CN114441581B - 一种多期成因致密白云岩的判别分析方法 - Google Patents

一种多期成因致密白云岩的判别分析方法 Download PDF

Info

Publication number
CN114441581B
CN114441581B CN202111481956.4A CN202111481956A CN114441581B CN 114441581 B CN114441581 B CN 114441581B CN 202111481956 A CN202111481956 A CN 202111481956A CN 114441581 B CN114441581 B CN 114441581B
Authority
CN
China
Prior art keywords
dolomite
rock
surrounding rock
core
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111481956.4A
Other languages
English (en)
Other versions
CN114441581A (zh
Inventor
许红
董刚
马亚增
纳琴
张威威
陶萌
马骁
付和平
陈舒
罗进雄
邱隆伟
苏大鹏
闫桂京
闫琢玉
李绪深
刘新宇
张道军
张子瑾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Yangtze University
First Institute of Oceanography MNR
Chengdu Univeristy of Technology
Qingdao Institute of Marine Geology
Original Assignee
China University of Petroleum East China
Yangtze University
First Institute of Oceanography MNR
Chengdu Univeristy of Technology
Qingdao Institute of Marine Geology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China, Yangtze University, First Institute of Oceanography MNR, Chengdu Univeristy of Technology, Qingdao Institute of Marine Geology filed Critical China University of Petroleum East China
Priority to CN202111481956.4A priority Critical patent/CN114441581B/zh
Publication of CN114441581A publication Critical patent/CN114441581A/zh
Application granted granted Critical
Publication of CN114441581B publication Critical patent/CN114441581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/2055Analysing diffraction patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/30Staining; Impregnating ; Fixation; Dehydration; Multistep processes for preparing samples of tissue, cell or nucleic acid material and the like for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • G01N23/2254Measuring cathodoluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising
    • G01N2001/2866Grinding or homogeneising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Theoretical Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开一种多期成因致密白云岩的判别分析方法,首先根据致密白云岩标志性形态特征对致密白云岩进行初步判别;进行孔渗物性测试,判定白云岩的致密性程度;研究全岩样品、微区‑围岩性质、岩石学与岩相学特征、围岩和填屑物形态特征、白云岩形成期次,过白云化作用以及去白云化作用特征;然后进行地球化学与同位素环境特征分析,最后对目标岩心稀土元素形态测试,研究其配分模式及其成因演化特征,提出成因机制,通过稀土元素配分特征分析,确定孔隙中白云石晶体与围岩白云石晶体异同,通过稀土元素演化分析,确定孔隙中白云石晶体的成因,为储油白云岩实际是致密白云岩的勘探部署提供更科学权威的理论指导。

Description

一种多期成因致密白云岩的判别分析方法
技术领域
本发明涉及白云岩成因基础理论与油气勘探技术领域,具体涉及一种多期成因致密白云岩的判别分析方法。
背景技术
白云岩发现迄今已达250年,碳酸盐岩形成白云岩孔隙度增加12.9%是教科书定论,也是石油工业界公认白云岩是最好油气储层的依据。但是,倘若是致密的白云岩,孔隙度极低(小于1-2%),渗透率几乎为零,由粒度小于粉砂(0.01mm)粒级白云石晶体充填原岩形成,是跨越了最细小白云石晶体界线的极细粒沉积物。致密的白云岩上述特征导致致密白云岩孔隙度尚存但渗透率尽失,由油气储层变成油气盖层,难以储油;在白云岩形成理论上,这是东西的多期白云化作用产物。
虽然现有技术中已对西沙群岛致密白云岩进行过相关岩石学和地球化学特征研究,特别是进行过常规与缩微样品的测试,已经证实这类岩心及特征事实上就是致密白云岩的自然表征,但是仍然难以认识和确认致密白云岩形成过程、特征,针对成因机制研究缺乏理论支撑和相关的预测模式;因此,所强调系列致密白云岩特征和早期判别,中期研究乃至后期成因机制分析的系列方法,尤其是利用稀土元素配分分析、水岩相互作用及其对比研究的方法,在过往的相关研究中是薄弱环节,本专利的提出和实践过程证实,它们将能对致密白云岩定义、鉴别有效,关键还能够在后期的研究中事半功倍省时省力省钱,实现对其成因研究的定性定量分析,由此建立致密白云岩早期判别、中期研究和后期成因机制分析的技术方法体系,是野外和现场致密白云岩发现与研究行之有效事半功倍的过程、结果、环境、特征和机制研究系统指导方法学,也是新技术与方法理论集成的成果。
目前,在实际的勘探过程中,缺乏针对致密白云岩的第一手发现、规范判别、成因特征与机制研究的系统科学分析方法。白云岩由灰岩结晶形成,灰岩形成白云岩后,白云岩孔隙度比原灰岩增加12.9%(《沉积岩石学》,刘宝珺主编),即白云岩的形成孔隙度增加,等于是最好的油气储层。在全球油气勘探实践中,超过百分之五十油气田都属于白云岩储层,因此,目前油气勘探以白云岩为主要勘探目标。但是,申请人在研究工作中发现了极低孔隙度、渗透率几近为零的白云岩,并将该类白云岩定义为致密白云岩,显而易见,该类致密白云岩是不利于形成大油气田的另类白云岩,可能完全改变油气勘探发现进程-导致无效投入;而在白云岩成因理论研究中,国内外学术界相关成果尚不多见。
因此,亟需针对致密白云岩研究一套系统的判别标准和分析方法,以便于勘探者能够第一时间在现场完成判别,杜绝错误率,避免后期因先前判断错误的误投入,并提高后续系统研究和专业测试分析相关发现过程的效率,特别是节省勘探乃至后续研究的成本;将有效改变因发现致密白云岩后的勘探投入和部署,即刻改变针对储油白云岩实际是致密白云岩的勘探部署,进而提升白云岩理论研究水平。
发明内容
本发明为解决现有研究方法与技术方案对多期成因致密白云岩的判别分析的欠缺,尤其是现场工作缺乏的技术指导,提出了一种多期成因致密白云岩现场判别测试和成因特征与机制的分析方法。
本发明是采用以下的技术方案实现的:一种多期成因致密白云岩的判别分析方法,包括如下步骤:
步骤A:手标本描述;根据致密白云岩标志性形态特征进行现场-井场岩心观察,以实现对致密白云岩标的初步判别;
步骤B、目标岩心孔渗物性测试,判定白云岩的致密性程度;完成岩心样品孔渗性缩微或规范样品测试,确定孔隙度、渗透率特征;若发现孔渗层均低,特别是渗透率接近于零时,则可判定致密性质;
步骤C、使用涉及全岩、孔隙中填屑物样本和围岩样本的全岩X光粉晶衍射、阴极发光、扫描电镜、染色岩石薄片制片鉴定分析,依次研究全岩样品、微区填屑物-围岩、岩石学与岩相学特征、围岩和填屑物形态特征、白云岩形成期次,过白云化作用以及去白云化作用特征;
步骤D、地球化学与同位素环境特征分析,分别对步骤B中获取的孔隙中白云石晶体样本和围岩白云石晶体样本进行常量元素、微量元素和氧、碳、锶同位素测定,探讨围岩与孔隙白云石形成古海洋环境;
步骤E、目标岩心稀土元素形态测试,研究其配分模式及其成因演化特征,提出成因机制,通过稀土元素配分特征分析,确定孔隙中白云石晶体与围岩白云石晶体异同,通过稀土元素演化分析,确定孔隙中白云石晶体的成因。
进一步的,所述步骤C具体包括以下步骤:
(C1)对目标岩心进行X光粉晶衍射图谱测试,确认充填物与围岩性质都是白云岩;
(C2)对目标岩心阴极发光测试鉴定,判定白云岩形成期次;
(C3)对目标岩心扫描电镜晶体形态、背散射面扫及点测确定样品成分特征及差异;
(C4)过白云化作用和去白云化作用分析,通过致密白云岩完成常规制片和茜素红染色制片,分别进行单偏光、正交偏光鉴定拍摄。
进一步的,所述步骤C2中,在判定白云岩形成期次时,考虑到致密白云岩呈多种发光特征,包括浅黄色、亮黄色、橘黄色,相同期次白云石发光颜色一致归于一期,暗色者在先,鲜艳色和亮色者在后,由此判定白云石形成先后顺序期次。
进一步的,所述步骤E中,具体通过以下方式实现:
获取岩心孔隙中白云石晶体以及围岩白云石晶体,分别制样;然后完成稀土元素测试,确定孔隙中白云石晶体与围岩白云石晶体的特征,通过围岩、填屑物稀土元素配分和演化特征分析,探讨孔隙中白色充填物与围岩白云石性质,对比二者水岩相互作用特征、过程与结果,提出成因机制研究结论。
进一步的,所述步骤A中致密白云岩标志性形态特征指的是岩心表面密布鸟眼状孔隙,孔隙中填充有白色物质而区别于围岩白云岩的浅黄-深黄色物质,因此,初步判定围岩与填屑物是多期形成的白云岩,进一步开展以X光粉晶衍射、阴极发光、扫描电镜背散射顺序测试分析,能够分别确定白云岩、白云化作用期次和白云石完整性分布的特征。
与现有技术相比,本发明的优点和积极效果在于:
本方案可以应用于石油工业界钻井现场,尤其在石油钻井经常岩心取样少的情况下,可指导现场工作者,确保不会漏掉尤其是错误判断取样目的层系的性质,倘若判断准确,对于深达5千米甚至8千米油气探井而言,将具有显著经济价值,进而极大推进深层油气储层和盖层在井场及时发现与评估决策,避免后期不必要的钻井勘探投入,特别是可以避免错误的评价-致密白云岩非油气储层而是盖层,也就是油气的保护层而难以大规模储油。因此,早期准确判断不但可以节省钻井经费可能逾数百万经费,还会改变相关勘探进程,具有重大经济发现价值;在理论上,可以提供研究者一种科学权威的多期成因形成致密白云岩的理论研究方法,具有重要的科学价值。
附图说明
图1为本发明中致密白云岩岩心库采集获得的系列样品图;
图2为本发明实施例所述判别分析方法的流程示意图。
具体实施方式
为了能够更加清楚地理解本发明的上述目的、特征和优点,下面结合附图及实施例对本发明做进一步说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用不同于在此描述的其他方式来实施,因此,本发明并不限于下面公开的具体实施例。
申请人在研究工作中发现了极低孔隙度、渗透率几近为零的致密白云岩,该类致密白云岩是不利于形成大油气田的另类白云岩,可能完全改变油气勘探发现进程-导致无效投入,为了对勘探和其他研究工作提供更加科学权威的理论支持,本方案提出了多期成因形成致密白云岩的理论研究方法,即一种多期成因致密白云岩的判别分析方法,如图2所示,包括以下步骤:
步骤A、手标本描述;根据致密白云岩标志性形态特征进行现场-井场岩心观察以实现对目标岩心的初步判别;
步骤B、目标岩心系统孔渗物性测试,判定白云岩的致密性程度,完成岩心样品孔渗性缩微(直径1cm)或规范(直径2.5cm)样品测试,确定孔隙度、渗透率特征;倘若发现孔渗层均低,特别是渗透率接近于零时,则可判定致密性质;
步骤C:使用涉及全岩、孔隙中填屑物样本和围岩样本的全岩X光粉晶衍射、阴极发光、扫描电镜、染色岩石薄片制片鉴定分析,依次研究全岩样品、微区-围岩性质、岩石学与岩相学特征、围岩和填屑物形态特征、白云岩形成期次,过白云化作用以及去白云化作用特征;
步骤D:地球化学与同位素环境特征分析,分别对步骤B中获取的孔隙中白云石晶体样本和围岩白云石晶体样本进行常量元素、微量元素和氧、碳、锶同位素测定,探讨围岩与孔隙白云石形成古海洋环境。
步骤E、目标岩心稀土元素测试,研究其配分模式及其成因演化特征,通过稀土元素配分特征分析,对比研究确定孔隙中白云石晶体与围岩白云石晶体稀土元素异同,通过稀土元素演化特征、过程与结果分析,确定孔隙中白云石晶体的成因,提出成因机制与模式。
本实施例中,对致密白云岩的判别分析过程主要包括先期专业技术基础上的初步判别,中期系统测试分析与后期成因特征、成因机制判别和系统理论研究三个阶段,具体的:
所述步骤A中,先期岩心观察手标本描述,现场专业方鉴定,该步骤的关键在于确定围岩与充填物(白色点状充填物)的关系,一般情况下白色点状充填物导致孔渗层消失,故对其发现至关重要。现场是准确把握初步判断致密白云岩标志性形态特征最为基础的环节(图1),该形态特征指岩心表面或密布鸟眼状孔隙(这是灰岩形成白云石的常见代表性孔隙特征),或该孔隙中填充白色物质,二者无论颜色、结晶程度和数量都有所区别,具有典型围岩和填屑物关系。其中,围岩以浅黄色为基调,填屑物纯白色(围岩中的浅黄-深黄色白云石晶体样本的粒径为细晶,填屑物粒径是白色粉晶-泥晶),这种颜色和粒度的特征代表了矿物岩石在组成成分、成因过程、特征、结果和机制等方面所具有的不同,区别对待是显而易见的。
岩心观察必要确定其结构特征如骨架颗粒、结构构造特征等,关键内容是表面密布的白色点状填隙物,这些密布白色物质也意味着白云岩鸟眼状构造大量被充填,这是二者具有的区别,如存在白色点状充填物,则基本可以判定属于致密白云岩。
步骤B中,进行孔渗层测试,以确认白云岩物性特征的确具有致密白云岩特征。其中包括常规-非常规孔渗性测试分析技术,常规指的是2.5cm直径样品,非常规指的是1cm直径样品和工业CT岩心三维扫描层析成像数据计算孔渗性的技术,其技术原理本身为比较成熟的技术手段,在此不做过多阐述。
孔渗性为判断致密白云岩是否致密和致密程度的最权威指标。之所以说是致密,系碳酸盐岩形成白云岩孔隙度增加12.9%是公认的白云岩特征,致密白云岩孔隙度很小,渗透率几乎为0。本实施例中,致密白云岩的孔隙度为1.65%~16.4%,绝大多数小于6%;大多数样品渗透率为零,或小于等于小数点以后三位数实测渗透率时,二者是致密限定词的表征但不仅仅限于此。三种方法(2.5cm直径岩心样品,1cm直径样品和工业CT岩心三维扫描层析成像)是专业测定所有岩石包括白云岩孔渗性的方法,特别是前者是石油工业界规范要求也是常用的,但是,当岩心极其稀少,就会用到后面两种方法,但既使是1cm直径样品也要损耗极其稀少昂贵的岩心(钻井通过只有十几米长的套管一根一根接起来,每一次取心前后都要再将这些套管一根一根卸下来再接上去,这样一上一下耗时耗工),因此取心影响钻进进尺,以一口7千米钻井中取心为例,一上一下数天,而一天会耽误进尺数十乃至数百米而耗费大量资金,因此,每一口井设计的取心回次都不多。
以本发明为例的科探井是全取心,不得不每一米都取心,采用的是新的取心技术,但即使是这样,西科1井的岩心也价值昂贵,而且从几百米开始,岩心直径就只有6.5cm;因此,即使是执行油气重大专项项目的科探井,岩心也不多,哪怕节省一点点岩心都是珍贵和难得的,价值不言而喻。用1cm岩心直径测试岩石的孔渗性特别是用工业CT完成的三维层析成像技术扫描,都在这个问题上独到,特别是后者,是利用计算机技术完成样品孔渗性计算,将完全不损耗样品。本实施例采用工业-医用CT技术直观三维透视,不但可以对岩心的内部孔渗层特征定性而且可以对孔隙度定量,特别是大大小小的孔隙度、渗透率都无一不会被漏缺,所测数据是最准确的,也使得本发明专利具有经济性价比高的优点。
步骤C具体包括:
(C1)目标岩心通过X光粉晶衍射图谱测试,确认充填物与围岩性质都是白云岩;以全岩样品研末至200目测得白云岩谱图,其白云石(104)特征峰2θ=30.58~31.28°,D=2.8540~
Figure BDA0003395597380000051
此特征峰和D值即白云石-白云岩身份证;
(C2)目标岩心阴极发光测试鉴定,判定白云岩形成期次;基于阴极发光分析,鉴定围岩与填屑物阴极发光差异,划分白云岩期次。其中,致密白云岩呈典型多种发光特征,包括浅黄色、亮黄色、橘黄色等,相同期次白云石发光颜色一致归于一期,暗色者在先,鲜艳色和亮色者在后,由此判定白云石形成先后顺序期次;
(C3)对目标岩心扫描电镜晶体形态、背散射面扫及点测确定样品成分特征及差异;扫描电镜是白云石典型晶体特征鉴别方法,可分别对填隙物部分和围岩部分包括牙钻等在内取得样品的扫描电镜测试,获得样品整体系统测试分析照片;扫描电镜区分鉴定,包括晶体形态,背散射面测、点测,则聚焦对比平面成分与特征点成分特征及差异,扫描电镜背散射面扫提供的是岩心样品平面位置照片,包括点测时聚焦于那个点的成分数据;要更精细于偏光显微镜的结果。
(C4)过白云化作用和去白云化作用分析;关键在于通过致密白云岩完成常规制片和茜素红染色制片,分别进行单偏光、正交偏光鉴定拍摄;前者,将出现大量雾心亮边构造,并且层层叠叠,是多次白云化作用的结果;后者,偏光显微镜观察茜素红薄片,照片可见显著不同程度或多或少布的红色,表征白云石溶蚀方解石形成的特征,即所谓去白云化作用。
以上,通过致密白云岩全岩X光粉晶衍射(光学谱图,以确定二者身份证);阴极发光(成因期次)、白色物质、围岩扫描电镜(形态特征与晶体类型)、茜素红染色薄片(偏光和正交偏光),岩相学特征和形成期次为目标,包括过白云化和去白云化作用特征。其中,是否是白云岩/白云石的关键判别测试技术是X光粉晶衍射-即身份证;阴极发光对于认识围岩与填屑物关系至关重要;扫描电镜则是直观的白云石晶体形态特征分析;染色片是白云岩岩相学、过白云化作用、去白云化作用等白云岩基本特征的结构、构造、组分、围岩与填隙物特征,在区别致密白云岩与普通白云岩研究中不可或缺;过-去白云化作用则是白云岩成因机制研究先期铺垫重要内容。
步骤D中,主要进行地球化学常量微量元素和同位素测试,前者分析岩石的地球化学成分与性质的特征;后者涉及氧、碳、锶同位素,通过测试综合分析确定白云岩形成的环境。
步骤E、进行稀土元素配分模式、围岩与填屑物成因演化特征对比研究和机制分析;重点在于判定聚焦岩心形态和成分区别,把握具体工作方案;在此基础上,通过分别精细样品采集、开展稀土元素测试分析;首先,针对致密白云岩围岩与鸟眼状孔隙中所填充白色物质利用工具针、牙钻、微钻等工具,小心分别钻取获得密集鸟眼状孔隙中的白色点状白云石晶体粉末;围岩样品需要玛瑙钵研磨到200目,再分别完成稀土元素包括常量元素、微量元素测定,测试仪器以电感耦合等离子质谱(ICP-MS)为最好。具体的常量元素、微量元素和稀土元素测定为比较成熟的技术不做详述。利用测试数据完成稀土元素配分特征分析,对比研究探索白色填屑物物质与围岩物质稀土元素异同,完成对比及演化特征分析,确定成因机制。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于相关研究或其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (1)

1.一种多期成因致密白云岩的判别分析方法,其特征在于,包括如下步骤:
步骤A:手标本描述;根据致密白云岩标志性形态特征进行现场-井场岩心观察,以实现对致密白云岩标的初步判别,所述致密白云岩标志性形态特征是指岩心表面密布鸟眼状孔隙,孔隙中填充有白色物质而区别于围岩白云岩的浅黄-深黄色物质;
步骤B、目标岩心孔渗物性测试,判定白云岩的致密性程度;完成岩心样品孔渗性缩微或规范样品测试,确定孔隙度、渗透率特征;
步骤C、使用涉及全岩、孔隙中填屑物样本和围岩样本的全岩X光粉晶衍射、阴极发光、扫描电镜、染色岩石薄片制片鉴定分析,依次研究全岩样品、微区-围岩性质、岩石学与岩相学特征、围岩和填屑物形态特征、白云岩形成期次,过白云化作用以及去白云化作用特征;
(C1)对目标岩心进行X光粉晶衍射图谱测试,确认充填物与围岩性质都是白云岩;
(C2)对目标岩心阴极发光测试鉴定,判定白云岩形成期次;
在判定白云岩形成期次时,考虑到致密白云岩呈多种发光特征,包括浅黄色、亮黄色、橘黄色,相同期次白云石发光颜色一致归于一期,暗色者在先,鲜艳色和亮色者在后,由此判定白云石形成先后顺序期次;
(C3)对目标岩心扫描电镜晶体形态、背散射面扫及点测确定样品成分特征及差异;
(C4)过白云化作用和去白云化作用分析,通过致密白云岩完成常规制片和茜素红染色制片,分别进行单偏光、正交偏光鉴定分析;
步骤D、地球化学与同位素环境特征分析,分别对步骤B中获取的孔隙中白云石晶体样本和围岩白云石晶体样本进行常量元素、微量元素和氧、碳、锶同位素测定,探讨围岩与孔隙白云石形成古海洋环境;
步骤E、目标岩心稀土元素测试,研究其配分模式及其成因演化特征,通过稀土元素配分特征分析,确定孔隙中白云石晶体与围岩白云石晶体异同,通过稀土元素演化分析,确定孔隙中白云石晶体的成因,提出成因机制,具体通过以下方式实现:
获取岩心孔隙中白云石晶体以及围岩白云石晶体,分别制样;然后完成稀土元素测试,确定孔隙中白云石晶体与围岩白云石晶体的特征,通过围岩、填屑物稀土元素配分和演化特征测试分析,探讨孔隙中白色充填物白云石与围岩白云石性质,对比二者水岩相互作用特征、过程与结果,提出成因机制的认识。
CN202111481956.4A 2021-12-07 2021-12-07 一种多期成因致密白云岩的判别分析方法 Active CN114441581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111481956.4A CN114441581B (zh) 2021-12-07 2021-12-07 一种多期成因致密白云岩的判别分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111481956.4A CN114441581B (zh) 2021-12-07 2021-12-07 一种多期成因致密白云岩的判别分析方法

Publications (2)

Publication Number Publication Date
CN114441581A CN114441581A (zh) 2022-05-06
CN114441581B true CN114441581B (zh) 2022-11-08

Family

ID=81364098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111481956.4A Active CN114441581B (zh) 2021-12-07 2021-12-07 一种多期成因致密白云岩的判别分析方法

Country Status (1)

Country Link
CN (1) CN114441581B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117214279B (zh) * 2023-10-12 2024-03-19 西南石油大学 不同颜色白云岩成因的综合研究方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158283A (zh) * 2015-08-14 2015-12-16 中国石油天然气股份有限公司 原生生物成因白云岩的识别方法
CN111610126A (zh) * 2020-04-29 2020-09-01 中国石油天然气股份有限公司 白云岩储层孔隙抗压实效应的判识与评价的方法及系统
CN111751512A (zh) * 2020-05-27 2020-10-09 中国石油天然气股份有限公司 一种白云岩或松散沉积物微生物成因确定方法
CN111983189A (zh) * 2020-08-18 2020-11-24 成都理工大学 一种定量分析超深层膏盐岩与白云岩耦合机制的方法
CN112284993A (zh) * 2020-09-16 2021-01-29 中国石油天然气股份有限公司 一种白云岩中继承型孔隙识别方法
CN112992283A (zh) * 2021-02-07 2021-06-18 中国石油天然气股份有限公司 晶体尺度的白云岩溶蚀孔隙形成演化模拟方法及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105158283A (zh) * 2015-08-14 2015-12-16 中国石油天然气股份有限公司 原生生物成因白云岩的识别方法
CN111610126A (zh) * 2020-04-29 2020-09-01 中国石油天然气股份有限公司 白云岩储层孔隙抗压实效应的判识与评价的方法及系统
CN111751512A (zh) * 2020-05-27 2020-10-09 中国石油天然气股份有限公司 一种白云岩或松散沉积物微生物成因确定方法
CN111983189A (zh) * 2020-08-18 2020-11-24 成都理工大学 一种定量分析超深层膏盐岩与白云岩耦合机制的方法
CN112284993A (zh) * 2020-09-16 2021-01-29 中国石油天然气股份有限公司 一种白云岩中继承型孔隙识别方法
CN112992283A (zh) * 2021-02-07 2021-06-18 中国石油天然气股份有限公司 晶体尺度的白云岩溶蚀孔隙形成演化模拟方法及装置

Also Published As

Publication number Publication date
CN114441581A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
CN111983189B (zh) 一种定量分析超深层膏盐岩与白云岩耦合机制的方法
CN109781966B (zh) 一种海相碳酸盐岩储层成岩古流体温度校正图版的建立方法
EP3809133B1 (en) A method for characterizing underground metallic mineral deposits based on rock coatings and fracture fills
Liu et al. Diagenetic controls on the quality of the Middle Permian Lucaogou Formation tight reservoir, southeastern Junggar Basin, northwestern China
Fu et al. Application of automated mineralogy in petroleum geology and development and CO2 sequestration: A review
CN112946780B (zh) 走滑断裂活动期次的确定方法及装置
CN110967311A (zh) 基于红外光谱和磁化率测量的斑岩矿床蚀变分带识别方法
CN114441581B (zh) 一种多期成因致密白云岩的判别分析方法
Bilbao High-resolution chemostratigraphy, sequence stratigraphic correlation, porosity and fracture characterization of the Vaca Muerta Formation, Neuquén Basin, Argentina
CN109931053A (zh) 砂泥岩-碳酸盐岩岩性的识别方法
CN105651962A (zh) 成岩相识别方法
CN112485239A (zh) 一种与油气成藏相关的古流体综合分析方法
CN111610126A (zh) 白云岩储层孔隙抗压实效应的判识与评价的方法及系统
Salisu et al. Impact of kaolinite and iron oxide cements on resistivity and quality of low resistivity pay sandstones
CN113916880B (zh) 确定成岩流体演化历史的方法
CN115327665A (zh) 一种改进的通过白云岩岩屑信息判别白云岩成因的系统
Ziemianin Characteristics of dispersed organic matter in the Menilite Beds from the Skole Unit
CN112113990B (zh) 基于微区原位元素配分的成岩流体来源判识方法及系统
CN113917563A (zh) 含铀矿目的层的地层划分和砂岩型铀矿成矿预测的方法
Alsuwaidi Lower Bab Member (A0): A study of sequence stratigraphy, porosity characterization and tight reservoir development, Abu Dhabi, UAE
CN117269024B (zh) 表征盆地砂岩铀储层轻烃流体渗出作用的方法
CN110728074A (zh) 混积细粒岩岩性连续解释的方法及其模型的建模方法
CN113374472B (zh) 一种应用元素录井判别火成岩岩性方法
Wang et al. Coupling of source rock gas expulsion intensity and reservoir quality in time and space-a key to determine gas accumulation in Upper Paleozoic tight sandstones of the Mugua gas field, Ordos Basin, China
Hermosillo Calcareous Nannofossil Biostratigraphy and Paleoecology of the Fort Hays Limestone of Western Kansas, Western Interior Basin (WIB)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant