CN114806587A - 一种修复镉砷复合污染土壤的修复剂及其应用 - Google Patents

一种修复镉砷复合污染土壤的修复剂及其应用 Download PDF

Info

Publication number
CN114806587A
CN114806587A CN202210499523.XA CN202210499523A CN114806587A CN 114806587 A CN114806587 A CN 114806587A CN 202210499523 A CN202210499523 A CN 202210499523A CN 114806587 A CN114806587 A CN 114806587A
Authority
CN
China
Prior art keywords
repairing
bacillus licheniformis
pseudomonas aeruginosa
culture
cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210499523.XA
Other languages
English (en)
Other versions
CN114806587B (zh
Inventor
戴中民
刘怀婷
徐建明
王秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202210499523.XA priority Critical patent/CN114806587B/zh
Publication of CN114806587A publication Critical patent/CN114806587A/zh
Application granted granted Critical
Publication of CN114806587B publication Critical patent/CN114806587B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K17/00Soil-conditioning materials or soil-stabilising materials
    • C09K17/14Soil-conditioning materials or soil-stabilising materials containing organic compounds only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Soil Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明提供了一种修复镉砷复合污染土壤的修复剂及其应用,属于土壤重金属污染技术领域。本发明提供的修复镉砷复合污染土壤的修复剂,由铜绿假单胞菌和地衣芽孢杆菌组成。本发明提供的由铜绿假单胞菌和地衣芽孢杆菌组成的修复剂对镉砷复合污染土壤具有协同修复作用,将铜绿假单胞菌和地衣芽孢杆菌在镉砷复合污染体系中共培养能够提高对Cd的修复效率和对As(Ⅴ)的还原效率。

Description

一种修复镉砷复合污染土壤的修复剂及其应用
技术领域
本发明涉及土壤重金属污染技术领域,尤其涉及一种修复镉砷复合污染土壤的修复剂及其应用。
背景技术
Cd和As的复合污染在我国南方污染土壤中非常典型,且二者的理化性质有较大差异。在土壤中,Cd通常以阳离子形式存在;As多以阴离子形式存在,如
Figure BDA0003634832960000011
两者在土壤中的固定、迁移以及被植物吸收富集等方面均具有相反的特质。Cd与As也可以通过下述反应发生共沉淀以降低环境中重金属的有效性:
Figure BDA0003634832960000012
因而也可能限制Cd的离子活性。但是目前现有的针对重金属复合污染的研究较少,通常只单独将Cd或As作为研究对象,而忽略了真正土壤环境的复杂性。因此,鉴于Cd、As两种重金属性质的典型性和差异性,开展镉砷复合污染相关研究是十分必要的,对于解决土壤重金属污染问题也有着广阔的应用前景。
目前,重金属的修复方法可分为物理、化学和微生物三大类。特别是微生物修复不仅具有高效、环保的特点,还能促进植物生长和改善微生物群落结构。细菌可以通过与不同重金属离子的静电作用来产生相互影响,带有不同性质的重金属之间的协同或抑制作用也会对微生物的功能和结构产生多维度的影响。因此,了解它们共存的生物地球化学行为是一个巨大的挑战,但也是非常必要的。但是,目前对重金属修复的研究主要集中在单一菌株上。例如,利用间歇吸附实验、电位滴定法、傅里叶变换红外光谱(FTIR)等方法探索单一细菌胞外聚合物对Cd或As的生物吸附。关于合成微生物学的研究主要集中在pH值、养分利用率、接种比例和运动能力等方面。有关于细菌互作对于复合污染重金属修复的报道很少。这涉及到重金属性质差异带来的协同或竞争作用,以及细菌互作带来的促进或抑制作用两对影响因素。目前已有大量研究表明单菌可以利用其胞外聚合物或相关基因固定或转化重金属,并且效果十分显著,这也为开展细菌共培养相关研究奠定了良好的基础。目前细菌共培养对重金属的生物吸附和转化效应、细菌绝对丰度以及功能基因如(arsB基因)表达的影响尚不清楚,因此我们要揭示复合污染条件下共培养体系中的机理与效果。
发明内容
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种修复镉砷复合污染土壤的修复剂,所述修复剂由铜绿假单胞菌和地衣芽孢杆菌组成。
优选的,所述铜绿假单胞菌和地衣芽孢杆菌的活菌数量比为10:1~20:1。
优选的,所述铜绿假单胞菌为铜绿假单胞菌(Pseudomonas aeruginosa)NBRC12689,在NCBI上的基因组序列号为NR_113599.1;所述地衣芽孢杆菌为地衣芽孢杆菌(Bacillus licheniformis)P8_B2,在NCBI上的基因组序列号为CP_045814.1。
本发明还提供了一种所述的修复剂用于修复镉砷复合污染土壤的应用。
优选的,所述镉砷复合污染土壤中重金属镉和砷的质量比为0.5~100:90。
本发明提供的由铜绿假单胞菌和地衣芽孢杆菌组成的修复剂对镉砷复合污染土壤具有协同修复/还原作用,将铜绿假单胞菌和地衣芽孢杆菌在镉砷复合污染体系中共培养能够提高对Cd的修复效率和对As(Ⅴ)的还原效率。本发明的研究还表明:Cd和As两种重金属的添加分别促进了arsB基因的表达,但两种重金属的组合会减弱这种促进作用,但修复效果仍然是正向的。
因此,我们认为微生物共培养下的环境导致细菌运动和繁殖能力的差异,最终体现在重金属修复能力以及相关基因表达方面的差异。基于以上差异,导致特定细菌在共培养条件下对于重金属修复能力的提升作用大于单一细菌培养。本发明为微生物修复重金属复合污染提供了更加经济绿色的途径。
附图说明
图1为地衣芽孢杆菌共培养前后各处理下Cd的修复效率折线图;
图2为地衣芽孢杆菌共培养前后各处理下As的还原效率折线图;
图3为铜绿假单胞菌共培养前后各处理下Cd的修复效率折线图;
图4为铜绿假单胞菌共培养前后各处理下As的还原效率折线图;
图5为两株菌共培养前后地衣芽孢杆菌数量与铜绿假单胞菌数量的比值;
图6为地衣芽孢杆菌共培养前后各处理下单位细菌对Cd的修复效率折线图;
图7为地衣芽孢杆菌共培养前后各处理下单位细菌对As(Ⅴ)的还原效率折线图;
图8为铜绿假单胞菌共培养前后各处理下单位细菌对Cd的修复效率折线图;
图9为铜绿假单胞菌共培养前后各处理下单位细菌对As(Ⅴ)的还原效率折线图;
图10为两株菌共培养前后各处理下单位细菌arsB基因的表达量;
图11为两株菌中采用特异性引物验证arsB基因的电泳图。
具体实施方式
下面结合实施例对本发明提供的技术方案进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
利用平板计数和酶标仪测定两株菌的光密度,绘制被测菌的生长曲线,通过生长曲线确定两株菌株培养24h时均达到对数生长期,因此选择这一时期作为实验节点。本试验共11种重金属处理,可分为单一污染体系和复合污染体系。其中,单一污染体系包括Cd污染体系(浓度为0.5、5、10、50、100mg/L)和As污染体系(浓度为90mg/L);复合污染体系为Cd+As污染体系(对应的Cd+As浓度为0.5+90、5+90、10+90、50+90、100+90mg/L)。
同时,设置三种细菌培养体系:地衣芽孢杆菌P8_B2纯培养体系、铜绿假单胞菌NBRC 12689纯培养体系和两株菌的共培养体系。共设33个处理,每个处理3个重复。试验在LB液体培养基中进行,各处理菌株的接种体积比例为6%(共培养体系下,两株菌的接种体积比例分别为3%,总接种体积为6%),铜绿假单胞菌接种活菌数浓度为109个/ml,地衣芽孢杆菌接种活菌数浓度约为108个/ml。在37℃下培养24h。
培养24h后,收集各处理的培养液,在8000rpm离心10min,得到上清液,用超纯水将上清液稀释1000倍,过0.22μm滤膜,收集滤液,备用。
实施例2
用电感耦合等离子体质谱仪(ICP-MS)(NEXION300XX,PerkinElmer,Inc)测定各处理滤液中Cd的含量(mg/L);采用高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)(PerkinElmer Series 200HPLC和NEXION300XX,ICP-MS)测定各处理滤液中As(Ⅲ)的含量,计算As的还原效率(As的还原效率=As(III)浓度/初始添加的As(V)浓度)。结果如表1~2所示。
仪器所需的20mM NH4H2PO4(用氨水调节pH至6.50)色谱流动相先用0.22μm滤膜抽滤,然后超声脱气20分钟。As形态标准品As(III)、As(V)、二甲基胂酸(DMAs(V))和一甲基胂酸(MMAs(V))(GBW08666-GBW08671)购自中国计量科学研究院。
结果分析:
表1共培养前后各处理下Cd的修复效率
Figure BDA0003634832960000041
表2共培养前后各处理下As的还原效率
Figure BDA0003634832960000042
Figure BDA0003634832960000051
从表1中可以得知,地衣芽孢杆菌共培养前各处理对Cd的平均去除率为63%,而两种菌共培养后各处理对Cd的平均去除率为72%。可见,将地衣芽孢杆菌和铜绿假单胞菌共培养后对Cd的去除率由63%提高到了72%。其中,在Cd污染体系中,提升效果最显著的是Cd污染水平为100mg/L,共培养体系的修复效率是地衣芽孢杆菌纯培养体系的1.8倍;在Cd+As污染体系中,提升效果最显著的Cd+As污染水平为50+90mg/L,共培养体系的修复效率是地衣芽孢杆菌纯培养体系的1.23倍。
从表1中可以得知,铜绿假单胞菌共培养前各处理对Cd的平均去除率为73%,而两种菌共培养后各处理对Cd的平均去除率为72%。从Co-Culture/P.aeruginosa平均比值看,将铜绿假单胞菌和地衣芽孢杆菌共培养后对Cd的平均去除率略无显著影响。但是,在Cd污染体系中,Cd污染水平为0.5mg/L时,供养体系的提升效果比较明显,此时共培养体系的修复效率是地衣芽孢杆菌纯培养体系的1.6倍;在Cd+As污染体系中,提升效果最显著的Cd+As污染水平为10+90mg/L,共培养体系的修复效率是地衣芽孢杆菌纯培养体系的1.06倍。
根据表1中地衣芽孢杆菌(B.licheniformis)的数据绘制地衣芽孢杆菌共培养前后各处理下Cd的修复效率折线图,如图1所示。从图1中比较地衣芽孢杆菌共培养前后对Cd的修复效果可知,除少数处理(0.5、0.5+90mg/L)外,共培养体系对Cd的去除效率显著提高。
根据表2中地衣芽孢杆菌(B.licheniformis)的数据绘制地衣芽孢杆菌共培养前后各处理下As的还原效率折线图,如图2所示。从图2中可以看出:在As与Cd的复合污染体系中,两株菌的共培养体系均能提高As(Ⅴ)的还原效率,两株菌共培养的生物转化效率比单一地衣芽孢杆菌培养平均提高31%(参见表2)。
根据表1中铜绿假单胞菌(P.aeruginosa)的数据绘制铜绿假单胞菌共培养前后各处理下Cd的修复效率折线图,如图3所示。从图3中可以看出:在处理(0.5、5、100mg/L)中,两株菌共培养对Cd的修复效率有显著增加。
根据表2中铜绿假单胞菌(P.aeruginosa)的数据绘制铜绿假单胞菌共培养前后各处理下As的还原效率折线图,如图4所示。从图4中可以看出:在所有处理下,两株菌共培养后As形态的转化率都没有显著提升,且在0.5+90、5+90mg/L这两个处理下,两株菌共培养后的As修复效率显著低于铜绿假单胞菌纯培养。
实施例3
定量测定各个处理下的地衣芽孢杆菌和铜绿假单胞菌的细菌数量,并将地衣芽孢杆菌的细菌数量与铜绿假单胞菌的细菌数量作比,得到地衣芽孢杆菌/铜绿假单胞菌的比值,结果如表3。
表3共培养前后各处理下细菌数量及比值(对数值)
Figure BDA0003634832960000061
Figure BDA0003634832960000071
根据表3绘制地衣芽孢杆菌和铜绿假单胞菌共培养前后细菌数量的比值变化折线图,如图5所示。从图5中可以看出:在不添加重金属胁迫时(CK组),两种菌的共培养体系可以显著增加地衣芽孢杆菌的比例。而在受梯度浓度重金属影响后,两种菌的纯培养体系和共培养体系的地衣芽孢杆菌比例在多数情况下无显著差异。但在两株菌的共培养体系中的高浓度Cd+As复合污染(10+90、50+90、100+90mg/L)体系下,地衣芽孢杆菌数量逐渐占主导,其比值(共培养:纯培养)依次为:1.17(50+90)>1.14(100+90)>1.05(10+90)。
实施例4
将不同处理下Cd的修复效率、As形态的转化率和arsB基因的绝对丰度除以不同处理中的细菌总数,得到表4~6。
表4地衣芽孢杆菌和铜绿假单胞菌共培养前后单位细菌修复Cd能力
Figure BDA0003634832960000072
Figure BDA0003634832960000081
表5地衣芽孢杆菌和铜绿假单胞菌共培养前后单位细菌还原As能力
Figure BDA0003634832960000082
表6地衣芽孢杆菌和铜绿假单胞菌共培养前后单位细菌arsB基因单位拷贝数
Figure BDA0003634832960000083
Figure BDA0003634832960000091
并根据表4绘制两株菌共培养前后单位细菌修复重金属能力和arsB基因单位拷贝数的比较图,如图6~10所示。
其中,arsB基因的拷贝数通过以下方法测定:
采用Ezup柱式细菌基因组DNA纯化试剂盒(中国生工生物技术公司)从各处理所选菌株中提取DNA。以提取的DNA作为模板进行PCR扩增,引物序列如下:arsB-F:ggtgtggaacatcgtctggaaygcnac,arsB-R:caggccgtacaccaccagrtacatncc。扩增总体系为20μL,包括10μL SYBR Premix Ex Taq(Takara)、1μL DNA模板(20~200ng/μL)、各0.16μL的前引和后引(50μM)和8.68μL灭菌后的ddH2O。用arsB基因阳性克隆子制作目的基因标准曲线。用NanoDrop 2000分光光度计测定质粒DNA浓度,定量arsB基因的表达量。
采用独立样本T检验比较两种培养体系各指标是否存在显著差异。结果表明:
如图6所示,在两株菌共培养后,单位细菌对Cd吸附效率在大多数处理中增加,说明地衣芽孢杆菌和铜绿假单胞菌共培养能够促进对Cd的修复作用。通过将共培养体系与地衣芽孢杆菌纯培养体系对比,在Cd浓度为100mg/L时,共培养体系对Cd的修复效率最高,此时两株菌的共培养体系对Cd的修复效率是地衣芽孢杆菌纯培养体系的2.25倍。
如图7所示,在两株菌的共培养体系中,在高Cd浓度复合污染体系下,单位细菌拷贝数对As的转化率也有所提高。随着Cd浓度从0mg/L增加到50mg/L,共培养体系的促进作用也逐渐增强。将共培养体系下的转化率除以纯培养体系下的转化率,可以得到以下关系:5.8(50+90)>1.6(10+90)>1.3(5+90)>1.1(0.5+90),而100+90mg/L处理的比率是4.2(<5.8),表明在某种程度上Cd可以促进As(Ⅴ)转化为(Ⅲ),超出这个浓度促进作用会受到抑制。
如图8所示,在两株菌共培养后,单位细菌对Cd吸附效率在大多数处理中增加,说明地衣芽孢杆菌和铜绿假单胞菌共培养能够促进对Cd的修复作用。最显著的是Cd浓度为100mg/L时,此时两株菌的培养体系对Cd的修复效率是铜绿假单胞菌纯培养体系的1.8倍。
如图9所示,与铜绿假单胞菌纯培养相比,除0.5+90mg/L的处理外,其余重金属处理下单位细菌砷转化能力在共培养体系后没有出现显著差异。
如图10所示,在两株菌的共培养体系中,各处理下arsB基因的细菌单位拷贝数表达均显著升高。100mg/L处理的增加效果最显著为地衣芽孢杆菌纯培养2.07倍,两株菌共培养体系下的平均促进效果是地衣芽孢杆菌纯培养体系的1.7倍(不含CK组)。同时,除50+90和100+90mg/L外,各处理组的促进效果均高于对照组(CK组)的促进效果(1.54倍)。这表示Cd和As可以分别刺激arsB的基因表达,但高浓度的Cd和As复合污染体系可以抑制其表达,这不是细菌数量的变化引起的arsB基因单位拷贝数的减少,因为这里使用的是单位细菌表达数量。
此外,我们将As作为变量进行进一步讨论。将共培养的菌株单位基因表达量除以纯培养的菌株单位基因表达量,得到1.8(0.5)>1.6(0.5+90)、1.9(5)>1.8(5+90)、1.9(10)>1.8(10+90)、1.8(50)>1.5(50+90)、2.1(100)>1.5(100+90)。也就是说,在共培养体系中,所有Cd单一污染体系都更有利于arsB基因的表达。表明As抑制了arsB基因的表达。而As单一处理(90mg/L)的比例为1.7,高于CK组(1.5),说明单一As的存在也促进了arsB基因的表达。综上所述,Cd和As两种重金属的添加分别促进了arsB基因的表达,但两种重金属的组合会减弱这种促进作用,但修复效果仍然是正向的。
实施例5
通过凝胶电泳对地衣芽孢杆菌P8_B2和铜绿假单胞菌NBRC 12689中arsB基因进行验证(做四个重复),结果如图11所示。由电泳胶图可知,两种细菌均含有arsB基因且特异性良好,条带大小为746bp。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
序列表
<110> 浙江大学
<120> 一种修复镉砷复合污染土壤的修复剂及其应用
<160> 2
<170> SIPOSequenceListing 1.0
<210> 1
<211> 27
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
ggtgtggaac atcgtctgga aygcnac 27
<210> 2
<211> 27
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 2
caggccgtac accaccagrt acatncc 27

Claims (5)

1.一种修复镉砷复合污染土壤的修复剂,其特征在于,所述修复剂由铜绿假单胞菌和地衣芽孢杆菌组成。
2.如权利要求1所述的修复剂,其特征在于,所述铜绿假单胞菌和地衣芽孢杆菌的活菌数量比为10:1~20:1。
3.如权利要求1或2所述的修复剂,其特征在于,所述铜绿假单胞菌为铜绿假单胞菌(Pseudomonas aeruginosa)NBRC 12689,在NCBI上的基因组序列号为NR_113599.1;所述地衣芽孢杆菌为地衣芽孢杆菌(Bacillus licheniformis)P8_B2,在NCBI上的基因组序列号为CP_045814.1。
4.一种权利要求1~3任一项所述的修复剂用于修复镉砷复合污染土壤的应用。
5.如权利要求4所述的应用,其特征在于,镉砷复合污染土壤中重金属镉和砷的质量比为0.5~100:90。
CN202210499523.XA 2022-05-09 2022-05-09 一种修复镉砷复合污染土壤的修复剂及其应用 Active CN114806587B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210499523.XA CN114806587B (zh) 2022-05-09 2022-05-09 一种修复镉砷复合污染土壤的修复剂及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210499523.XA CN114806587B (zh) 2022-05-09 2022-05-09 一种修复镉砷复合污染土壤的修复剂及其应用

Publications (2)

Publication Number Publication Date
CN114806587A true CN114806587A (zh) 2022-07-29
CN114806587B CN114806587B (zh) 2022-12-13

Family

ID=82514031

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210499523.XA Active CN114806587B (zh) 2022-05-09 2022-05-09 一种修复镉砷复合污染土壤的修复剂及其应用

Country Status (1)

Country Link
CN (1) CN114806587B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255078A (zh) * 2013-02-04 2013-08-21 佛山金葵子植物营养有限公司 一种土壤重金属生物降解剂及其制造方法
CN103396963A (zh) * 2013-07-29 2013-11-20 广州利万世环保科技有限公司 一种土壤重金属镉、铜生物降解剂及其制造方法
US20150352610A1 (en) * 2014-06-09 2015-12-10 BiOWiSH Technologies, Inc. Microbial compositions for hydrocarbon remediation and methods of use thereof
CN105176876A (zh) * 2015-10-11 2015-12-23 卢美珍 一种用于污染土壤修复的制剂
CN105170641A (zh) * 2015-09-30 2015-12-23 河南行知专利服务有限公司 一种重金属污染土壤的联合修复方法
CN106590685A (zh) * 2015-10-19 2017-04-26 粮华生物科技(北京)有限公司 重金属污染土壤的原位生物修复制剂和修复方法
CN106975657A (zh) * 2017-06-05 2017-07-25 华定志 利用生物法修复土壤砷污染的工艺
CN107099299A (zh) * 2017-05-24 2017-08-29 华定志 一种用于修复土壤砷污染的微生物制剂
CN108251122A (zh) * 2017-12-18 2018-07-06 潍坊友容实业有限公司 盐碱地砷污染修复剂

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255078A (zh) * 2013-02-04 2013-08-21 佛山金葵子植物营养有限公司 一种土壤重金属生物降解剂及其制造方法
CN103396963A (zh) * 2013-07-29 2013-11-20 广州利万世环保科技有限公司 一种土壤重金属镉、铜生物降解剂及其制造方法
US20150352610A1 (en) * 2014-06-09 2015-12-10 BiOWiSH Technologies, Inc. Microbial compositions for hydrocarbon remediation and methods of use thereof
CN105170641A (zh) * 2015-09-30 2015-12-23 河南行知专利服务有限公司 一种重金属污染土壤的联合修复方法
CN105176876A (zh) * 2015-10-11 2015-12-23 卢美珍 一种用于污染土壤修复的制剂
CN106590685A (zh) * 2015-10-19 2017-04-26 粮华生物科技(北京)有限公司 重金属污染土壤的原位生物修复制剂和修复方法
CN107099299A (zh) * 2017-05-24 2017-08-29 华定志 一种用于修复土壤砷污染的微生物制剂
CN106975657A (zh) * 2017-06-05 2017-07-25 华定志 利用生物法修复土壤砷污染的工艺
CN108251122A (zh) * 2017-12-18 2018-07-06 潍坊友容实业有限公司 盐碱地砷污染修复剂

Also Published As

Publication number Publication date
CN114806587B (zh) 2022-12-13

Similar Documents

Publication Publication Date Title
CN109401997B (zh) 一株寡养单胞菌及其应用和微生物菌剂
CN108117221B (zh) 一种反渗透浓水的处理方法
CN113604397B (zh) 一种耐高盐降解废水cod菌株及筛选方法和应用
Mankiewicz-Boczek et al. Bacteria homologus to Aeromonas capable of microcystin degradation
Yang et al. Wastewater treatment by alkali bacteria and dynamics of microbial communities in two bioreactors
CN104371948B (zh) 微杆菌菌株及其应用
CN112195126B (zh) 一种脱氮菌株及微生物菌剂和应用
CN107164276B (zh) 一株耐受锌离子毒性的铜绿假单胞菌及其应用
Tang et al. Mixture of different Pseudomonas aeruginosa SD-1 strains in the efficient bioaugmentation for synthetic livestock wastewater treatment
CN108977370B (zh) 一株降解苯酚类化合物的酵母菌及其应用
CN104357366B (zh) 假单胞菌及其用途
CN102676423A (zh) 还原铬离子苏云金芽孢杆菌yb-03及其培养方法与应用
US11124438B2 (en) Alcaligenes faecalis for degrading ethylene oxide
Park et al. Total microbial activity and sulfur cycling microbe changes in response to the development of hypoxia in a shallow estuary
CN114806587B (zh) 一种修复镉砷复合污染土壤的修复剂及其应用
CN117229960A (zh) 一种海水芽孢杆菌及其在养殖尾水治理中的应用
Mizuno et al. Genus-specific and phase-dependent effects of nitrate on a sulfate-reducing bacterial community as revealed by dsrB-based DGGE analyses of wastewater reactors
CN107585880B (zh) 一种利用藤黄球菌酶制剂强化微生物处理高盐含酚废水的方法
US11220667B2 (en) Bacteria for degrading ethylene oxide and applications thereof
WO2021147260A1 (en) Alcaligenes faecalis for degrading ethylene oxide and uses thereof
CN111235053B (zh) 一株解淀粉芽孢杆菌z1112及其应用
CN110317751B (zh) 一种羟乙基纤维素生产过程排放废水的脱氮方法
CN110144308B (zh) 一种耐受高盐、高效降解硝酸盐的反硝化菌及其制备与用途
CN111378596A (zh) 一株耐酸且兼性厌氧的锰氧化细菌及其应用
JP2005261234A (ja) 新規微生物と微生物によるヒ素類の除去方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant