CN114497478A - 一种多孔纳米α-Fe2O3/Ag负极材料的制备方法 - Google Patents

一种多孔纳米α-Fe2O3/Ag负极材料的制备方法 Download PDF

Info

Publication number
CN114497478A
CN114497478A CN202111654703.2A CN202111654703A CN114497478A CN 114497478 A CN114497478 A CN 114497478A CN 202111654703 A CN202111654703 A CN 202111654703A CN 114497478 A CN114497478 A CN 114497478A
Authority
CN
China
Prior art keywords
negative electrode
alpha
positive
acetate
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111654703.2A
Other languages
English (en)
Inventor
付紫微
陈安国
钱顺友
蔡波
徐星
杨中发
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou Meiling Power Supply Co Ltd
Original Assignee
Guizhou Meiling Power Supply Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou Meiling Power Supply Co Ltd filed Critical Guizhou Meiling Power Supply Co Ltd
Priority to CN202111654703.2A priority Critical patent/CN114497478A/zh
Publication of CN114497478A publication Critical patent/CN114497478A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了锂电池的制备技术领域中的一种多孔纳米α‑Fe2O3/Ag负极材料的制备方法,原料包括铁盐、表面活性剂、醋酸盐、溶剂、造孔剂和硝酸银,首先通过水热法将铁盐、表面活性剂、醋酸盐、溶剂和造孔剂混合制备成多孔纳米α‑Fe2O3,再通过水热法使硝酸银形成的Ag纳米粒子沉积在α‑Fe2O3的孔道中,得到多孔纳米α‑Fe2O3/Ag负极材料。跟现有技术相比,大大节省了制备时间,并且通过此方法能得到纳米多孔的形貌,醋酸盐可以调节氧化铁颗粒大小,减小了氧化铁的尺寸,再加入造孔剂后,在焙烧过程中形成孔,使得Ag纳米粒子可以沉积到氧化铁的孔道中,材料的导电性更强,进而增强了锂电池的电性能。

Description

一种多孔纳米α-Fe2O3/Ag负极材料的制备方法
技术领域
本发明涉及锂电池的制备技术领域,具体涉及一种多孔纳米α-Fe2O3/Ag负极材料的制备方法。
背景技术
锂离子电池具有能量密度高,循环寿命长、自放电率低、高电压工作、使用温度范围宽、没有“记忆效应”等优点,被认为是电动汽车、混合动力汽车以及新兴智能网络的新电源。目前商用的锂离子电池负极材料石墨的理论容量只有372mAh g-1,无法满足新一代锂离子电池的需要。相比石墨材料,α-Fe2O3的理论容量为1007mAh g-1,且具有高电导率和低成本的优点,因此,α-Fe2O3被认为是最有前途的碳负极材料的替代物之一,然而,α-Fe2O3在脱嵌锂过程中巨大的体积变化会导致电极材料的粉化和比容量的快速衰减。目前,研究工作主要集中于制备纳米结构的α-Fe2O3负极材料来缓解脱嵌锂过程中的体积变化,从而改善其循环稳定性,然而,单一组分的α-Fe2O3纳米结构在循环过程中会发生团聚而导致结构的破坏。因此,制备基于α-Fe2O3纳米结构的复合结构被认为是进一步改善其电化学性能的有效途径之一。
发明内容
本发明针对现有技术的不足,设计一种多孔纳米α-Fe2O3/Ag负极材料的制备方法,进一步改善其电化学性能。
本发明的目的之一是提供一种多孔纳米α-Fe2O3/Ag负极材料的制备方法,原料包括铁盐、表面活性剂、醋酸盐、溶剂、造孔剂和硝酸银,首先通过水热法将铁盐、表面活性剂、醋酸盐、溶剂和造孔剂混合制备成多孔纳米α-Fe2O3,再通过水热法使硝酸银形成的Ag纳米粒子沉积在α-Fe2O3的孔道中,得到多孔纳米α-Fe2O3/Ag负极材料。
进一步细化的,具体包括两个步骤,步骤一、取铁盐、表面活性剂、醋酸盐加入到溶剂和造孔剂混合的溶液中,搅拌至完全溶解后继续搅拌40-60min后,将溶液转移到聚四氟乙烯的内衬中,于150℃~200℃水热15~24h,待温度降到室温时用去离子水和乙醇交替离心4~6次,所得样品为纳米多孔α-Fe2O3
步骤二、取步骤一的纳米多孔α-Fe2O3加入到硝酸银溶液中搅拌40min~60min,然后将搅拌好的溶液转移到聚四氟乙烯的内衬中,180℃~200℃水热20~30h,待冷却到室温后进行抽滤,经过多次水洗和醇洗后,将产物放进30℃~50℃的真空干燥箱干燥,得到多孔纳米α-Fe2O3/Ag负极材料。
进一步,原料按照质量份数计为:2~7份铁盐、1~5份表面活性剂、5~10份醋酸盐、16~50 份溶剂、19~66份造孔剂和0.05~0.1份的硝酸银。
优选的,原料按照质量份数计为:2~4份铁盐、1~3份表面活性剂、5~8份醋酸盐、16~40 份溶剂、19~30份造孔剂和0.05~0.1份的硝酸银。
进一步,原料按照质量份数计为:2份铁盐、2份表面活性剂、6份醋酸盐、40份溶剂、20份造孔剂和0.05~0.1份的硝酸银。
进一步,所述溶剂为无水乙醇,所述造孔剂为甲酰胺或N-N二甲基甲酰胺,所述铁盐为氯化铁、硝酸铁或醋酸铁,所述醋酸盐为醋酸钠或者醋酸钾。
进一步,所述表面活性剂是聚乙烯吡咯烷酮或N-乙烯吡咯烷酮。
本发明的目的之二是提供通过一种负极极片,使用上述方法制备的α-Fe2O3/Ag负极材料进行制备。
进一步,在制备时,包括将α-Fe2O3/Ag负极材料、负极分散剂、负极粘结剂和负极导电剂均匀分散在去离子水中得负极浆料,将负极浆料涂覆在铜箔上后经干燥、辊压、分切后得负极极片。
进一步,各组分的质量百分比为:95.5%的α-Fe2O3/Ag负极材料,2%的负极分散剂, 1.5%的负极粘结剂,1%的负极导电剂,其中,负极分散剂为羧甲基纤维素钠,负极粘结剂为丁苯胶乳,负极导电剂为乙炔黑。
本发明的目的之三是提供一种锂离子电池,还包括正极片的制备,将正极活性材料、正极分散剂、正极粘结剂和正极导电剂均匀分散在NMP中得正极浆料,将正极浆料涂覆在铝箔上后经干燥、辊压、分切后得正极极片;将正极极片和负极极片组装到锂离子电池中。
其中,正极极片各组分的质量百分比为正极活性材料94~97%,正极粘结剂1~3.5%,正极导电剂1~5%,其中,正极活性材料为NCM三元材料,正极粘结剂为聚偏氟乙烯,正极导电剂为炭黑。
本发明采用两步水热法制备多孔纳米α-Fe2O3/Ag负极材料,与传统的氧化铁的制备方法相较,大大节省了制备时间,并且通过此方法能得到纳米多孔的形貌,醋酸盐可以调节氧化铁颗粒大小,减小了氧化铁的尺寸,再加入造孔剂后,在焙烧过程中形成孔,使得Ag纳米粒子可以沉积到氧化铁的孔道中,材料的导电性更强,进而增强了电性能。
本发明的工作原理:由于多孔纳米α-Fe2O3/Ag复合材料中的纳米α-Fe2O3具有多孔结构,展现出良好的传质和吸附能力。将银纳米粒子沉积到孔道内,能有效地避免纳米银的团聚,提升纳米银的使用效率;并且欲使用时域有限差分法(FDTD)对银纳米粒子局部电磁场强度进行模拟计算,选取波长为532nm的激光激发单一银纳米粒子及银纳米粒子二聚体。银纳米粒子二聚体结点处的电场强度将高于单一银纳米粒子。银纳米粒子二聚体电场强度的显著增加是由于两个耦合的银纳米颗粒组成的间隙位点(热点)处与局域表面等离子共振 (LSPR)相关联的高度集中的电磁场引起的,增强了复合材料的导电性。所以多孔纳米α-Fe2O3/Ag复合材料的倍率性能要优于纯的α-Fe2O3
具体实施方式
下面通过具体实施方式进一步详细说明:
实施例1,多孔纳米α-Fe2O3/Ag负极材料和利用其制备扣式电池的具体步骤如下:
1、制备α-Fe2O3:取铁盐2份,表面活性剂2份,醋酸盐6份加入到由40份溶剂和20 份造孔剂混合的溶液中,搅拌至完全溶解后继续搅拌40~60min后,将溶液转移到聚四氟乙烯的内衬中,150℃~200℃水热18h,待温度降到室温时用去离子水和乙醇交替离心4~6次,所得样品即为纳米多孔α-Fe2O3
2、制备α-Fe2O3/Ag负极材料:按照步骤1)的方法制备4组α-Fe2O3、将四组α-Fe2O3分别加入到含0.05、0.065、0.08和0.1份硝酸银溶液中搅拌40min~60min,然后将搅拌好的溶液转移到聚四氟乙烯的内衬中,180℃~200℃水热24h,待冷却到室温后进行抽滤,经过多次水洗和醇洗后,将所得到的产物放进30℃~50℃的真空干燥箱干燥10h,即得到不同硝酸银比例的α-Fe2O3/Ag负极材料;
3、制备正极片:将正极活性材料、正极分散剂、正极粘结剂和正极导电剂均匀分散在 NMP中得正极浆料,将正极浆料涂覆在铝箔上后经干燥、辊压、分切后得正极极片。正极材料中各组分的质量百分比为:正极材料94~97%,正极粘结剂1~3.5%,正极导电剂1~5%。其中,正极活性材料为NCM三元材料,正极粘结剂为聚偏氟乙烯(PVDF),正极导电剂为炭黑。涂布完成后放入烘箱干燥,温度120~150℃,干燥后得到正极片;
4、制备α-Fe2O3/Ag的负极片:将α-Fe2O3/Ag负极材料、负极分散剂、负极粘结剂和负极导电剂均匀分散在去离子水中得负极浆料,将负极浆料涂覆在铜箔上后经干燥、辊压、分切后得负极极片。α-Fe2O3/Ag负极材料中各组分的质量百分比为:α-Fe2O3/Ag负极材料95.5%,负极分散剂2%,负极粘结剂1.5%,负极导电剂1%。其中,负极分散剂为羧甲基纤维素钠,负极粘结剂为丁苯胶乳,负极导电剂为乙炔黑。涂布完成后放入烘箱干燥,温度120~150℃,干燥后得到负极片;
5、将上述制备好的正负极片采用打孔器截取直径为16mm的圆形电极片,2300膜(美国产)为隔膜,使用电解液LiPF6/EC+DMC+EMC,在氩气保护的手套箱中组装CR2032型对称型扣式锂离子电池。
本实施例的1份相当于1g。
根据测试结果证明,多孔纳米α-Fe2O3/Ag复合材料的倍率性能要优于纯的α-Fe2O3。且当硝酸银溶液为0.065份时,多孔纳米α-Fe2O3/Ag复合材料的倍率性能最高。
以上所述的仅是本发明的实施例,方案中公知的具体结构及特性等常识在此未作过多描述。应当指出,对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。本申请要求的保护范围应当以其权利要求的内容为准,说明书中的具体实施方式等记载可以用于解释权利要求的内容。

Claims (10)

1.一种多孔纳米α-Fe2O3/Ag负极材料的制备方法,其特征在于,原料包括铁盐、表面活性剂、醋酸盐、溶剂、造孔剂和硝酸银,首先通过水热法将铁盐、表面活性剂、醋酸盐、溶剂和造孔剂混合制备成多孔纳米α-Fe2O3,再通过水热法使硝酸银形成的Ag纳米粒子沉积在α-Fe2O3的孔道中,得到多孔纳米α-Fe2O3/Ag负极材料。
2.根据权利要求1所述的一种多孔纳米α-Fe2O3/Ag负极材料的制备方法,其特征在于:具体包括两个步骤,步骤一、取铁盐、表面活性剂、醋酸盐加入到溶剂和造孔剂混合的溶液中,搅拌至完全溶解后继续搅拌40-60min后,将溶液转移到聚四氟乙烯的内衬中,于150℃~200℃水热15~24h,待温度降到室温时用去离子水和乙醇交替离心4~6次,所得样品为纳米多孔α-Fe2O3
步骤二、取步骤一的纳米多孔α-Fe2O3加入到硝酸银溶液中搅拌40min~60min,然后将搅拌好的溶液转移到聚四氟乙烯的内衬中,180℃~200℃水热20~30h,待冷却到室温后进行抽滤,经过多次水洗和醇洗后,将产物放进30℃~50℃的真空干燥箱干燥,得到多孔纳米α-Fe2O3/Ag负极材料。
3.根据权利要求2所述的一种多孔纳米α-Fe2O3/Ag负极材料的制备方法,其特征在于:原料按照质量份数计为:2~7份铁盐、1~5份表面活性剂、5~10份醋酸盐、16~50份溶剂、19~66份造孔剂和0.05~0.1份的硝酸银。
4.根据权利要求3所述的一种多孔纳米α-Fe2O3/Ag负极材料的制备方法,其特征在于:所述溶剂为无水乙醇,所述造孔剂为甲酰胺或N-N二甲基甲酰胺,所述铁盐为氯化铁、硝酸铁或醋酸铁,所述醋酸盐为醋酸钠或者醋酸钾。
5.根据权利要求4所述的一种多孔纳米α-Fe2O3/Ag负极材料的制备方法,其特征在于:所述表面活性剂是聚乙烯吡咯烷酮或N-乙烯吡咯烷酮。
6.一种负极极片,包括使用权利要求1~5任一所述方法制备的α-Fe2O3/Ag负极材料进行制备。
7.根据权利要求6所述的负极极片,其特征在于:在制备时,包括将α-Fe2O3/Ag负极材料、负极分散剂、负极粘结剂和负极导电剂均匀分散在去离子水中得负极浆料,将负极浆料涂覆在铜箔上后经干燥、辊压、分切后得负极极片。
8.根据权利要求7所述的负极极片,其特征在于:各组分的质量百分比为:93~96%的α-Fe2O3/Ag负极材料,1~3%的负极分散剂,1~2%的负极粘结剂,1~2%的负极导电剂,其中,负极分散剂为羧甲基纤维素钠,负极粘结剂为丁苯胶乳,负极导电剂为乙炔黑。
9.应用权利要求8所述的负极极片制备的锂离子电池,其特征在于:还包括正极片的制备,将正极活性材料、正极分散剂、正极粘结剂和正极导电剂均匀分散在NMP中得正极浆料,将正极浆料涂覆在铝箔上后经干燥、辊压、分切后得正极极片;将正极极片和负极极片组装到锂离子电池中。
10.根据权利要求9所述的锂离子电池,其特征在于:正极极片各组分的质量百分比为正极活性材料94~97%,正极粘结剂1~3.5%,正极导电剂1~5%,其中,正极活性材料为NCM三元材料,正极粘结剂为聚偏氟乙烯,正极导电剂为炭黑。
CN202111654703.2A 2021-12-30 2021-12-30 一种多孔纳米α-Fe2O3/Ag负极材料的制备方法 Pending CN114497478A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111654703.2A CN114497478A (zh) 2021-12-30 2021-12-30 一种多孔纳米α-Fe2O3/Ag负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111654703.2A CN114497478A (zh) 2021-12-30 2021-12-30 一种多孔纳米α-Fe2O3/Ag负极材料的制备方法

Publications (1)

Publication Number Publication Date
CN114497478A true CN114497478A (zh) 2022-05-13

Family

ID=81508744

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111654703.2A Pending CN114497478A (zh) 2021-12-30 2021-12-30 一种多孔纳米α-Fe2O3/Ag负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN114497478A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920217A (zh) * 2022-06-14 2022-08-19 浙江工业大学 一种高吸波性能多孔铁基氮化物材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236747A1 (en) * 2010-03-29 2011-09-29 Kan-Sen Chou Composite material for negative electrode, method for fabricating the same and electrochemical device using the same
KR20150011552A (ko) * 2013-07-23 2015-02-02 한국세라믹기술원 리튬이차전지용 산화제2철계 음극활물질의 제조방법 및 이를 이용한 리튬이차전지의 제조방법
CN105688909A (zh) * 2014-11-27 2016-06-22 中国科学院大连化学物理研究所 一种银/金属氧化物多孔材料、其制备方法和应用
KR20170126196A (ko) * 2016-05-09 2017-11-17 한국과학기술원 금속 나노입자가 코팅된 금속-금속산화물 또는 금속산화물-금속산화물의 이종 복합체로 구성된 일차원 다공성 나노튜브, 이를 포함하는 고용량 이차전지용 음극활물질 및 그 제조방법
KR20210113893A (ko) * 2020-03-09 2021-09-17 홍익대학교 산학협력단 표면 플라즈마 공명 현상을 이용한 리튬 이차 전지 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110236747A1 (en) * 2010-03-29 2011-09-29 Kan-Sen Chou Composite material for negative electrode, method for fabricating the same and electrochemical device using the same
KR20150011552A (ko) * 2013-07-23 2015-02-02 한국세라믹기술원 리튬이차전지용 산화제2철계 음극활물질의 제조방법 및 이를 이용한 리튬이차전지의 제조방법
CN105688909A (zh) * 2014-11-27 2016-06-22 中国科学院大连化学物理研究所 一种银/金属氧化物多孔材料、其制备方法和应用
KR20170126196A (ko) * 2016-05-09 2017-11-17 한국과학기술원 금속 나노입자가 코팅된 금속-금속산화물 또는 금속산화물-금속산화물의 이종 복합체로 구성된 일차원 다공성 나노튜브, 이를 포함하는 고용량 이차전지용 음극활물질 및 그 제조방법
KR20210113893A (ko) * 2020-03-09 2021-09-17 홍익대학교 산학협력단 표면 플라즈마 공명 현상을 이용한 리튬 이차 전지 및 그 제조 방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114920217A (zh) * 2022-06-14 2022-08-19 浙江工业大学 一种高吸波性能多孔铁基氮化物材料及其制备方法
CN114920217B (zh) * 2022-06-14 2023-10-31 浙江工业大学 一种高吸波性能多孔铁基氮化物材料及其制备方法

Similar Documents

Publication Publication Date Title
CN110364693B (zh) 一种纳米三维导电骨架/MnO2复合结构材料的制备方法及其在锌电池正极中的应用
CN107425185B (zh) 一种碳纳米管负载的碳化钼材料的制备方法及其在锂硫电池正极材料中的应用
CN107221654B (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
CN103050704B (zh) 一种多孔导电添加剂及其制备方法、锂离子电池
WO2015043359A1 (zh) 锂离子电池正极复合材料及其制备方法
CN112909234A (zh) 一种锂负极或钠负极的制备方法与应用
WO2017024720A1 (zh) 一种高容量锂离子电池负极材料的制备方法
CN106935860A (zh) 一种碳插层v2o3纳米材料、其制备方法和应用
JP2020504433A (ja) リチウムイオン電池に使用するためのグラフェン/三元系材料複合体を調製する方法およびその製造物
CN108039449B (zh) 锂离子电池的制备方法及锂离子电池
CN107785552B (zh) 一种氮掺杂花状等级结构多孔碳-硒复合正极材料及其制备方法与应用
WO2017124439A1 (zh) 三维Na3V2(PO4)3纳米线网络电极材料及其制备方法和应用
CN109360971B (zh) 一种微球状硒化锰/碳复合材料的制备方法
CN112174220B (zh) 二氧化钛包覆四氧化三钴蜂窝孔纳米线材料及其制备和应用
WO2015051627A1 (zh) 棒状纳米氧化铁电极材料及其制备方法和应用
CN109546103A (zh) 一种粘结剂作为炭前驱体的电极材料及其制备方法和应用
CN112421044B (zh) 核壳结构硫正极材料、制备方法以及在锂硫电池中的应用
WO2017121113A1 (zh) 一种碳包覆铁酸锌电极材料及其制备方法与应用
CN112357956B (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN106299331A (zh) 包含钛酸锂涂层的锂离子电池正极片及其制备方法和锂离子电池
CN112366311A (zh) 碳组装硫化铜空心纳米立方体蜂窝材料及其制备和应用
CN102163711A (zh) 采用介孔碳负载纳米粒子制备锂离子电池负极材料的方法
CN111313012A (zh) 多壁碳纳米管石墨锂离子电池负极材料及其制备方法
CN111029570A (zh) 锂离子电池负极用硼酸钴/石墨烯复合材料及制备方法
CN108923027B (zh) 一种有机酸修饰的Si/TiO2/rGO@C锂离子电池负极材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination