prefabricated pile-slab joint. The prefabricated PRC pipe pile; the middle part of the prefabricated concrete slab is provided with a reserved hole whose cross section is circular and penetrates up and down, and the reserved hole includes a large-diameter hole in the upper part and a small-diameter hole in the lower part. The height is less than the height of the small-diameter hole, the prefabricated pile-plate joint includes a pile-plate joint cylinder located in a cylindrical shape at the lower part and a conical joint boss at the upper part, and the upper surface of the pile-plate joint cylinder is connected to the joint boss. The bottom surface of the joint is fixedly connected, the joint boss is inserted into the small diameter hole, an elastic washer is arranged between the precast concrete slab and the prefabricated pile joint, the bottom surface of the gasket is fixed with the upper surface of the pile joint cylinder, the gasket The upper surface of the pile is in contact with the bottom surface of the precast concrete slab, the washer is set on the outside of the joint boss in a circular shape, the diameter of the washer is the same as the diameter of the pile-to-plate joint cylinder, and the large-diameter hole is along the outer circumference of the small-diameter hole, etc. There are prestressed pipes buried in the distance, and the prestressed pipes pass downward through the pile-plate joint cylinder and are inserted into the interior of the prefabricated PRC pipe piles. The prestressed pipes are provided with prestressed steel bundles. The prestressed hole through which the prestressed pipeline passes, and the rubber cushion is filled between the joint boss and the small diameter hole.
进一步的,所述大直径孔洞的高度不超过所在预制混凝土板高度的1/4,大直径孔洞的直径不小于桩板接头柱体的直径。Further, the height of the large-diameter hole does not exceed 1/4 of the height of the precast concrete slab where it is located, and the diameter of the large-diameter hole is not less than the diameter of the pile-plate joint cylinder.
进一步的,所述桩板接头柱体的高度等于直径的1~2倍,桩板接头柱体的直径与预制PRC管桩的直径相同,所述接头凸台的高度与小直径孔洞的高度相同,所述预制桩板接头的混凝土强度等级不小于预制PRC管桩混凝土强度等级。Further, the height of the pile-plate joint cylinder is equal to 1-2 times the diameter, the diameter of the pile-plate joint cylinder is the same as the diameter of the prefabricated PRC pipe pile, and the height of the joint boss is the same as the height of the small diameter hole. , the concrete strength grade of the prefabricated pile-plate joint is not less than the concrete strength grade of the prefabricated PRC pipe pile.
进一步的,所述接头凸台和桩板接头柱体内部设置有与常规桩基类似的接头内钢筋笼纵筋和环向螺旋箍筋,环向螺旋箍筋位于预应力管道外侧。Further, the joint boss and the pile-plate joint cylinder are provided with longitudinal reinforcement of the steel cage in the joint and circumferential spiral stirrup similar to the conventional pile foundation, and the circumferential spiral stirrup is located outside the prestressed pipe.
进一步的,所述桩板接头柱体的底部和预制PRC管桩顶部各自固定连接有一个中部开设通孔的端板,两个端板采用角焊缝全焊连接,端板外侧固定有套箍,所述端板上同样环形等距开设有供预应力管道穿过的预应力孔洞,端板横截面为圆形且直径与桩板接头柱体的直径相同。Further, the bottom of the pile plate joint cylinder and the top of the prefabricated PRC pipe pile are each fixedly connected with an end plate with a through hole in the middle, the two end plates are connected by fillet welding, and a ferrule is fixed on the outside of the end plate. , the end plate is also provided with prestressed holes for the prestressed pipes to pass through, and the end plate is circular in cross section and the diameter is the same as the diameter of the pile-plate joint cylinder.
进一步的,所述预制PRC管桩向下1.4~1.6m处设置有一个圆形且中部开设有通孔的预应力锚固板,预应力锚固板厚度为5mm,预制PRC管桩内设置有管桩外环纵筋,管桩外环纵筋外侧固定连接有管桩箍筋,预应力锚固板内切于管桩外环纵筋,且预应力锚固板与管桩外环纵筋和管桩箍筋焊接为一体,所述预应力锚固板上下一倍桩径范围内设置有管桩加密纵筋,管桩加密纵筋贯穿通过预应力锚固板,且四周与预应力锚固板焊接,所述预应力锚固板上环形等距开设有供加密纵筋通过的孔洞和供预应力管道穿过的预应力孔洞,预应力孔洞位于管桩加密纵筋与管桩外环纵筋之间。Further, the prefabricated PRC pipe pile is provided with a circular prestressed anchoring plate with a through hole in the middle at 1.4-1.6m downward, the thickness of the prefabricated anchoring plate is 5mm, and the prefabricated PRC pipe pile is provided with a pipe pile. The outer ring longitudinal reinforcement, the outer ring longitudinal reinforcement of the pipe pile is fixedly connected with the pipe pile stirrup, the prestressed anchoring plate is inscribed in the outer ring longitudinal reinforcement of the pipe pile, and the prestressed anchoring plate is connected with the outer ring longitudinal reinforcement of the pipe pile and the pipe pile hoop. The rib is welded as a whole, and the prestressed anchor plate is provided with a pipe pile reinforced longitudinal reinforcement within the range of the pile diameter below the prestressed anchor plate. The stress anchoring plate is provided with holes for the passage of the intensified longitudinal bars and prestressed holes for the passage of the prestressed pipes, and the prestressed holes are located between the intensified longitudinal bars of the pipe pile and the outer ring longitudinal bars of the pipe pile.
进一步的,所述预应力锚固板外侧纵向固定有管桩外环预应力钢筋,管桩外环预应力钢筋与管桩外环纵筋沿预应力锚固板外侧交错布置,所述预应力锚固板上环形等距分布有预应力钢束,预应力钢束外套塑料套管,且向上穿过预应力孔洞和预应力管道后顶端位于大直径孔洞内,大直径孔洞内浇筑混凝土。Further, the outer side of the prestressed anchor plate is longitudinally fixed with prestressed steel bars on the outer ring of the pipe pile, and the prestressed steel bars on the outer ring of the pipe pile and the longitudinal bars of the outer ring of the pipe pile are staggered along the outer side of the prestressed anchor plate. The upper ring is equidistantly distributed with prestressed steel bundles, the prestressed steel bundles are sheathed with plastic sleeves, and the top end is located in the large-diameter hole after passing through the prestressed hole and the prestressed pipe upward, and concrete is poured in the large-diameter hole.
上述装配式桩板结构连接节点的施工方法,包括以下步骤:The construction method of the above-mentioned prefabricated pile-plate structure connection node includes the following steps:
S1.初步确定结构材料、布置尺寸和数量:根据实际架设位置所需的预制混凝土板和预制PRC管桩几何尺寸、材料参数及上部结构荷载大小初步确定桩板接头柱体及接头凸台的几何尺寸;确定接头内钢筋笼纵筋和环向螺旋箍筋各自的数量及布置;初步确定桩板连接节点所需预应力钢束的面积、布置位置及其张拉控制力;确定下部预制PRC管桩内部增设的预应力锚固板尺寸、材料和位置,确定管桩加密纵筋、管桩外环纵筋、管桩箍筋和管桩外环预应力钢筋各自的数量及布置;S1. Preliminary determination of structural materials, layout size and quantity: Preliminarily determine the geometry of the pile-to-plate joint column and joint boss according to the geometrical dimensions, material parameters and superstructure load of the precast concrete slab and prefabricated PRC pipe pile required for the actual erection position Size; determine the respective quantity and arrangement of the longitudinal reinforcement of the steel cage and the circumferential spiral stirrup in the joint; preliminarily determine the area, arrangement position and tension control force of the prestressed steel bundle required for the connection between the pile and plate; determine the lower prefabricated PRC pipe The size, material and position of the prestressed anchoring plate added inside the pile, determine the respective quantity and arrangement of the pipe pile dense longitudinal reinforcement, the pipe pile outer ring longitudinal reinforcement, the pipe pile stirrup and the pipe pile outer ring prestressed reinforcement;
S2.预制构件阶段:预制混凝土板预制时需准确开设预留孔洞,同时在大直径孔洞内沿圆周环向均匀预埋预应力管道,大直径孔洞的尺寸需能够满足预应力钢束张拉和锚固空间要求;制造预制PRC管桩过程中,在绑扎钢筋阶段,将预应力锚固板增设于预制PRC管桩内的设计位置,并与周围管桩外环纵筋、管桩箍筋和管桩外环预应力钢筋焊接固定形成钢筋骨架,在预应力锚固板上、下区域增设管桩加密纵筋和箍筋形成普通钢筋加密区,管桩加密纵筋需穿过预应力锚固板并与之焊接固定,环向螺旋箍筋间距加密,同时预应力锚固板在加工时需预留管桩加密纵筋穿过的孔洞以及预应力孔洞,孔洞直径大小需与纵筋相匹配,预应力孔洞直径大小与预应力钢束直径相匹配,且位置定位准确;将预应力钢束一端锚固于预应力锚固板上,并外套塑料套管,预应力另一端竖直延伸至预制PRC管桩的桩头外部,此时可采用定位钢筋将预应力管道定位准确,以防止偏斜;待绑扎钢筋阶段所有构件定位准确并绑扎焊接完成后,随后浇筑预制PRC管桩混凝土并养护至混凝土达到设计强度;预制桩板接头按照设计尺寸进行预制即可,需注意其内的预应力管道位置定位的精准性;S2. Prefabricated component stage: Prefabricated prefabricated concrete slabs need to be accurately opened with reserved holes. At the same time, prestressed pipes are evenly embedded in the circumferential direction in the large-diameter holes. The size of the large-diameter holes must be able to meet the tension and Anchorage space requirements; in the process of manufacturing prefabricated PRC pipe piles, at the stage of tying steel bars, prestressed anchor plates are added to the design positions in the prefabricated PRC pipe piles, and are connected with the outer ring longitudinal bars of the surrounding pipe piles, pipe pile stirrups and pipe piles The outer ring prestressed steel bars are welded and fixed to form a steel skeleton. On the prestressed anchor plate and the lower area, the pipe pile reinforced longitudinal bars and stirrups are added to form an ordinary steel reinforcement area. Welding and fixing, the spacing of the circumferential spiral stirrups is densified. At the same time, the prestressed anchoring plate needs to reserve the holes through which the longitudinal reinforcement of the pipe piles pass through and the prestressed holes during processing. The size matches the diameter of the prestressed steel bundle, and the position is accurate; one end of the prestressed steel bundle is anchored on the prestressed anchoring plate, and covered with a plastic sleeve, and the other end of the prestressed steel bundle extends vertically to the pile head of the prefabricated PRC pipe pile Externally, positioning steel bars can be used to accurately position the prestressed pipes to prevent deflection; after all the components are positioned accurately in the stage of binding steel bars and the binding and welding are completed, then the prefabricated PRC pipe pile concrete is poured and cured until the concrete reaches the design strength; The pile-plate joint can be prefabricated according to the design size, and attention should be paid to the accuracy of the positioning of the prestressed pipe in it;
S3.预制PRC管桩与预制桩板接头拼装连接:将各节段预制PRC管桩打入地下至设计标高,并完成顶节的预制PRC管桩与下节预制PRC管桩连接后,将预制桩板接头悬置于顶节的预制PRC管桩上方,将其顶部预留出的预应力钢束穿过预制桩板接头内预设的预应力管道,随后慢慢落下预制桩板接头并将其置于预制PRC管桩上,最后采用角焊缝将桩板接头柱体下方的端板与预制PRC管桩桩顶端板连接;S3. Assembled connection of prefabricated PRC pipe piles and prefabricated pile-plate joints: Drive each segment of prefabricated PRC pipe piles into the ground to the design elevation, and complete the connection between the prefabricated PRC pipe piles in the top section and the prefabricated PRC pipe piles in the lower section. The pile-slab joint is suspended above the prefabricated PRC pipe pile at the top section, and the prestressed steel bundle reserved at the top is passed through the pre-stressed pipe preset in the prefabricated pile-slab joint, and then the prefabricated pile-slab joint is slowly dropped and moved. It is placed on the prefabricated PRC pipe pile, and finally the end plate under the pile-plate joint column is connected with the top plate of the prefabricated PRC pipe pile by fillet weld;
S4.预制桩板接头与预制混凝土板拼装连接:将预制混凝土板悬置于预制桩板接头上方,在桩板接头柱体上方套上垫圈,在其接头凸台外围包裹橡胶垫层,并将预制桩板接头顶部外伸的预应力钢束穿过上方预制混凝土板内设的预应力管道,随后慢慢落下预制混凝土板并置于预制桩板接头上,采用橡胶垫层将接头凸台与小直径孔洞之间的缝隙填满,待顶节的预制PRC管桩、预制桩板接头、预制混凝土板三构件位置调整平稳后,在预制混凝土板顶部分批对称张拉预应力钢束并锚固,张拉控制力严格按照设计值进行;S4. Assembled connection of prefabricated pile-slab joint and prefabricated concrete slab: Suspend the prefabricated concrete slab above the prefabricated pile-slab joint, put a washer on the top of the pile-slab joint column, wrap the rubber cushion around the joint boss, and put the The prestressed steel bundles protruding from the top of the precast pile-slab joints pass through the prestressed pipes set in the precast concrete slabs above, and then slowly drop the precast concrete slabs and place them on the precast pile-slab joints. The gaps between the small-diameter holes are filled up. After the positions of the prefabricated PRC pipe piles, prefabricated pile-slab joints, and prefabricated concrete slabs at the top section are adjusted and stabilized, the prestressed steel bundles are tensioned and anchored in batches on the top of the prefabricated concrete slabs. , the tension control force is strictly in accordance with the design value;
S5.封盖:最后在预制混凝土板的预留孔洞上方浇筑混凝土对预留孔洞进行封盖。S5. Covering: Finally, pour concrete above the reserved holes of the precast concrete slab to cover the reserved holes.
进一步的,所述步骤S4中张拉控制力的确定公式为:其中,σcon为预应力张拉控制应力;σp为预制PRC管桩内已配预应力钢筋在截面内产生的压应力;N为单根管桩承受的轴力;M为单根管桩承受的弯矩;A为管桩截面面积;W为管桩截面模量;ftk为管桩混凝土材料抗拉强度标准值。Further, the determination formula of the tension control force in the step S4 is: Among them, σ con is the prestressed tension control stress; σ p is the compressive stress generated by the prestressed steel bars in the prefabricated PRC pipe pile in the section; N is the axial force borne by a single pipe pile; M is the single pipe pile Bending moment; A is the section area of the pipe pile; W is the section modulus of the pipe pile; f tk is the standard value of the tensile strength of the concrete material of the pipe pile.
本发明的有益效果是:The beneficial effects of the present invention are:
1、在预制PRC管桩和预制混凝土板之间设置预制桩板接头,并将其设计成钢筋混凝土延性构件,在地震荷载作用下,板桩节点发生损坏时预制桩板接头可发生延性变形或错动以消耗更多的地震能量,使节点损坏更多发生在预制桩板接头上,而避免损坏发生在管桩上,继而震后结构修复仅需修复和更换预制混凝土接头即可,施工方便、节约修复成本,方便灾后修复且具有良好的经济效益。1. Set up prefabricated pile-slab joints between prefabricated PRC pipe piles and prefabricated concrete slabs, and design them as reinforced concrete ductile members. Under the action of earthquake loads, the prefabricated pile-slab joints can occur ductile deformation or ductile deformation when the sheet pile joints are damaged. The staggered movement consumes more seismic energy, so that more joint damage occurs on the precast pile-slab joints, and avoids damage to the pipe piles, and then the post-earthquake structural repair only needs to repair and replace the precast concrete joints, which is convenient for construction , Save repair costs, facilitate post-disaster repair and have good economic benefits.
2、预制桩板之间设置的橡胶垫层和垫圈允许预制桩板接头与预制混凝土板之间有相对弹性变形,在地震荷载作用下,使装配式节点具有良好的耗能减震作用;此外,预制接头与预制管桩之间连接较弱,在较强的地震作用下2者之间可发生往复的水平剪切错动,继而可将地震能量消耗转变为位能,与此同时,在竖向预应力回张力作用下,又可有效增强混凝土板、接头与管桩之间的水平剪切错动复位能力,继而减少灾后预制接头的置换和修复工作。因此,该装配式桩板连接节点具有较好的地震自复位功能,板桩节点抗震性能良好。2. The rubber cushion and gasket set between the prefabricated pile plates allow the relative elastic deformation between the prefabricated pile plate joints and the prefabricated concrete plates, and under the action of earthquake loads, the prefabricated joints have good energy dissipation and shock absorption; in addition , the connection between the prefabricated joint and the prefabricated pipe pile is weak, and the reciprocating horizontal shear dislocation can occur between the two under strong earthquake action, and then the seismic energy consumption can be converted into potential energy. Under the action of vertical prestressed back tension, it can effectively enhance the horizontal shear dislocation reset ability between the concrete slab, the joint and the pipe pile, thereby reducing the replacement and repair work of the prefabricated joint after the disaster. Therefore, the assembled pile-sheet connection node has a good seismic self-resetting function, and the sheet pile node has good seismic performance.
3、在预制桩板接头与预制混凝土板之间设置的橡胶垫层和垫圈可使2者的连接介于固结和铰接之间,2者之间允许发生一定的弹性变形,相较于现有混凝土湿接头,可有效降低温度、沉降、混凝土收缩徐变等在结构内产生的附加内力,并进一步有效减少上部结构开裂情况的发生。3. The rubber cushion and gasket set between the prefabricated pile-slab joint and the prefabricated concrete slab can make the connection between the two between consolidation and hinge, and a certain elastic deformation is allowed between the two. There are concrete wet joints, which can effectively reduce the additional internal forces generated in the structure such as temperature, settlement, and concrete shrinkage and creep, and further effectively reduce the occurrence of cracks in the upper structure.
4、本发明采用预制混凝土接头进行桩板连接,混凝土接头可在工厂预制生产,施工现场只需简单拼装连接即可完成桩板连接,与现有现浇混凝土刚性接头施工相比,减少现场混凝土浇筑和养护时间,加快施工进度,提高了施工效率。4. The present invention uses prefabricated concrete joints for pile-to-plate connection. The concrete joints can be prefabricated in the factory, and the pile-to-plate connection can be completed by simply assembling and connecting at the construction site. Compared with the existing cast-in-place concrete rigid joint construction, the construction of on-site concrete Pouring and curing time, speed up the construction progress and improve the construction efficiency.
附图说明Description of drawings
图1为本发明的正视结构示意图;Fig. 1 is the front view structure schematic diagram of the present invention;
图2为本发明的预制混凝土板预留孔洞位置结构示意图;Fig. 2 is the precast concrete slab reserved hole position structure schematic diagram of the present invention;
图3为本发明的垫圈结构示意图;Figure 3 is a schematic diagram of the structure of the gasket of the present invention;
图4为本发明的预制桩板接头结构示意图;Fig. 4 is the structural schematic diagram of the prefabricated pile-plate joint of the present invention;
图5为本发明的预制桩板接头内部普通钢筋布置结构示意图;5 is a schematic diagram of the arrangement structure of common steel bars inside the prefabricated pile-to-plate joint of the present invention;
图6为本发明的下部预制PRC管桩顶部结构示意图;Fig. 6 is the top structure schematic diagram of the lower prefabricated PRC pipe pile of the present invention;
图7为本发明的下部预制PRC管桩结构示意图;Fig. 7 is the structural schematic diagram of the lower prefabricated PRC pipe pile of the present invention;
图8为本发明的下部预制PRC管桩顶部内部钢筋构造示意图;Figure 8 is a schematic diagram of the structure of the internal steel reinforcement at the top of the lower prefabricated PRC pipe pile of the present invention;
图9为图8中A-A剖面结构示意图。FIG. 9 is a schematic diagram of the cross-sectional structure of A-A in FIG. 8 .
图中:1、预制混凝土板;2、预制桩板接头;3、预制PRC管桩;4、垫圈;5、预应力锚固板;6、预应力钢束;7、预留孔洞;8、预应力管道;9、接头凸台;10、端板;11、桩板接头柱体;12、预应力孔洞;13、管桩加密纵筋;14、管桩外环纵筋;15、管桩箍筋;16、接头内钢筋笼纵筋;17、环向螺旋箍筋;18、管桩外环预应力钢筋19、橡胶垫层。In the figure: 1. Prefabricated concrete slab; 2. Prefabricated pile-slab joint; 3. Prefabricated PRC pipe pile; 4. Washer; 5. Prestressed anchor plate; 6. Prestressed steel bundle; Stress pipeline; 9. Joint boss; 10. End plate; 11. Pile-plate joint column; 12. Prestressed hole; 13. Intensified longitudinal reinforcement of pipe pile; 14. Longitudinal reinforcement of outer ring of pipe pile; 15.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明作进一步的解释说明。The present invention will be further explained below with reference to the accompanying drawings and specific embodiments.
实施例:Example:
如图1-9所示,一种装配式桩板结构连接节点,包括位于上部的预制混凝土板1,位于预制混凝土板1下方的预制桩板接头2,以及与预制桩板接头2底部连接的预制PRC管桩3;预制混凝土板1的中部开设有横截面为圆形且上下贯通的预留孔洞7,预留孔洞7包括上部的大直径孔洞和下部的小直径孔洞,大直径孔洞的高度为120mm,预制桩板接头2包括位于下部呈圆柱状的桩板接头柱体11和上部呈圆台状的接头凸台9,桩板接头柱体11的上表面与接头凸台9的底面固定连接,接头凸台9插入小直径孔洞内部,预制混凝土板1和预制桩板接头2之间设置有具备弹性的垫圈4,垫圈4选择弹性变形材料,可选择橡胶或改性聚氨酯材料;在预制桩板接头2与预制混凝土板1之间设置的橡胶垫层19和垫圈4可使2者的连接介于固结和铰接之间,2者之间允许发生一定的弹性变形,相较于现有混凝土湿接头,可有效降低温度、沉降、混凝土收缩徐变等产生的附加内力,继而有效减少上部结构开裂情况的发生,同时在车辆或地震作用下,可通过橡胶的弹性变形有效消耗振动能量,降低结构振动程度;垫圈4的底面与桩板接头柱体11的上表面固定,垫圈4的上表面与预制混凝土板1的底面接触,垫圈4呈圆形套设在接头凸台9的外侧,垫圈4的直径与桩板接头柱体11的直径相同,大直径孔洞内沿小直径孔洞圆周外侧等距埋设有预应力管道8,预应力管道8向下穿过桩板接头柱体11并插入预制PRC管桩3内部,预应力管道8内设置有预应力钢束6,垫圈4上环形等距开设有供预应力管道8穿过的预应力孔洞12,接头凸台9与小直径孔洞之间填充有橡胶垫层19;As shown in Figures 1-9, a prefabricated pile-slab structure connection node includes a precast
在预制PRC管桩3和预制混凝土板1之间设置预制桩板接头2,并将其设计成钢筋混凝土构件延性构件,在地震荷载作用下,板桩节点发生损坏时预制桩板接头2可发生延性变形或错动以消耗更多的地震能量,使节点损坏更多发生在预制桩板接头2上,而避免损坏发生在管桩上,继而震后结构修复仅需修复和更换预制桩板接头2即可,施工方便、节约修复成本,方便灾后修复且具有良好的经济效益;预制桩板之间设置的橡胶垫层19和垫圈4允许预制桩板接头2与预制混凝土板1之间有相对弹性变形,在地震荷载作用下,使装配式节点具有良好的耗能减震作用;此外,预制桩板接头2与预制PRC管桩3之间连接较弱,在较强的地震作用下2者之间可发生往复的水平剪切错动,继而可将地震能量消耗转变为位能,与此同时,在竖向预应力回张力作用下,又可有效增强预制混凝土板1、预制桩板接头2与预制PRC管桩3之间的水平剪切错动复位能力,继而减少灾后预制接头的置换和修复工作,因此,该装配式桩板连接节点具有较好的地震自复位功能,板桩节点抗震性能良好。A prefabricated pile-
大直径孔洞的高度不超过所在预制混凝土板1高度的1/4,大直径孔洞的直径不小于桩板接头柱体11的直径。The height of the large-diameter hole does not exceed 1/4 of the height of the precast
桩板接头柱体11的高度等于直径的1~2倍,桩板接头柱体11的直径与预制PRC管桩3的直径相同,接头凸台9的高度与小直径孔洞的高度相同,预制桩板接头2的混凝土强度等级不小于预制PRC管桩3混凝土强度等级。The height of the pile-plate
接头凸台9和桩板接头柱体11内部设置有与常规桩基类似的接头内钢筋笼纵筋16和环向螺旋箍筋17,环向螺旋箍筋17位于预应力管道8外侧。The
桩板接头柱体11的底部和预制PRC管桩3顶部各自固定连接有一个中部开设通孔的端板10,两个端板10采用角焊缝全焊连接,端板10外侧固定有套箍,端板10上同样环形等距开设有供预应力管道8穿过的预应力孔洞12,端板10横截面为圆形且直径与桩板接头柱体11的直径相同。The bottom of the pile plate
预制PRC管桩3向下1.5m处设置有一个圆形且中部开设有通孔的预应力锚固板5,预应力锚固板5厚度为5mm,预制PRC管桩3内设置有管桩外环纵筋14,管桩外环纵筋14外侧固定连接有管桩箍筋15,预应力锚固板5内切于管桩外环纵筋14,且预应力锚固板5与管桩外环纵筋14和管桩箍筋15焊接为一体,预应力锚固板5上下一倍桩径范围内设置有管桩加密纵筋13,管桩加密纵筋13贯穿通过预应力锚固板5,且四周与预应力锚固板5焊接,预应力锚固板5上同样环形等距开设有供加密纵筋通过的孔洞和供预应力管道8穿过的预应力孔洞12,预应力孔洞12位于管桩加密纵筋13与管桩外环纵筋14之间。The prefabricated
预应力锚固板5外侧纵向固定有管桩外环预应力钢筋18,管桩外环预应力钢筋18与管桩外环纵筋14沿预应力锚固板5外侧交错布置,预应力锚固板5上环形等距分布有预应力钢束6,预应力钢束6外套塑料套管,且向上穿过预应力孔洞12和预应力管道8后顶端位于大直径孔洞内,大直径孔洞内浇筑混凝土。The outer side of the
上述装配式桩板结构连接节点的施工方法,包括以下步骤:The construction method of the above-mentioned prefabricated pile-plate structure connection node includes the following steps:
S1.初步确定结构材料、布置尺寸和数量:根据实际架设位置所需的预制混凝土板1和预制PRC管桩3几何尺寸、材料参数及上部结构荷载大小初步确定桩板接头柱体11及接头凸台9的几何尺寸;确定接头内钢筋笼纵筋16和环向螺旋箍筋17各自的数量及布置;初步确定桩板连接节点所需预应力钢束6的面积、布置位置及其张拉控制力;确定下部预制PRC管桩内部增设的预应力锚固板5尺寸、材料和位置,确定管桩加密纵筋13、管桩外环纵筋14、管桩箍筋15和管桩外环预应力钢筋18各自的数量及布置;S1. Preliminary determination of structural materials, layout size and quantity: Preliminarily determine the pile-plate
S2.预制构件阶段:预制混凝土板1预制时需准确开设预留孔洞7,同时在大直径孔洞内沿圆周环向均匀预埋预应力管道8,大直径孔洞的尺寸需能够满足预应力钢束张拉和锚固空间要求;制造预制PRC管桩3过程中,在绑扎钢筋阶段,将预应力锚固板5增设于预制PRC管桩3内的设计位置,并与周围管桩外环纵筋14、管桩箍筋15和管桩外环预应力钢筋18焊接固定形成钢筋骨架,在预应力锚固板5上、下区域增设管桩加密纵筋13和加密箍筋形成普通钢筋加密区,管桩加密纵筋13需穿过预应力锚固板5并与之焊接固定,环向螺旋箍筋17间距加密,同时预应力锚固板5在加工时需预留管桩加密纵筋13穿过的孔洞以及预应力孔洞12,孔洞直径大小需与纵筋相匹配,预应力孔洞12直径大小与预应力钢束6直径相匹配,且位置定位准确;将预应力钢束6一端锚固于预应力锚固板5上,并外套塑料套管,预应力另一端竖直延伸至预制PRC管桩3的桩头外部,此时可采用定位钢筋将预应力管道8定位准确,以防止偏斜;待绑扎钢筋阶段所有构件定位准确并绑扎焊接完成后,随后浇筑预制PRC管桩3混凝土并养护至混凝土达到设计强度;预制桩板接头2按照设计尺寸进行预制即可,需注意其内的预应力管道8位置定位的精准性;S2. Prefabricated component stage: Prefabricated
S3.预制PRC管桩3与预制桩板接头2拼装连接:将各节段预制PRC管桩3打入地下至设计标高,并完成顶节的预制PRC管桩与下节预制PRC管桩3连接后,将预制桩板接头2悬置于顶节的预制PRC管桩3上方,将其顶部预留出的预应力钢束6穿过预制桩板接头2内预设的预应力管道8,随后慢慢落下预制桩板接头2并将其置于预制PRC管桩3上,最后采用角焊缝将桩板接头柱体11下方的端板10与预制PRC管桩3桩顶端板10连接;S3. Assemble and connect the prefabricated
S4.预制桩板接头2与预制混凝土板1拼装连接:将预制混凝土板1悬置于预制桩板接头2上方,在桩板接头柱体11上方套上垫圈4,在其接头凸台9外围包裹橡胶垫层19,并将预制桩板接头2顶部外伸的预应力钢束6穿过上方预制混凝土板1内设的预应力管道8,随后慢慢落下预制混凝土板1并置于预制桩板接头2上,采用橡胶垫层19将接头凸台9与小直径孔洞之间的缝隙填满,待顶节的预制PRC管桩3、预制桩板接头2、预制混凝土板1三构件位置调整平稳后,在预制混凝土板1顶部分批对称张拉预应力钢束6并锚固,张拉控制力严格按照设计值进行;S4. The prefabricated pile-
预应力张拉控制力由计算确定,具体计算过程为:经前期结构分析,考虑作用在结构上的各荷载作用效应包含地震作用效应,并进行正常使用极限状态、持久状态及短暂状态等荷载作用效应组合,预应力张拉控制应力以管桩混凝土材料受拉为准则,应满足以下关系式:其中,σcon-为预应力张拉控制应力;σp-为预制PRC管桩内已配预应力钢筋在截面内产生的压应力;N-单根管桩承受的轴力;M-单根管桩承受的弯矩;A-管桩截面面积;W-管桩截面模量;ftk-管桩混凝土材料抗拉强度标准值。The prestressed tension control force is determined by calculation. The specific calculation process is as follows: through the structural analysis in the early stage, considering the effect of each load action on the structure including the earthquake action effect, and carrying out the load action of the normal service limit state, permanent state and transient state, etc. Effect combination, the prestressed tension control stress is based on the tension of the concrete material of the pipe pile as the criterion, and the following relationship should be satisfied: Among them, σ con - is the prestressed tension control stress; σ p - is the compressive stress generated in the section by the prestressed steel bars in the prefabricated PRC pipe pile; N - the axial force of a single pipe pile; M - a single pipe pile Bending moment of pipe pile; A-pipe pile section area; W-pipe pile section modulus; f tk - standard value of tensile strength of pipe pile concrete material.
S5.封盖:最后在预制混凝土板1的预留孔洞7上方浇筑混凝土对预留孔洞7进行封盖。S5. Covering: Finally, pour concrete above the
本发明采用预制混凝土接头进行桩板连接,混凝土接头可在工厂预制生产,施工现场只需简单拼装连接即可完成桩板连接,与现有现浇混凝土刚性接头施工相比,减少现场混凝土浇筑和养护时间,加快施工进度,提高了施工效率。The invention adopts prefabricated concrete joints for pile-plate connection, the concrete joints can be prefabricated in the factory, and the pile-plate connection can be completed by simply assembling and connecting at the construction site. The maintenance time is shortened, the construction progress is accelerated, and the construction efficiency is improved.
以上所述,仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。The above is only used to illustrate the technical solution of the present invention and not to limit it. Other modifications or equivalent replacements made by those of ordinary skill in the art to the technical solution of the present invention, as long as they do not depart from the spirit and scope of the technical solution of the present invention, should be Included within the scope of the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210654418.9A CN114808928B (en) | 2022-06-10 | 2022-06-10 | A kind of prefabricated pile plate structure connection node and construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210654418.9A CN114808928B (en) | 2022-06-10 | 2022-06-10 | A kind of prefabricated pile plate structure connection node and construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114808928A true CN114808928A (en) | 2022-07-29 |
CN114808928B CN114808928B (en) | 2024-03-22 |
Family
ID=82520775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210654418.9A Active CN114808928B (en) | 2022-06-10 | 2022-06-10 | A kind of prefabricated pile plate structure connection node and construction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114808928B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002004271A (en) * | 2000-06-27 | 2002-01-09 | Shimizu Corp | Composite pile and its construction method |
JP2010216150A (en) * | 2009-03-17 | 2010-09-30 | Jfe Steel Corp | Pier foundation structure and pier foundation construction method |
CN107268366A (en) * | 2017-07-05 | 2017-10-20 | 安徽省交通规划设计研究总院股份有限公司 | A kind of assembling wallboard, rubble formula are without earth roadbed |
CN108442370A (en) * | 2017-02-16 | 2018-08-24 | 五冶集团上海有限公司 | The broken pile connector processing method of prestressed concrete pipe pile |
CN113216409A (en) * | 2021-04-25 | 2021-08-06 | 广东省建科建筑设计院有限公司 | Connecting structure of precast concrete tubular pile column with diagonal bracing and hollow floor or flat floor |
CN114045821A (en) * | 2021-12-14 | 2022-02-15 | 福建省交通规划设计院有限公司 | Combined connection type pile plate structure and construction method thereof |
CN114134883A (en) * | 2021-12-14 | 2022-03-04 | 郑州大学 | Low-prestress-degree high-ductility mixed reinforced concrete pile and manufacturing method thereof |
CN114517426A (en) * | 2022-02-17 | 2022-05-20 | 上海城建市政工程(集团)有限公司 | Steel pipe socket type tramcar prefabricated track beam and pipe pile connecting structure and construction method |
-
2022
- 2022-06-10 CN CN202210654418.9A patent/CN114808928B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002004271A (en) * | 2000-06-27 | 2002-01-09 | Shimizu Corp | Composite pile and its construction method |
JP2010216150A (en) * | 2009-03-17 | 2010-09-30 | Jfe Steel Corp | Pier foundation structure and pier foundation construction method |
CN108442370A (en) * | 2017-02-16 | 2018-08-24 | 五冶集团上海有限公司 | The broken pile connector processing method of prestressed concrete pipe pile |
CN107268366A (en) * | 2017-07-05 | 2017-10-20 | 安徽省交通规划设计研究总院股份有限公司 | A kind of assembling wallboard, rubble formula are without earth roadbed |
CN113216409A (en) * | 2021-04-25 | 2021-08-06 | 广东省建科建筑设计院有限公司 | Connecting structure of precast concrete tubular pile column with diagonal bracing and hollow floor or flat floor |
CN114045821A (en) * | 2021-12-14 | 2022-02-15 | 福建省交通规划设计院有限公司 | Combined connection type pile plate structure and construction method thereof |
CN114134883A (en) * | 2021-12-14 | 2022-03-04 | 郑州大学 | Low-prestress-degree high-ductility mixed reinforced concrete pile and manufacturing method thereof |
CN114517426A (en) * | 2022-02-17 | 2022-05-20 | 上海城建市政工程(集团)有限公司 | Steel pipe socket type tramcar prefabricated track beam and pipe pile connecting structure and construction method |
Non-Patent Citations (2)
Title |
---|
汪加蔚;: "高速铁路工程结构简介及预应力混凝土管桩应用", 混凝土世界, no. 05, pages 42 - 49 * |
许大晴;席进;: "桩板式梁桥在高速公路改扩建项目中的应用", 现代交通技术, no. 06, pages 44 - 46 * |
Also Published As
Publication number | Publication date |
---|---|
CN114808928B (en) | 2024-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110541354B (en) | A single-segment prefabricated seismic bridge pier and its construction method | |
CN110396918B (en) | Assembled hollow pier system equivalent to cast-in-situ and construction method thereof | |
CN104153287B (en) | System and method for segmentally assembled concrete frame bridge piers with self-resetting ability | |
CN110886202A (en) | Socket joint type node connection structure and construction method for prefabricated reinforced concrete hollow pier | |
CN104120647A (en) | Segmental assembling concrete frame bridge pier system suitable for rapid construction and construction method | |
CN105908621A (en) | Damage-controllable self-resetting section prefabricated assembled steel pipe concrete bridge pier and manufacturing method thereof | |
CN104612036A (en) | Unbonded post-tensioning prestress concrete-filled double-wall steel pipe prefabricated assembly piers with additional dampers | |
CN113585049B (en) | Self-resetting prefabricated assembled concrete filled steel tube pier node connecting structure with replaceable plastic hinges and construction method thereof | |
CN111962386A (en) | Energy-consuming and shock-absorbing self-resetting prefabricated segmental pier structure and its construction method | |
CN106758786A (en) | A kind of prefabricated assembled concrete-filled double skin steel tube lattice bridge pier | |
CN104612038A (en) | Flange-connecting concrete-filled double-wall steel pipe prefabricated assembly piers with additional dampers | |
CN211113140U (en) | Equal cast-in-place assembly type hollow pier system | |
CN108867342A (en) | A kind of antiseismic multicolumn pier system and construction method collapsed of high-durability | |
CN204589789U (en) | A kind of soap-free emulsion polymeization post-tensioned prestressed concrete of additional damping device fills double-walled steel pipe precast assembly bridge pier | |
Zhou et al. | Seismic behavior of a novel prefabricated thin-walled CFST double-column pier system for simple on-site assembly | |
CN112081242B (en) | Assembled integral beam-column joint provided with shape memory alloy reinforcement and construction method | |
CN117646384A (en) | Assembled pier without bearing platform for conventional area and construction method | |
CN111979894A (en) | A steel column and concrete bearing platform connection structure and construction method thereof | |
CN114382005B (en) | Segment-assembled pier with stair performance and construction method thereof | |
CN102635063A (en) | Post-tensioned prestressing steel pipe high-strength concrete superposition bridge pier and construction method thereof | |
CN109898540B (en) | Wet joint structure among bridge pier, bearing platform and pile foundation and construction process thereof | |
CN117758601A (en) | A kind of prefabricated bridge pier without cap for high-intensity areas and its construction method | |
CN204475149U (en) | A kind of soap-free emulsion polymeization post-tensioned prestressed concrete of additional power consumption reinforcing bar fills double-walled steel pipe precast assembly bridge pier | |
CN114808928B (en) | A kind of prefabricated pile plate structure connection node and construction method | |
CN113430922B (en) | Concrete filled steel pipe pier with corrugated sleeve repositionable double-column pier and its construction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |