CN114765310A - 一种宽带双通道的透反射接收天线 - Google Patents

一种宽带双通道的透反射接收天线 Download PDF

Info

Publication number
CN114765310A
CN114765310A CN202110051382.0A CN202110051382A CN114765310A CN 114765310 A CN114765310 A CN 114765310A CN 202110051382 A CN202110051382 A CN 202110051382A CN 114765310 A CN114765310 A CN 114765310A
Authority
CN
China
Prior art keywords
transflective
antenna
polarized
array
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110051382.0A
Other languages
English (en)
Inventor
陈克
吴林晓
罗歆瑶
冯一军
姜田
赵俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202110051382.0A priority Critical patent/CN114765310A/zh
Publication of CN114765310A publication Critical patent/CN114765310A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/23Combinations of reflecting surfaces with refracting or diffracting devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种工作在X及Ku波段的双通道的透反射接收天线。本发明提供的双通道透反射接收天线包含一个Vivaldi天线、一个宽带喇叭天线与一个四层介质板的透反射阵列。其中,所述的四层透反射阵列由宽带工作的透反射双通道单元所组成。所述的四层透反射阵列可在X及Ku波段有效的将分别位于阵列两侧的Vivaldi天线、喇叭天线发射的球面波转化为沿z方向出射的高增益波束,也即可以实现‑z方向入射的x、y极化电磁波的空间分离、聚焦、进而通过Vivaldi天线和喇叭天线分别独立接收。

Description

一种宽带双通道的透反射接收天线
技术领域
本发明属于天线领域,尤其涉及一种宽带的双通道的正交线极化来波的透反射分离、进而独立接收的天线。
背景技术
反射阵天线,结合了阵列天线与抛物面反射天线的优点,既具有平面结构,能形成高增益的波束,又不需要复杂的馈电网络,因此其具有低剖面、可折叠、低成本等优势。反射阵天线一直吸引着研究人员的兴趣,关于反射阵天线的研究成果也不断的被报道。透射阵天线,同样具有低剖面、低成本的特点,和反射阵天线不同的是,其在透射端调制电磁波的相位或幅度,进而操控电磁波,如高增益波束生成、波束偏折、波束赋形等。相比反射阵天线来说,透射阵天线设计上的最大难点是如何保证透射效率,而其相比于反射阵天线最大的优点在隔离开了馈源和波束调制的空间,避免了馈源和波束之间的互相干扰。而实际中反射阵天线、透射阵天线之间往往不能互相切换,即透射阵不能在反射端调制和操控电磁波,反射阵不能在透射端调制和操控电磁波,如果能实现同一阵列的透反射天线功能的集成,将大大提高口径和空间的利用效率,在工程上具有很好的应用前景。
另一方面,不管对于反射阵天线还是透射阵天线来说,同一阵面的多功能复用,是一个研究热点,是天线设计人员不断探索的方向。具体的多功能复用形式包括频率复用、极化复用、时空复用。在这些复用形式中,极化复用是最基本的复用形式,因为任一极化形式的电磁波可由一对正交极化波来叠加生成,如果同一天线阵阵面可对一对正交极化波具有完全独立可设计的功能,不仅可以大大提高其口面的利用效率,还可以做到独立的双通道的信息传输。
综上,透反射阵列切换和极化复用是天线阵列的研究难点和热点,具有重要的工程应用意义。如果可以将两者结合,在透反射端实现极化复用,即正交极化波分别实现透射调制和反射调制,将具有重要的意义,因为正交极化的电磁波可以携带独立的通信信息,将其分离至阵列的两侧,进而独立调制或接收,既能实现了双通道独立信息的发射或接收,也能实现信息的绝对分离,避免了其之间的干扰。而这种极化复用的透反射独立发射或接收天线的实现,不仅需要可以针对正交极化波切换透反射功能的阵列,同时需要宽带天线作为接收终端。Vivaldi天线是一种由槽线进行激励的小尺寸天线,一般通过同轴馈电、进而微带线转槽线的结构来辐射,虽然其匹配性能一般,但是其能实现宽带的辐射,且由于其尺寸小,对波束的遮挡可以近似忽略,因此Vivaldi天线适合作为反射端的发射或接收终端。而透射端的发射或接收终端,因为不存在遮挡问题,一般的宽带喇叭天线,均可以作为透射端的馈源或接收终端。
发明内容
本发明的目的在于,通过设计一款工作于X及Ku波段的极化复用的透反射阵列,再结合一个Vivaldi天线及一个喇叭天线作为接收终端(馈源),实现法向入射电磁波的x、y极化分量的透反射空间分离及独立接收。
本发明实现上述目的所采用的技术方案是:设计了一款工作于X及Ku波段的透反射阵列,其可以对沿-z方向入射的x极化波高效的同极化反射,对沿-z方向入射的y极化波高效转极化透射,并可分别进行3比特相位调控,且这两种3比特相位调控相对独立,互相影响很小。通过设计阵列对入射的x极化波和y极化波的双通道的透反射相位分布,结合一个Vivaldi天线在+z一侧接收x极化入射波的同极化反射波,一个宽带喇叭天线在-z一侧接收y极化入射波的转极化透射波,从而实现了宽带的双通道的透反射接收天线。
所述的Vivaldi天线,采用微带线转槽线的结构,能够在X及Ku波段有效辐射球面波。所述的宽带喇叭天线,由同轴激励、波导转喇叭口面辐射,能够在X及Ku波段有效的辐射球面波。
所述的透反射阵列由25*25个工作于X及Ku波段的透反射天线单元构成,该双通道透反射单元由四层介质板和五层金属层所构成,其中第三层和第五层为正交的金属光栅,第一层和第二层为x极化入射波同极化反射相位调制层,第四层为y极化入射波转极化透射相位调制层。
所述的透反射阵列的单元结构,其第一层金属的金属条长度,是第二层金属的金属条长度的0.75倍。通过调节第二层金属条带的长度、且调节范围为4.7mm-8.2mm,可以实现对x极化入射波同极化反射相位的3比特调制。对于第四层金属,通过设计四种转极化金属结构,及取镜像操作获得另外四种金属结构,来实现对y极化入射波转极化透射相位的3比特调制。而第三层和第五层金属为正交的金属光栅,是固定不变的。
所述的宽带的双通道的透反射接收天线的设置方法,x极化的Vivaldi天线位于透反射阵列的+z方向一侧,x极化的宽带喇叭天线位于透反射阵列的-z方向一侧,Vivaldi天线、喇叭天线和透反射阵列的几何中心位于平行于z轴的直线上。Vivaldi天线在X及Ku波段发射的x极化球面波,被透反射阵列反射为+z方向出射的x极化高增益波束。而喇叭天线在X及Ku波段发射的x极化球面波,被透反射阵列透射为+z方向出射的y极化高增益波束。根据光路的可逆原理,该接收天线也可实现同一波段-z方向入射的x极化、y极化电磁波的双通道的透反射空间分离和独立接收。
本发明的优势在于:
1、该双通道透反射接收天线工作于反射模式时,能够在10.5-16.5GHz频率范围内实现20dB以上的天线增益,极化方式为x极化,12GHz时达到峰值增益27dB,峰值口径效率40%,3dB增益带宽为11-16GHz。
2、该双通道透反射接收天线工作于透射模式时,能够在9-18GHz频率范围内实现20dB以上的天线增益,极化方式为y极化,14GHz时达到峰值增益28dB,峰值口径效率39%,3dB增益带宽为11.5-17GHz。
3、Vivaldi天线的使用有效的降低了遮挡,对于反射和透射高增益波束的形成均没有产生明显影响。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为双通道透反射接收天线的整体结构图,结构10为x极化的Vivaldi天线,结构20为x极化的宽带喇叭天线,结构30为工作于X及Ku波段的四层介质板的透反射阵列。
图2为结构30,即工作于X及Ku波段的四层透反射阵列,其由25*25个透反射单元所构成。
图3为构成透反射阵列的单元的结构示意图,其由4层介质基板,5层金属层所构成,其中介质板的介电常数均等于2.65,厚度d1=d2=1mm,d3=d4=2mm,单元周期p=10mm。
图4为构成透反射单元的金属层的结构示意图,4(a)为顶层的金属层,4(b)为第二层金属层,4(c)为第三层金属层,4(d)为第五层金属层。4(a)中金属条的长度是4(b)中金属条长度的0.75倍。4(e)-4(1)为第四层金属层的八种具体结构,其具体参数为w1=1mm,l1=3.6mm,l2=9.9mm,g1=0.3mm,w2=0.5mm,r1=4.5mm,α1=12°,w3=0.7mm,α2=42°,r2=4.5mm,g2=1.2mm,w4=0.5mm。
图5为通过改变lx和第四层金属层的结构,分别实现对x极化波同极化反射、y极化波转极化透射3比特相位调制的示意图。当lx取4.7mm、5.2mm、5.6mm、6mm、6.5mm、7.2mm、7.8mm、8.2mm时,如5(a)所示,x极化波同极化反射幅度在整个X及Ku波段均在0.8以上,而如5(b)所示,x极化波同极化反射相位在13GHz附近实现了3比特的调制,且在宽带范围内,曲线的平行度较好。另一方面,当第四层金属层取4(e)-4(1)所示的000-111八种结构时,如5(c)所示,y极化波转极化透射幅度在X及Ku波段的大部分频段保持在0.7以上,而如5(d)所示,y极化波转极化透射相位在13GHz附近实现了3比特的调制,且在X及Ku波段的大部分频带内,曲线的平行度非常好。
图6为证明透反射3比特相位调制之间的独立性的示意图。6(a)为lx=6.5mm且第四层金属结构取000-111八种结构时,x极化波同极化反射相位和同极化反射幅度的变化示意图。6(b)为第四层金属结构为101结构且lx取4.7mm-8.2mm8种3比特参数时,y极化波转极化透射相位和转极化透射幅度的变化示意图。
图7中,7(a)为所设计的针对10结构激励的x极化入射波入射到阵列上,对其进行同极化反射的3比特补偿相位分布,7(b)为所设计的针对20结构激励的x极化入射波入射到阵列上,对其进行转极化透射的3比特补偿相位分布。
图8中,8(a)为10结构激励的x极化波入射到阵列上所形成的13GHz频率处的三维远场分布图,8(b)为20结构激励的x极化波入射到阵列上所形成的13GHz频率处的三维远场分布图。
图9中,9(a)为10结构激励x极化入射波时,在宽带范围内所实现的沿法向反射的增益及对应的口径效率。9(b)为20结构激励x极化入射波时,在宽带范围内所实现的沿法向透射的增益及对应的口径效率。
具体实施方式
下面结合附图和具体实施方案对本发明的技术方案作进一步详细地说明。
如图1所示,设计的宽带的双通道透反射接收天线由结构10所示的Vivaldi天线和20所示的宽带喇叭天线与结构30所示的透反射阵列组成,Vivaldi天线和宽带喇叭天线的极化方式均为x极化。Vivaldi天线的槽线末端中心距离透反射阵列的距离为150mm,宽带喇叭天线的喇叭口中心距离透反射阵列的距离为150mm。
图2给出了四层透反射阵列的顶视图,该型透反射阵列由25×25个单元结构构成,阵面尺寸为250×250mm2
图3展示了构成透反射阵列的单元结构示意图,其由五层金属层和四层介质板构成,介质板均为介电常数为2.65,损耗角为0.001的F4B板材。
图4展示了构成透反射单元的金属层的结构示意图,4(a)为顶层的金属层,4(b)为第二层金属层,4(c)为第三层金属层,4(d)为第五层金属层。4(a)中金属条的长度是4(b)中金属条长度的0.75倍。4(e)-4(1)为第四层金属层的八种具体结构,分别命名为结构000-结构111,其具体参数为w1=1mm,l1=3.6mm,l2=9.9mm,g1=0.3mm,w2=0.5mm,r1=4.5mm,α1=12°,w3=0.7mm,α2=42°,r2=4.5mm,g2=1.2mm,w4=0.5mm。
图5展示了通过改变lx和第四层金属层的结构,分别实现了对x极化波同极化反射、y极化波转极化透射3比特相位调制的示意图。而根据图6,我们证明了透反射3比特相位调制之间具有很好的独立性。
我们为10结构激励的x极化入射波设计了如图7(a)所示的同极化反射相位分布,为20结构激励的x极化入射波设计了如图7(b)所示的转极化透射相位分布,其具体的相位分布计算公式分别为
Figure BSA0000230761140000051
Figure BSA0000230761140000052
其中Φ10和Φ20分别为针对10结构和20结构激励的x极化入射波的坐标(x,y)处的相移值,λ为设计频点13GHz处的自由空间波长,F1为针对10结构设计的焦距,具体为167.5mm(Vivaldi天线的相位中心距离槽线末端中心17.5mm),F2为针对20结构设计的焦距,具体为202mm(宽带喇叭天线的相位中心距离喇叭口面中心52mm),Φ1和Φ2为参考相位。
图8中,8(a)为10结构激励-z方向入射的x极化入射波时的13GHz频率处的三维远场分布图,8(b)为20结构激励+z方向入射的x极化入射波时的13GHz频率处的三维远场分布图,可以发现,两种情况均生成了沿+z方向出射的高增益波束,而8(a)中高增益波束的极化方式为x极化,8(b)中高增益波束的极化方式为y极化。
图9中,9(a)为针对10结构激励x极化入射波时的反射波束的宽带法向增益,以及对应的口径效率的宽带范围内的变化。可以发现该双通道透反射接收天线工作于反射模式时,能够在10.5-16.5GHz频率范围内实现20dB以上的天线增益,高增益波束极化方式为x极化,在12GHz时达到峰值增益27dB,峰值口径效率40%,3dB增益带宽为11-16GHz,相对带宽达到37%。
图9中,9(b)为针对20结构激励x极化入射波时的透射波束的宽带法向增益,以及对应的口径效率的宽带范围内的变化。可以发现该双通道透反射接收天线工作于透射模式时,能够在9-18GHz频率范围内实现20dB以上的天线增益,高增益波束极化方式为y极化,在14GHz时达到峰值增益28dB,峰值口径效率39%,3dB增益带宽为11.5-17GHz,相对带宽达到38%。
综上所述,该宽带的双通道透反射接收天线,当其工作于发射模式时,能够在X及Ku频段很宽的频率范围内,针对两个馈源天线发射的x极化球面波,分别形成+z方向出射的x极化和y极化高增益波束。根据光路的可逆原理,当其工作于接收模式时,也能够在X及Ku频段很宽的频率范围内,针对沿-z方向入射的x、y极化电磁波,分别实现反射聚焦和透射聚焦,进而通过Vivaldi天线和宽带喇叭天线分别进行有效的接收。该宽带的双通道透反射接收天线具备效率高、频带宽、剖面低、独立双通道的优点,在工程领域中有巨大的应用潜力。

Claims (5)

1.一种宽带的双通道的透反射接收天线,本发明提供的接收天线包含一个Vivaldi天线、一个宽带的喇叭天线与一个四层的透反射阵列。其中,所述的四层透反射阵列是由工作于X及Ku波段的双通道透反射单元所组成。
2.根据权利要求1所述的双通道的透反射接收天线,其特征是,所述的Vivaldi天线馈源,采用微带线转槽线的结构,能够在X及Ku波段有效辐射球面波,其极化方向与槽线的开口方向一致。而所述的宽带喇叭天线,也能够在X及Ku波段有效辐射球面波,其极化方式与喇叭开口短边方向一致。
3.根据权利要求1所述的四层的透反射阵列,其特征是,其由工作于X及Ku波段的双通道透反射单元所组成,该双通道透反射单元由四层介质板和五层金属层所构成,其中第三层和第五层为正交的金属光栅,第一层和第二层为反射相位调制层,第四层为透射相位调制层。
4.根据权利要求1-3所述的宽带的双通道透反射接收天线的设置方法,其特征是,接收终端由一个x极化的Vivaldi天线与一个x极化的宽带喇叭天线所构成,Vivaldi天线位于透反射阵列的+z方向一侧,宽带喇叭天线位于透反射阵列的-z方向一侧,Vivaldi天线、喇叭天线和透反射阵列的几何中心位于一条直线上。Vivaldi天线在X及Ku波段发射的x极化球面波,被透反射阵列反射为+z方向出射的x极化高增益波束。而喇叭天线在X及Ku波段发射的x极化球面波,被透反射阵列透射为+z方向出射的y极化高增益波束。根据光路的可逆原理,该天线也可实现同一波段-z方向入射的x极化、y极化电磁波的双通道的空间分离和独立接收。
5.根据权利要求4所述的四层透反射阵列的设置方法,其特征是,该四层透反射阵列由25*25个工作于X及Ku波段的透反射单元所构成。该双通道透反射单元由四层介质板和五层金属层所构成,其中第三层和第五层金属层为正交的金属光栅,第一层和第二层金属层为反射相位调制层,第四层金属层为透射相位调制层。通过改变第一层和第二层金属条的长度,对沿-z入射的x极化波的同极化反射相位形成了3比特的调制。通过对第四层金属层设计四种结构,并均取镜像操作,对沿+z入射的y极化波的转极化透射相位形成了3比特的调制。特别重要的是,两种透反射的3比特调制之间,互相几乎不形成串扰和影响,从而保证了双通道透反射的独立调制。
CN202110051382.0A 2021-01-14 2021-01-14 一种宽带双通道的透反射接收天线 Pending CN114765310A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110051382.0A CN114765310A (zh) 2021-01-14 2021-01-14 一种宽带双通道的透反射接收天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110051382.0A CN114765310A (zh) 2021-01-14 2021-01-14 一种宽带双通道的透反射接收天线

Publications (1)

Publication Number Publication Date
CN114765310A true CN114765310A (zh) 2022-07-19

Family

ID=82363896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110051382.0A Pending CN114765310A (zh) 2021-01-14 2021-01-14 一种宽带双通道的透反射接收天线

Country Status (1)

Country Link
CN (1) CN114765310A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395242A (zh) * 2022-08-09 2022-11-25 西安电子科技大学 一种三维共口径多频同极化透反射阵天线
CN116191005A (zh) * 2022-09-07 2023-05-30 无锡国芯微电子系统有限公司 超宽带对拓梳状开槽型Vivaldi天线

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115395242A (zh) * 2022-08-09 2022-11-25 西安电子科技大学 一种三维共口径多频同极化透反射阵天线
CN115395242B (zh) * 2022-08-09 2023-10-10 西安电子科技大学 一种三维共口径多频同极化透反射阵天线
CN116191005A (zh) * 2022-09-07 2023-05-30 无锡国芯微电子系统有限公司 超宽带对拓梳状开槽型Vivaldi天线
CN116191005B (zh) * 2022-09-07 2023-12-19 无锡国芯微电子系统有限公司 超宽带对拓梳状开槽型Vivaldi天线

Similar Documents

Publication Publication Date Title
Li et al. A novel metasurface for dual-mode and dual-band flat high-gain antenna application
CN110571531B (zh) 一种基于抛物柱面反射阵的多波束相控阵天线
CN109841961B (zh) 基于超表面的多波束双镜天线
CN113555697A (zh) 一种基于折合式平面反射阵技术的圆极化高增益天线
Dion et al. A variable-coverage satellite antenna system
CN112909578B (zh) 低剖面宽带全金属传输阵天线
CN111541031B (zh) 一种宽带低剖面传输阵列天线及无线通信设备
CN113258296A (zh) 双频双极化多功能透射和反射型超表面天线及通信设备
CN114765310A (zh) 一种宽带双通道的透反射接收天线
CN111969306A (zh) 一种圆极化折叠透射阵
CN112635984B (zh) 高度集成的宽带折叠式反射阵天线
Cao et al. An SIW pillbox-based compact dual-polarized multibeam antenna with passive 2-D beam scanning capability
GB2600413A (en) Horn antenna element
CN215266686U (zh) 双频双极化多功能透射和反射型超表面天线及通信设备
CN112271444B (zh) 一种高增益双极化siw-cts天线阵
CN110649397B (zh) 一种集成反射阵的可重构平面反射阵天线
CN214672987U (zh) 一种低轴比的微带圆极化阵列天线
CN114696114A (zh) 宽带圆极化折叠传输阵天线
CN112952398B (zh) 一种双通道Ku波段接收天线
CN113708075A (zh) 频率触发方向图与极化同时重构的多波束超表面折叠天线
JPH05275920A (ja) 鏡面修正アンテナ
CN110571530A (zh) 一种集成反射阵的可重构抛物面天线
Ahmed et al. Low-Cost All-Metal Resonant-Cavity Antenna for High Power Applications
Shao et al. A Hybrid Antenna-Metasurface Architecture for mmWave and THz Massive MIMO
CN218958021U (zh) 一种缝隙耦合的圆极化频率选择表面单元、接收部和天线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination