CN114635135A - 一种具有防冰性能的仿生梯级结构表面的制备方法 - Google Patents

一种具有防冰性能的仿生梯级结构表面的制备方法 Download PDF

Info

Publication number
CN114635135A
CN114635135A CN202210147406.7A CN202210147406A CN114635135A CN 114635135 A CN114635135 A CN 114635135A CN 202210147406 A CN202210147406 A CN 202210147406A CN 114635135 A CN114635135 A CN 114635135A
Authority
CN
China
Prior art keywords
scale
micro
nano
bionic
micron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210147406.7A
Other languages
English (en)
Inventor
高洪涛
坚一明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN202210147406.7A priority Critical patent/CN114635135A/zh
Publication of CN114635135A publication Critical patent/CN114635135A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/34Alkaline compositions for etching copper or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/52Treatment of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/56Treatment of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/36Alkaline compositions for etching aluminium or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/40Alkaline compositions for etching other metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

本发明涉及一种具有防冰性能的仿生梯级结构表面的制备方法,包括利用碱溶液作为刻蚀剂构造微米尺度结构表面、通过低温热处理在微米尺度结构上构建纳米尺度结构以形成微/纳米尺度梯级结构和利用低表面能材料制备仿生超疏水表面等步骤。本发明可有效解决现有制备仿生超疏水表面的工艺过程复杂、能耗高、化学稳定性低等问题,同时可实现减少材料表面积冰与结霜的目的,本发明制得的仿生梯级结构表面具有优异的防冰性能和防结霜性能,可显著延长液滴在固体表面上的冻结延迟时间和减少结霜量,适用于低温环境中使用的设备超疏水材料表面的制备。

Description

一种具有防冰性能的仿生梯级结构表面的制备方法
技术领域
本发明涉及仿生界面和低表面能材料改性技术领域,尤其涉及一种具有防冰性能的仿生梯级结构表面的制备方法。
背景技术
仿生超疏水表面是基于自然界中的超浸润表面的启发开发出来的一种材料表面,具有独特的微/纳米尺度梯级结构。水滴与超疏水表面接触时静态接触角大于150°,接触角滞后或滚动角小于10°,水滴在其表面不易铺展。当固体表面具有一定的倾斜角度时,液滴易于从表面滚落,从而减少表面液滴聚积;同时,由于接触角较大导致液滴与固体表面接触面积大大减少,减少液滴与冷固体表面之间的热传递。因此,仿生超疏水表面在防冰领域的应用具有巨大的潜力。
固体表面的润湿性主要受粗糙度和表面能的影响,可通过构建合适的粗糙结构和低表面能材料改性进行调控。而粗糙结构的制备包括模板法、等离子体刻蚀和电化学法等,但是这些预粗化过程复杂、成本高,不宜大规模使用,因此,开发一种简单高效的制备具有防冰性能的仿生超疏水表面的方案至关重要。
发明内容
针对上述问题,本发明的目的在于提供一种具有防冰性能的仿生梯级结构表面的制备方法,采用化学刻蚀法对金属基底材料进行预粗化处理以得到合适的粗糙结构,然后通过低表面能材料对具有微/纳米尺度梯级结构的表面进行改性以得到超疏水表面。
本发明采用的技术方案如下:
本发明所提出的一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
S1、选取金属基底材料,将表面洁净的金属基底材料置于氢氧化钠溶液中0.5~3h,采用氢氧化钠溶液作为刻蚀剂对金属基底材料进行预粗化,然后用去离子水超声清洗除去杂质,得到具有微米尺度结构的粗糙表面;
S2、对具有微米尺度结构的表面进行低温热处理,在微米尺度结构上形成纳米尺度结构,构建出具有微/纳米尺度梯级结构的表面;
S3、采用低表面能材料对具有微/纳米尺度梯级结构的表面进行改性,使得表面具有超疏水性,得到仿生超疏水表面。
进一步的,所述金属基底材料为黄铜或1060铝合金或不锈钢或6061铝合金。
进一步的,所述氢氧化钠的浓度为0.01-0.05mol/L。
进一步的,所述微米尺度结构为10-25μm尺寸大小的微米乳突。
进一步的,所述低温热处理具体包括:将具有微米尺度结构的表面置于80-120℃的热水中50-90min,得到鳞片状的微/纳米尺度梯级结构表面。
进一步的,所述步骤S3具体包括:将步骤S2中制得的微/纳米尺度梯级结构浸于低表面能材料溶液中0.5~12h。
进一步的,所述低表面能材料为2~5wt.%的硬脂酸溶液或棕榈酸溶液或豆蔻酸溶液或月桂酸溶液或十七氟葵基三乙氧基硅烷醇溶液。
与现有技术相比,本发明具有以下有益效果:
1、本发明提出的具有防冰性能的仿生微/纳米尺度梯级结构表面的制备方法,仅采用简单的化学刻蚀法和低表面能材料修饰,不仅简化操作工艺,降低成本,还有望实现大规模使用。
2、本制备方法得到的超疏水表面具有优异的防冰性能和防结霜性能,能够实现在低温、潮湿环境中的使用。
3、本方法适用于多种不同的金属基底材料超疏水表面的制备,具有普遍适用性。
附图说明
图1为本发明实施例2中材料表面的静态接触角(153.20°±2.70°)示意图;
图2为本发明实施例2中微米尺度结构的表面SEM示意图;
图3为本发明实施例2中微/纳米尺度梯级结构的表面SEM示意图;
图4为本发明实施例2中微米尺度结构的表面AFM示意图;
图5为本发明实施例2中微/纳米尺度梯级结构的表面AFM示意图;
图6为本发明实施例2中材料表面在-15℃液滴冷凝图像示意图;
图7为本发明实施例2中材料表面的结霜和脱霜图像示意图。
具体实施方式
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
本发明所提出的一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
S1、选取黄铜或1060铝合金或不锈钢或6061铝合金等作为基底材料,将表面洁净的金属基底材料置于浓度为0.01-0.05mol/L的氢氧化钠溶液中0.5~3h,采用氢氧化钠溶液作为刻蚀剂对金属基底材料进行预粗化,然后用去离子水超声清洗除去杂质,得到具有微米尺度结构的粗糙表面,所述微米尺度结构为10-25μm尺寸大小的微米乳突;
S2、对具有微米尺度结构的金属基底材料表面进行低温热处理,构建出具有微/纳米尺度梯级结构的表面;具体包括:将具有微米尺度结构的金属基底材料表面置于80-120℃的热水中50-90min,得到鳞片状的微/纳米尺度梯级结构片;
S3、采用低表面能材料对具有微/纳米尺度梯级结构的表面进行改性,使得表面具有超疏水性;所述低表面能材料为2~5wt.%的硬脂酸溶液或棕榈酸溶液或豆蔻酸溶液或月桂酸溶液或十七氟葵基三乙氧基硅烷醇溶液;具体过程为:将步骤S2中制备出的微/纳米尺度梯级结构表面浸于低表面能材料中0.5~12h进行疏水改性,使得表面具有超疏水性。
实施例1
一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净黄铜片置于0.01mol/L的氢氧化钠溶液中120min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中60min,进行低温热处理,在微米尺度结构上形成了纳米尺度的结构,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于5wt.%的硬脂酸溶液中120min进行疏水改性,以得到仿生超疏水表面。
实施例2
一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净1060铝合金片置于0.01mol/L的氢氧化钠溶液中120min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中60min,进行低温热处理,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于5wt.%的硬脂酸溶液中120min进行疏水改性,以得到仿生超疏水表面。
实施例3
一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净黄铜片置于0.03mol/L的氢氧化钠溶液中100min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中70min,进行低温热处理,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于3.5wt.%的棕榈酸溶液中180min进行疏水改性,以得到仿生超疏水表面。
实施例4
一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净1060铝合金片置于0.03mol/L的氢氧化钠溶液中100min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中70min,进行低温热处理,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于3.5wt.%的棕榈酸溶液中180min进行疏水改性,以得到仿生超疏水表面。
实施例5
一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净黄铜片置于0.03mol/L的氢氧化钠溶液中100min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中70min,进行低温热处理,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于3.5wt.%的豆蔻酸溶液中180min进行疏水改性,以得到仿生超疏水表面。
实施例6
一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净不锈钢片置于0.03mol/L的氢氧化钠溶液中100min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中70min,进行低温热处理,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于3.5wt.%的豆蔻酸溶液中180min进行疏水改性,以得到仿生超疏水表面。
实施例7
一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净6061铝合金片置于0.03mol/L的氢氧化钠溶液中100min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中70min,进行低温热处理,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于3.5wt.%的月桂酸溶液中180min进行疏水改性,以得到仿生超疏水表面。
实施例8
一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净6061铝合金片置于0.03mol/L的氢氧化钠溶液中100min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中70min,进行低温热处理,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于3.5wt.%的月桂酸溶液中180min进行疏水改性,以得到仿生超疏水表面。
实施例9
一种具有防冰性能的仿生梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净不锈钢片置于0.03mol/L的氢氧化钠溶液中100min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中70min,进行低温热处理,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于3.5wt.%的十七氟葵基三乙氧基硅烷醇溶液中180min进行疏水改性,以得到仿生超疏水表面。
实施例10
一种具有防冰性能的仿生微纳米尺度梯级结构表面的制备方法,具体包括以下步骤:
步骤S1、构造微米尺度结构:将规格为30mm×20mm×1mm的洁净1060铝合金片置于0.03mol/L的氢氧化钠溶液中100min,然后用去离子水超声清洗除去杂质,得到由若干10-25μm尺寸大小的乳突构成的微米尺度结构的粗糙表面;
步骤S2、构建微/纳米尺度梯级结构:将步骤S1制得的微米尺度结构表面置于90℃的热水中70min,进行低温热处理,得到鳞片状的微/纳米尺度梯级结构表面;
步骤S3、制备仿生超疏水表面:将步骤S2制得的微/纳米尺度梯级结构表面浸于3.5wt.%的十七氟葵基三乙氧基硅烷醇溶液中180min进行疏水改性,以得到仿生超疏水表面。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (7)

1.一种具有防冰性能的仿生梯级结构表面的制备方法,其特征在于,所述方法包括以下步骤:
S1、选取金属基底材料,将表面洁净的金属基底材料置于氢氧化钠溶液中0.5~3h,采用氢氧化钠溶液作为刻蚀剂对金属基底材料进行预粗化,然后用去离子水超声清洗除去杂质,得到具有微米尺度结构的粗糙表面;
S2、对具有微米尺度结构的表面进行低温热处理,在微米尺度结构上形成纳米尺度结构,构建出具有微/纳米尺度梯级结构的表面;
S3、采用低表面能材料对具有微/纳米尺度梯级结构的表面进行改性,使得表面具有超疏水性,得到仿生超疏水表面。
2.根据权利要求1所述的具有防冰性能的仿生微/纳米尺度梯级结构表面的制备方法,其特征在于:所述金属基底材料为黄铜或1060铝合金或不锈钢或6061铝合金。
3.根据权利要求1所述的具有防冰性能的仿生微/纳米尺度梯级结构表面的制备方法,其特征在于:所述氢氧化钠的浓度为0.01-0.05mol/L。
4.根据权利要求1所述的具有防冰性能的仿生微/纳米尺度梯级结构表面的制备方法,其特征在于:所述微米尺度结构为10-25μm尺寸大小的微米乳突。
5.根据权利要求1所述的具有防冰性能的仿生微/纳米尺度梯级结构表面的制备方法,其特征在于:所述低温热处理具体包括:将具有微米尺度结构的表面置于80-120℃的热水中50-90min,得到鳞片状的微/纳米尺度梯级结构表面。
6.根据权利要求1所述的具有防冰性能的仿生微/纳米尺度梯级结构表面的制备方法,其特征在于:所述步骤S3具体包括:将步骤S2中制得的微/纳米尺度梯级结构浸于低表面能材料溶液中0.5~12h。
7.根据权利要求6所述的具有防冰性能的仿生微/纳米尺度梯级结构表面的制备方法,其特征在于:所述低表面能材料为2~5wt.%的硬脂酸溶液或棕榈酸溶液或豆蔻酸溶液或月桂酸溶液或十七氟葵基三乙氧基硅烷醇溶液。
CN202210147406.7A 2022-02-17 2022-02-17 一种具有防冰性能的仿生梯级结构表面的制备方法 Pending CN114635135A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210147406.7A CN114635135A (zh) 2022-02-17 2022-02-17 一种具有防冰性能的仿生梯级结构表面的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210147406.7A CN114635135A (zh) 2022-02-17 2022-02-17 一种具有防冰性能的仿生梯级结构表面的制备方法

Publications (1)

Publication Number Publication Date
CN114635135A true CN114635135A (zh) 2022-06-17

Family

ID=81946360

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210147406.7A Pending CN114635135A (zh) 2022-02-17 2022-02-17 一种具有防冰性能的仿生梯级结构表面的制备方法

Country Status (1)

Country Link
CN (1) CN114635135A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413994A (zh) * 2015-12-15 2016-03-23 大连理工大学 一种仿生微纳复合结构超疏水表面的制备方法
CN106835141A (zh) * 2017-02-20 2017-06-13 中国民用航空总局第二研究所 一种飞机超疏水表面的制备方法
CN107321583A (zh) * 2017-07-21 2017-11-07 南京航空航天大学 微纳米分级结构超疏水表面的原位构建方法及应用
CN109468648A (zh) * 2018-12-29 2019-03-15 哈尔滨工业大学 铝或铝合金防结霜表面的大规模制备方法
CN110756414A (zh) * 2019-11-06 2020-02-07 中国民用航空总局第二研究所 一种高性能超疏水金属表面及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413994A (zh) * 2015-12-15 2016-03-23 大连理工大学 一种仿生微纳复合结构超疏水表面的制备方法
CN106835141A (zh) * 2017-02-20 2017-06-13 中国民用航空总局第二研究所 一种飞机超疏水表面的制备方法
CN107321583A (zh) * 2017-07-21 2017-11-07 南京航空航天大学 微纳米分级结构超疏水表面的原位构建方法及应用
CN109468648A (zh) * 2018-12-29 2019-03-15 哈尔滨工业大学 铝或铝合金防结霜表面的大规模制备方法
CN110756414A (zh) * 2019-11-06 2020-02-07 中国民用航空总局第二研究所 一种高性能超疏水金属表面及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIMING JIAN,ET AL.: "Fabrication of a micro/nanoscaled hierarchical structure surface on brass with anti-icing and self-cleaning properties", NEW JOURNAL OF CHEMISTRY, pages 16060 *

Similar Documents

Publication Publication Date Title
Zhang et al. Dynamic behavior of water drops impacting on cylindrical superhydrophobic surfaces
Wu et al. Efficient fabrication of lightweight polyethylene foam with robust and durable superhydrophobicity for self-cleaning and anti-icing applications
Chu et al. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures
Li et al. A robust superhydrophobic surface and origins of its self-cleaning properties
Wang et al. A robust superhydrophobic PVDF composite coating with wear/corrosion-resistance properties
Latthe et al. Self-cleaning and superhydrophobic CuO coating by jet-nebulizer spray pyrolysis technique
CN107879610B (zh) 具有防雾和露滴自洁功能的透明超疏水玻璃及其制备方法
CN103469215B (zh) 一种具有低摩擦系数的铜基超疏水表面及其制备方法
Zhou et al. Fabrication and characterization of superhydrophobic TiO2 nanotube coating by a facile anodic oxidation approach
Gao et al. The effects of bio-inspired micro/nano scale structures on anti-icing properties
Liang et al. Facile fabrication of a flower-like CuO/Cu (OH) 2 nanorod film with tunable wetting transition and excellent stability
Bahrami et al. Optimal condition for fabricating superhydrophobic copper surfaces with controlled oxidation and modification processes
Wang et al. Anti-fogging performances of liquid metal surface modified by ZnO nano-petals
WO2017161911A1 (zh) 具有冷凝液滴自驱离功能纳米层的换热器
CN106835079A (zh) 一种抗雾微纳复合结构铜基超疏水表面的制备方法
Yin et al. An all-in-one bio-inspired superhydrophobic coating with mechanical/chemical/physical robustness
Li et al. Fabrication and theoretical explanation of the superhydrophobic CuZn coating with dandelion-like CuO microstructure
CN114635135A (zh) 一种具有防冰性能的仿生梯级结构表面的制备方法
Li et al. Superhydrophobic coating with a micro-and nano-sized MnO 2/PDMS composite structure for passive anti-icing/active de-icing and photothermal applications
CN106929856B (zh) 一种氢氟酸刻蚀改变金属镍表面润湿性能的方法
CN105369243B (zh) 一种铝材各向异性超疏水表面及其制备方法
CN107523817A (zh) 一种表面浸润性可控的超疏水膜层的制备方法
CN110699631A (zh) 一种表面热氧化调控粗糙铜表面润湿性能的方法
CN114082617A (zh) 一种与基底间强附着力的疏水涂层及其制备方法
CN114622203A (zh) 一种仿生自清洁超疏水防覆冰涂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination