CN114395143A - 一种手性-磁水凝胶的制备方法 - Google Patents

一种手性-磁水凝胶的制备方法 Download PDF

Info

Publication number
CN114395143A
CN114395143A CN202210070828.9A CN202210070828A CN114395143A CN 114395143 A CN114395143 A CN 114395143A CN 202210070828 A CN202210070828 A CN 202210070828A CN 114395143 A CN114395143 A CN 114395143A
Authority
CN
China
Prior art keywords
magnetic
chiral
hydrogel
magnetic field
magnetic hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210070828.9A
Other languages
English (en)
Other versions
CN114395143B (zh
Inventor
高小青
孙超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou Research Institute Of Guoke Wenzhou Institute Of Biomaterials And Engineering
Original Assignee
Wenzhou Research Institute Of Guoke Wenzhou Institute Of Biomaterials And Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou Research Institute Of Guoke Wenzhou Institute Of Biomaterials And Engineering filed Critical Wenzhou Research Institute Of Guoke Wenzhou Institute Of Biomaterials And Engineering
Priority to CN202210070828.9A priority Critical patent/CN114395143B/zh
Publication of CN114395143A publication Critical patent/CN114395143A/zh
Application granted granted Critical
Publication of CN114395143B publication Critical patent/CN114395143B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2272Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明涉及光学材料技术领域,具体涉及一种手性‑磁水凝胶的制备方法,包括以下步骤:使用手性配体对磁性纳米粒子进行修饰得到手性配体修饰的磁性纳米粒子;将手性配体修饰的磁性纳米粒子与水凝胶单体、交联剂、催化剂和引发剂混合制备磁性水凝胶;将制得的磁性水凝胶置于平行磁场中定向磁化得到所述手性‑磁水凝胶。本发明制备的磁性水凝胶定向磁化后在水凝胶内部会形成局域磁场,此局域磁场可对该材料的光学活性进行调节,并且随着磁场强度的变化该材料整体的光学活性也会随之变化。

Description

一种手性-磁水凝胶的制备方法
技术领域
本发明涉及光学材料技术领域,具体涉及一种手性-磁水凝胶的制备方法。
背景技术
手性是指物体与其镜像不能完全重合的现象,作为一种重要的几何构象,手性形态作为自然界的必不可少的因素参与整个生态圈的运转。在自然界中,比如攀缘植物、蜗牛壳、马蹄花以及蛋白质、氨基酸和DNA等生物分子均表现出明显的手性特征。在19世纪时巴斯德即发现当线偏振光穿过酒石酸对映体溶液时,线偏振光会向相反的方向旋转,这种能使偏振面旋转的能力被称为旋光性,亦被称为光学活性。这种偏转能力通常使用圆二色光谱(nature circularly dichroism,NCD)对手性分子进行表征,NCD来源于具有手性或螺旋空间分布的电荷对做圆偏振光和右圆偏振光的吸收差异。发现手性光学活性以来,手性材料得到了不断的发展,他们在推动生物标记、手性分析和检测、对映异构体选择性分离、偏振相关光子学和光电子学等方面的发展具有重要意义。
为研究分子以上层次手性物质的组装和结构,作为手性材料的分支无机手性纳米材料的研究得到迅速发展。由于手性结构具有特殊的光学特性,比如偏转线偏振光和圆二色性,使得手性材料在分子探测、偏振光探测和宽频等领域具有重要应用。但自然界中的手性分子的光学活性通常较弱,因此设计并制备可放大其光学活性的新型无机手性材料具有重要的现实应用价值。传统无机手性纳米材料主要是通过引入手性配体或构建螺旋结构等电偶极矩调控方式构筑,但这类手性材料通常会表现出一定的环境不稳定性,在光照、加热或恶劣的化学环境下手性会减弱甚至消失。此外,这些手性材料由于引入了长链手性分子作为表面配体,导致导电性较差,严重阻碍手性材料与其表面反应物或电极材料之间的电荷转移过程,极大地限制了其实际应用。探索新的调控机制并构筑新型手性纳米功能材料是突破这一科学瓶颈的有效途径。
发明内容
本发明的目的在于提供一种手性-磁水凝胶的制备方法,使用溶剂热法制备出手性配体修饰的亚铁磁性纳米粒子,然后将其分散并固化至水凝胶中。最后使用外磁场对该水凝胶进行磁化并在该水凝胶中构建出局域磁场,在该局域磁场作用下该水凝胶的光学活性得到增强。
本发明的技术方案之一,一种手性-磁水凝胶的制备方法,包括以下步骤:
步骤1:使用手性配体对磁性纳米粒子进行修饰,得到手性配体修饰的磁性纳米粒子溶液;
步骤2:将手性配体修饰的磁性纳米粒子溶液与水凝胶原料混合后聚合反应制备磁性水凝胶;
步骤3:将步骤2制得的磁性水凝胶置于平行磁场中定向磁化即得到所述手性-磁水凝胶。
本发明制备的磁性水凝胶进行定向磁化后在水凝胶内部形成局域磁场,此局域磁场可对该材料的光学活性进行调节。
进一步地,所述步骤1中,手性配体选自氨基酸类手性配体、含羧基和/或巯基手性小分子中的一种;所述磁性纳米粒子为γ-Fe2O3
所述步骤2中,所述磁性水凝胶为聚丙烯酰胺类磁性水凝胶;
所述水凝胶原料包括:20wt%丙烯酰胺单体,1wt%亚甲基双丙烯酰胺(交联剂),5wt%过硫酸钾(引发剂),1v%四甲基乙二胺(催化剂);
更进一步地,所述氨基酸类手性配体为L-缬氨酸、D-缬氨酸或DL-缬氨酸。
进一步地,所述步骤2中,丙烯酰胺单体(20wt%)、亚甲基双丙烯酰胺(1wt%)、过硫酸钾(5wt%)、四甲基乙二胺(1v%)和手性配体修饰的纳米粒子溶液(Fe元素含量为4.2mg/mL)的体积比为10:3:3:4:5。
进一步地,所述步骤1中:将手性配体和铁盐置于溶剂中混合均匀后投加碱源,然后进行溶剂热反应得到手性配体修饰的磁性纳米粒子;
进一步地,所述步骤2中:混合后聚合反应在室温下进行,反应时间为10min;
进一步地,所述步骤3中:磁场强度1T,磁化时间10min。
进一步地,所述步骤1中,铁盐为氯化铁,所述溶剂为丙三醇、乙二醇、水中的一种或多种,所述碱源为尿素、四甲基氢氧化铵、氢氧化钠中的一种或多种,所述溶剂热反应条件为200℃,12h;所述手性配体、铁盐和碱源的摩尔比为1:1:5。
更进一步地,所述溶剂为体积比为1:3的丙三醇和去离子水的混合溶剂。
本发明的技术方案之二,上述手性-磁水凝胶的制备方法所制备的手性-磁水凝胶。
本发明的技术方案之三,上述手性-磁水凝胶中构建局域磁场的应用。
进一步地,上述手性-磁水凝胶中的局域磁场可增加水凝胶的光学活性。
进一步地,手性-磁水凝胶使用磁场磁化后,在平行外磁场方向可得到总的CD信号,并且通过相关信号强度精准计算相关效应即可区分手性磁性纳米粒子的圆二色和磁圆二色信号。
与现有技术相比,本发明的有益效果:
当将某种磁光放置于与偏振光传播方向平行的磁场中时,放置于磁场中的介质同样会对左、右圆偏振光产生吸收差异,这种现象被称为磁圆二色性(Magnetic circularlydichroism,MCD)。MCD来源于磁场诱导的电子结构Zeeman相互作用。MCD反应的是分子中电子的跃迁状态,故MCD并不专门针对手性分子,任何分子放置于磁场中均会产生此种现象。手性材料的光学活性可以使用公式R=Im(μ·m)来描述,R为材料光学活性强度,μ和m分别为电和磁跃迁偶极矩;由此公式可知,电或磁跃迁偶极矩的增加均可增大材料的光学活性。虽然无机纳米材料光学活性较强,但是目前其光学活性调节方式通常为不可逆过程,因此通过电磁场来对无机纳米材料的光学活性进行调节是有效方案。
手性配体修饰的铁或亚铁磁性纳米颗粒经过磁场磁化后,其磁偶极矩会定向排列从而增大整体材料的磁偶极矩。在外加磁场消失后,由于铁磁或亚铁磁性纳米材料的固有性质,其磁偶极仍会保持其磁化状态,从而构建出局域磁场。在局域磁场作用下,手性光学材料的光学活性也随之得到增强。
本发明制备的磁性水凝胶定向磁化后在水凝胶内部会形成局域磁场,此局域磁场可对该材料的光学活性进行调节,并且随着磁场强度的变化该材料整体的光学活性也会随之变化。目前使用磁场对手性材料光学活性进行调节时,通常需要配置专门磁配件的仪器,其价格较贵,通过使用本发明可以简单实现通过磁场对光学活性进行调节。同时磁场调节光学活性是非接触、可逆式调节方式,对于保持手性材料完整性至关重要。本发明方法工艺较简单,可快速制备与检测。
附图说明
图1本发明实施例1磁性水凝胶分别在磁场方向N→S和磁场方向S→N的CD光谱;
图2本发明实施例2磁性水凝胶分别在磁场方向N→S和磁场方向S→N的CD光谱;
图3本发明实施例3磁性水凝胶分别在磁场方向N→S和磁场方向S→N的CD光谱;
图4本发明实施例4磁性水凝胶分别在磁场方向N→S和磁场方向S→N的CD光谱;
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
实施例1
本实施方式步骤如下:在室温下将2mmol氯化铁与2mmol L-缬氨酸共同溶解到40mL丙三醇/水混合溶剂中(体积比为1:3)磁力搅拌至澄清;随后在上述溶液中加入10mmol尿素后转移至100mL聚四氟乙烯内衬的高压反应釜中,在烘箱中设定反应温度为200℃,在此温度下反应12h,反应完成后使用去离子水洗涤三次,并重新分散于去离子水中,得到L-缬氨酸修饰的γ-Fe2O3纳米粒子去离子水溶液(Fe元素含量为4.2mg/mL);将合成的L-缬氨酸修饰的γ-Fe2O3纳米粒子去离子水溶液与20w%丙烯酰胺AA、1v%亚甲基双丙烯酰胺TMED、1w%四甲基乙二胺NMBA和5w%过硫酸钾KPS按体积比例(AA:NMBA:TMED:KPS:NPs=10:3:3:4:5)混合,并添加至四通石英比色皿中于室温下反应10min得到所述手性-磁水凝胶;该水凝胶的圆二色光谱图见图1。
实施例2
本实施方式步骤如下:在室温下将2mmol氯化铁与2mmol L-缬氨酸共同溶解到40mL丙三醇/水混合溶剂中(体积比为1:3)磁力搅拌至澄清;随后在上述溶液中加入10mmol尿素后转移至100mL聚四氟乙烯内衬的高压反应釜中,在烘箱中设定反应温度为200℃,在此温度下反应12h,反应完成后使用去离子水洗涤三次,并重新分散于去离子水中,得到L-缬氨酸修饰的γ-Fe2O3纳米粒子去离子水溶液(Fe元素含量为4.2mg/mL);将合成的L-缬氨酸修饰的γ-Fe2O3纳米粒子去离子水溶液与20w%丙烯酰胺AA、1v%亚甲基双丙烯酰胺TMED、1w%四甲基乙二胺NMBA和5w%过硫酸钾KPS按体积比例(AA:NMBA:TMED:KPS:NPs=10:3:3:4:5)混合,并添加至四通石英比色皿中于室温下反应10min;;将该石英比色皿放置于1T平行磁场中磁化10min得到所述手性-磁水凝胶,其圆二色光谱图见图2。
实施例3
本实施方式步骤如下:在室温下将2mmol氯化铁与2mmol D-缬氨酸共同溶解到40mL丙三醇/水混合溶剂(体积比为1:3),磁力搅拌至澄清;随后在上述混合溶液中加入10mmol尿素后转移至100mL聚四氟乙烯内衬的高压反应釜中,在烘箱中设定反应温度为200℃,在此温度下反应12h,反应完成后使用去离子水洗涤三次并重新分散至去离子水中;将合成的D-缬氨酸修饰的γ-Fe2O3纳米粒子(NPs)去离子水溶液与浓度为20wt.%的AA、浓度为1vol.%的TMED、浓度为1wt.%的NMBA和浓度为5wt.%KPS水溶液按体积比例(AA:NMBA:TMED:KPS:NPs=10:3:3:4:5)混合,并添加至四通石英比色皿中于室温下反应10min;将该石英比色皿放置于1T平行磁场中磁化10min得到所述手性-磁水凝胶,其圆二色光谱见图3。
实施例4
本实施方式步骤如下:在室温下将2mmol氯化铁与2mmol DL-缬氨酸共同溶解到40mL丙三醇/水混合溶剂(体积比为1:3),磁力搅拌至澄清;随后在上述混合溶液中加入10mmol尿素后转移至100mL聚四氟乙烯内衬的高压反应釜中,在烘箱中设定反应温度为200℃,在此温度下反应12h,反应完成后使用去离子水洗涤三次并重新分散至去离子水中;将合成的DL-缬氨酸修饰的γ-Fe2O3纳米粒子(NPs)去离子水溶液与浓度为20wt.%的AA、浓度为1vol.%的TMED、浓度为1wt.%的NMBA和浓度为5wt.%KPS水溶液按体积比例(AA:NMBA:TMED:KPS:NPs=10:3:3:4:5)混合,并添加至四通石英比色皿中于室温下反应10min;将该石英比色皿放置于1T平行磁场中磁化10min得到所述手性-磁水凝胶,该局域磁场调控光学活性的磁性水凝胶的圆二色光谱见图4。
由图1-4可以得出,在无外加磁场磁化的情况下,手性配体修饰的磁性纳米颗粒水凝胶的CD信号较弱,即单独手性配体对磁性水凝胶光学活性贡献较小;外加磁场对磁性水凝胶定向磁化后,手性配体修饰的磁性纳米颗粒水凝胶的CD信号明显增强,而且对于不同的手性配体修饰的磁性纳米颗粒效果相同,说明此时局域磁场对磁性水凝胶的光学活性的影响要远高于手性配体对磁性水凝胶光学活性的影响。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种手性-磁水凝胶的制备方法,其特征在于,包括以下步骤:
步骤1:使用手性配体对磁性纳米粒子进行修饰,得到手性配体修饰的磁性纳米粒子溶液;
步骤2:将手性配体修饰的磁性纳米粒子溶液与水凝胶原料混合后聚合反应制备磁性水凝胶;
步骤3:将步骤2制得的磁性水凝胶置于平行磁场中定向磁化即得到所述手性-磁水凝胶。
2.根据权利要求1所述的手性-磁水凝胶的制备方法,其特征在于,
所述步骤1中,手性配体选自氨基酸类手性配体、含羧基和/或巯基手性小分子中的一种;所述磁性纳米粒子为γ-Fe2O3
所述步骤2中,所述磁性水凝胶为聚丙烯酰胺类磁性水凝胶;
所述水凝胶原料包括:20wt%丙烯酰胺单体,1wt%亚甲基双丙烯酰胺,5wt%过硫酸钾,1v%四甲基乙二胺。
3.根据权利要求2所述的手性-磁水凝胶的制备方法,其特征在于,所述步骤2中,20wt%丙烯酰胺单体、1wt%亚甲基双丙烯酰胺、5wt%过硫酸钾、1v%四甲基乙二胺和手性配体修饰的纳米粒子溶液的体积比为10:3:3:4:5。
4.根据权利要求1所述的手性-磁水凝胶的制备方法,其特征在于,
所述步骤1:将手性配体和铁盐置于溶剂中混合均匀后投加碱源,然后进行溶剂热反应得到手性配体修饰的磁性纳米粒子溶液;
所述步骤2中:聚合反应在室温下进行,聚合反应时间为10min;
所述步骤3中:磁场强度1T,磁化时间10min。
5.根据权利要求4所述的手性-磁水凝胶的制备方法,其特征在于,所述步骤1中,铁盐为氯化铁,所述溶剂为丙三醇、乙二醇、水中的一种或多种,所述碱源为尿素、四甲基氢氧化铵、氢氧化钠中的一种或多种,所述溶剂热反应条件为200℃,12h;所述手性配体、铁盐和碱源的摩尔比为1:1:5。
6.一种根据权利要求1-5所述的手性-磁水凝胶的制备方法所制备的手性-磁水凝胶。
7.一种根据权利要求6所述的手性-磁水凝胶在构建局域磁场中的应用。
CN202210070828.9A 2022-01-21 2022-01-21 一种手性-磁水凝胶的制备方法 Active CN114395143B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210070828.9A CN114395143B (zh) 2022-01-21 2022-01-21 一种手性-磁水凝胶的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210070828.9A CN114395143B (zh) 2022-01-21 2022-01-21 一种手性-磁水凝胶的制备方法

Publications (2)

Publication Number Publication Date
CN114395143A true CN114395143A (zh) 2022-04-26
CN114395143B CN114395143B (zh) 2024-07-02

Family

ID=81232050

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210070828.9A Active CN114395143B (zh) 2022-01-21 2022-01-21 一种手性-磁水凝胶的制备方法

Country Status (1)

Country Link
CN (1) CN114395143B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168598A2 (en) * 2018-01-15 2019-09-06 The Regents Of The University Of Michigan Chiromagnetic optical nanoparticles and light modulation using chiromagnetic optical nanoparticles under ambient conditions
CN112851975A (zh) * 2021-01-12 2021-05-28 河北工程大学 一种基于Fe3O4纳米片交联结构聚丙烯酰胺水凝胶的制备方法
CN113249114A (zh) * 2021-04-30 2021-08-13 盐城工学院 一种利用亚铁磁性复合颗粒磁化增强荧光材料发光性能的方法
CN113325611A (zh) * 2021-05-12 2021-08-31 西安交通大学 一种透光能力可通过剪切应变调控的柔性膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019168598A2 (en) * 2018-01-15 2019-09-06 The Regents Of The University Of Michigan Chiromagnetic optical nanoparticles and light modulation using chiromagnetic optical nanoparticles under ambient conditions
CN112851975A (zh) * 2021-01-12 2021-05-28 河北工程大学 一种基于Fe3O4纳米片交联结构聚丙烯酰胺水凝胶的制备方法
CN113249114A (zh) * 2021-04-30 2021-08-13 盐城工学院 一种利用亚铁磁性复合颗粒磁化增强荧光材料发光性能的方法
CN113325611A (zh) * 2021-05-12 2021-08-31 西安交通大学 一种透光能力可通过剪切应变调控的柔性膜及其制备方法

Also Published As

Publication number Publication date
CN114395143B (zh) 2024-07-02

Similar Documents

Publication Publication Date Title
Xu et al. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen
Deng et al. Preparation, characterization, and application of multistimuli‐responsive microspheres with fluorescence‐labeled magnetic cores and thermoresponsive shells
Tang et al. Hybrid conjugated polymer-Ag@ PNIPAM fluorescent nanoparticles with metal-enhanced fluorescence
Zhang et al. Functionalized manganese-doped zinc sulfide core/shell quantum dots as selective fluorescent chemodosimeters for silver ion
CN112666140B (zh) 聚(十一烯酸-二乙烯基苯)包覆的磁性荧光编码微球
Guo et al. Interaction study on bovine serum albumin physically binding to silver nanoparticles: Evolution from discrete conjugates to protein coronas
Fu et al. Magnetic and fluorescent nanohybrids with surface imprinting silica as a dual-functional sensing platform for ratiometric fluorescence detection of phycoerythrin
Toudeshki et al. Chemiluminescence determination of furazolidone in poultry tissues and water samples after selective solid phase microextraction using magnetic molecularly imprinted polymers
CN113912134B (zh) 一种手性氢氧化钴纳米粒子及其制备方法与应用
Gong et al. A novel bis-component AIE smart gel with high selectivity and sensitivity to detect CN−, Fe 3+ and H 2 PO 4−
Choi et al. Design of rapidly assembling supramolecular systems responsive to synchronized stimuli
Wang et al. Circularly polarized light source from self‐assembled hybrid nanoarchitecture
Zhang et al. Photoluminescent Ag nanoclusters for reversible temperature and pH nanosenors in aqueous solution
Zhang et al. A dual-channel optical magnetometer based on magnetically responsive inverse opal microspheres
CN114395143A (zh) 一种手性-磁水凝胶的制备方法
Jia et al. Magnetically assembled photonic crystal gels with wide thermochromic range and high sensitivity
Li et al. Diethylamine fluorescence sensor based on silica hollow sphere photonic crystals
Fan et al. Synthesis and luminescent properties of organic–inorganic hybrid macroporous materials doped with lanthanide (Eu/Tb) complexes
CN103130937A (zh) 一种pam包覆的四氧化三铁功能化纳米材料的制备方法
CN114369261B (zh) 一种通过局域磁场调控光学活性的磁性水凝胶及其制备方法
Wu et al. Effect of α-substitute group on the chirality of monocarboxylic acid stabilized CdSe nanocrystals
CN111690406B (zh) 一种光学性质可调氧化钼量子点的制备方法及其应用
Liu et al. Thermo-and pH-Responsive CeF3 Nanocrystals/HPC–PAA Complex Nanogel and Its Drug Release Behavior
Atta Synthesis and characterization of novel core‐shell magnetic nanogels based on 2‐acrylamido‐2‐methylpropane sulfonic acid in aqueous media
Yang et al. SiO2 beads with quantum dots: Preparation and stability investigation for bioapplications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant