CN114085550A - 一种用于防污涂层的超亲水ZnO的改性方法 - Google Patents

一种用于防污涂层的超亲水ZnO的改性方法 Download PDF

Info

Publication number
CN114085550A
CN114085550A CN202111441542.9A CN202111441542A CN114085550A CN 114085550 A CN114085550 A CN 114085550A CN 202111441542 A CN202111441542 A CN 202111441542A CN 114085550 A CN114085550 A CN 114085550A
Authority
CN
China
Prior art keywords
zno
deionized water
powder
stirring
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111441542.9A
Other languages
English (en)
Inventor
李长全
王琛
毛天赐
毛非非
薛智烨
徐国强
阿里达·阿米法兹力
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN202111441542.9A priority Critical patent/CN114085550A/zh
Publication of CN114085550A publication Critical patent/CN114085550A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/04Physical treatment, e.g. grinding, treatment with ultrasonic vibrations
    • C09C3/041Grinding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Paints Or Removers (AREA)

Abstract

一种用于防污涂层的超亲水ZnO的改性方法,(1)取纳米ZnO与乙醇、去离子水混匀,得混合液。(2)取偶联剂加入到混合液中,加热,搅拌。(3)将上述混合液抽滤,乙醇洗,去杂质,干燥,研磨得改性的ZnO粉末。(4)将SBMA与改性的ZnO粉末、引发剂、亚硫酸氢纳、去离子水按质量比混合,搅匀,超声震荡。加热,搅拌。(5)再将搅拌好的溶液装入透析袋中,在去离子水中透析。(6)冷冻干燥,得ZnO@PSBMA粉末。本发明ZnO@PSBMA粉末采用简单的沉积方法制备出的超亲水的ZnO@PSBMA涂层,具有优异的防污性能。

Description

一种用于防污涂层的超亲水ZnO的改性方法
技术领域
本发明属于材料表面处理技术领域。
背景技术
生物污损会带来许多的危害。如船舶的生物污损会降低船舶的航行速度,增加燃油消耗,维修费用以及有害气体的排放;在医疗卫生方面,一旦细菌粘附在医疗器械表面,这些细菌可以在这些器械表面存活、繁殖并在表面定居,最终可能医疗器械的使用而导致的感染,给患者带来重大的经济损失甚至危及生命安全。
目前的防污策略有两种方法,其一是被动防污,利用超疏水表面或者亲水层来达到防止生物接触到基材表面来达到防污;其二是主动防预,主要利用一些杀菌粒子和抗菌剂的杀菌作用来达到防污。被动防污的缺陷就是细菌一旦粘附,这种涂层表面无法杀死细菌或抑制细菌的繁殖。而主动防污的的缺点就是许多杀菌剂本身会给环境带来一定的污染,而且生物会对其产生一定的抗性。
针对两种防污策略,本方案结合两种防污策略的优势,采用纳米ZnO粒子结合两亲离子化合物制备一种超亲水的ZnO粉末,利用该粉末在基底上沉积制备一种ZnO超亲水的涂层。该方法可以利用两性离子的超亲水性能形成的与水的亲和层和ZnO的杀菌功能来达到双重防污性能。具实验测试,该涂层具有优异的防污性能。
发明内容
本发明的目的是提供一种用于防污涂层的超亲水ZnO的改性方法。
本发明是通过以下技术方案实现的。
本发明所述的一种用于防污涂层的超亲水ZnO的改性方法,包括以下步骤:
(1)取30-90纳米之间的纳米ZnO与乙醇、去离子水按3.0-5.0﹕30.0-50.0﹕1.0-5.0质量分数的比例混合搅拌均匀,超声震荡,得混合液。
(2)取偶联剂0.1wt%-0.5wt%(按纳米ZnO质量)加入到步骤(1)的混合液中,加热至40℃-80℃,搅拌4-10小时。
所述的偶联剂为KH-550、KH-540、KH-792、KH-602中的一种。优选KH550。
(3)随后将步骤(2)的混合液抽滤,乙醇洗反复3遍,去除多余的杂质,鼓风干燥,研磨得改性的ZnO粉末。
(4)将磺基甜菜碱甲基丙烯酸酯(SBMA)与改性的ZnO粉末、引发剂、亚硫酸氢纳、去离子水按3.0-5.0﹕3.0-5.0:3.0-5.0:0.1-0.2:30.0-50.0的质量比混合,搅拌均匀,超声震荡。加热至40℃-80℃,搅拌4-10小时。
所述的引发剂为偶氮二异丁腈、过氧化二酰、过硫酸钾、过硫酸纳中的一种。优选过硫酸钾。
(5)再将搅拌好的溶液装入透析袋中,在去离子水中透析48小时。
(6)将透析完的溶液进行冷冻干燥72-96h,得ZnO@PSBMA粉末。
本发明所述的防污涂层的制备:将ZnO@PSBMA粉末与去离子水混合搅,放入基底静置沉积36-48h,制备出ZnO@PSBMA超亲水涂层。
所述的基底为砂纸打磨后的金属铝片、钢片、铁片。
利用硅烷偶联剂对纳米ZnO进行分散改性,分散改性后的ZnO粉末在水溶液中分散性更好。再利用两性离子化合物磺基甜菜碱甲基丙烯酸酯(SBMA)与改性好的ZnO粉末在水中混合分散均匀,在引发剂,无氧及高温环境下两性离子化合物会进行聚合反应,通过聚合反应包覆改性过的ZnO粉末,形成一种超亲水的粉末。这种超亲水ZnO粉末遇见水立马溶解,对水具有超级亲和能力。然后用该粉末溶在水中,放入基底。在基底上会形成一个超亲水ZnO@PSBMA的涂层。该涂层具有很好的抗污性能。
Figure 905359DEST_PATH_IMAGE001
本发明所述的两性离子聚合物是指单体分子内还有相同正电基团(如-NH4+等)和负电基团(如PO4-、-SO3-等)的高分子化合物。它们可以通过强静电相互作用和氢键与水分子相互作用,形成与水结合致密的水合层,因此两性离子分子被认为是理想的防污材料。纳米ZnO 是一种在不同领域具有显着应用的半导体,其具有无毒、化学稳定、价格低廉,宽带隙等特点。因其光催化而具有微生物活性和降解许多有毒污染物的作用。而且涂层表面因为是纳米ZnO的层积,在涂层表面具有微纳米结构,研究发现这些微纳米结构由于其高长径比的密集组装的纳米管对细胞可以引起机械破裂,导致细菌的死亡,来达到防污目的。本发明结合ZnO的微纳米结构以及一定的杀菌功效,结合两性化合物的亲水层来达到一个优异的防污功效。
本发明创造的优点:
本发明设计利用两性离子化合物结合纳米ZnO,制备出了超亲水ZnO@PSBMA粉末。利用该粉末采用简单的沉积方法制备出了超亲水的ZnO@PSBMA涂层。该涂层具有优异的防污性能。
附图说明
图1为本发明实施例1的ZnO@PSBMA超亲水涂层的结构图。
图2为基底随浸泡时间接触角的变化图。
图3为涂层的抗大肠杆菌效果。
具体实施方式
本发明将结合附图通过以下实施例作进一步说明。
实施例1。
(1)纳米ZnO的改性。
将30纳米、4.0克的纳米ZnO与50.0毫升的乙醇、5.0毫升的去离子水混合搅拌均匀,超声震荡。后用移液枪移取225μl的KH550加入混合液中,用集热式恒温加热水浴锅加热溶液至40℃,进行搅拌4小时。随后将改性好的混合液抽滤,乙醇洗反复3遍,鼓风干燥,研磨得ZnO-KH550粉末。
将3.0克的磺基甜菜碱甲基丙烯酸酯与2.0克的ZnO-KH550混合,加入去离子水30.0ml,搅拌均匀,超声震荡。随后加入过硫酸钾3.0克和亚硫酸氢纳0.06克,用集热式恒温加热水浴锅加热溶液至65℃,搅拌8小时。再将搅拌好的溶液装入透析袋中,在去离子水中透析48小时,去除杂质。最后将透析完的溶液进行冷冻干燥72小时,得到超亲水的ZnO-KH550-PSBMA。
(2)将ZnO-KH550-PSBMA加入去离子水,混合搅拌均匀,将打磨、清洗后的铝片放入,静置沉积36小时,在铝片表面制备出ZnO@PSBMA超亲水涂层。
实施例2。
(1)纳米ZnO的改性。
将30纳米、5.0克的纳米ZnO与50.0毫升的乙醇、5.0毫升的去离子水混合搅拌均匀,超声震荡。后用移液枪移取500μl的KH-540加入混合液中,用集热式恒温加热水浴锅加热溶液至40℃,进行搅拌4小时。随后将改性好的混合液抽滤,乙醇洗反复3遍,鼓风干燥,研磨得ZnO-KH540粉末。
将3.0克的磺基甜菜碱甲基丙烯酸酯与2.0克的ZnO-KH540混合,加入去离子水30.0ml,搅拌均匀,超声震荡。随后加入过硫酸钾3.0克和亚硫酸氢纳0.06克,用集热式恒温加热水浴锅加热溶液至65℃,搅拌8小时。再将搅拌好的溶液装入透析袋中,在去离子水中透析48小时。最后将透析完的溶液进行冷冻干燥96小时,得到超亲水的ZnO-KH540-PSBMA。
(2)将ZnO-KH540-PSBMA加入去离子水,混合搅拌均匀,将打磨、清洗后的铁放入,静置沉积48小时,在铝片表面制备出ZnO@PSBMA超亲水涂层。
实施例3。
(1)纳米ZnO的改性。
将30纳米、4.0克的纳米ZnO与50.0毫升的乙醇、2.0毫升的去离子水混合搅拌均匀,超声震荡。后用移液枪移取500μl的KH-540加入混合液中,用集热式恒温加热水浴锅加热溶液至45℃,进行搅拌4小时。随后将改性好的混合液抽滤,乙醇洗反复3遍,鼓风干燥,研磨得ZnO-KH540粉末。
将4.0克的磺基甜菜碱甲基丙烯酸酯与2.0克的ZnO-KH540混合,加入去离子水30.0ml,搅拌均匀,超声震荡。随后加入过硫酸纳3.0克和亚硫酸氢纳0.05克,用集热式恒温加热水浴锅加热溶液至75℃,搅拌6小时。再将搅拌好的溶液装入透析袋中,在去离子水中透析48小时。最后将透析完的溶液进行冷冻干燥96小时,得到超亲水的ZnO-KH540-PSBMA。
(2)将ZnO-KH540-PSBMA加入去离子水,混合搅拌均匀,将打磨、清洗后的铁放入,静置沉积48小时,在铝片表面制备出ZnO@PSBMA超亲水涂层。
实施例4。
(1)纳米ZnO的改性。
将90纳米、4.0克的纳米ZnO与50.0毫升的乙醇、3.0毫升的去离子水混合搅拌均匀,超声震荡。后用移液枪移取500μl的KH-792加入混合液中,用集热式恒温加热水浴锅加热溶液至45℃,进行搅拌4小时。随后将改性好的混合液抽滤,乙醇洗反复3遍,鼓风干燥,研磨得ZnO-KH792粉末。
将4.0克的磺基甜菜碱甲基丙烯酸酯与2.0克的ZnO-KH792混合,加入去离子水30.0ml,搅拌均匀,超声震荡。随后加入过硫酸纳3.0克和亚硫酸氢纳0.05克,用集热式恒温加热水浴锅加热溶液至75℃,搅拌6小时。再将搅拌好的溶液装入透析袋中,在去离子水中透析48小时。最后将透析完的溶液进行冷冻干燥96小时,得到超亲水的ZnO-KH792-PSBMA。
(2)将ZnO-KH792-PSBMA加入去离子水,混合搅拌均匀,将打磨、清洗后的钢片放入,静置沉积36小时,在铝片表面制备出ZnO@PSBMA超亲水涂层。
表1为本发明抗菌测试结果,其中ZnO@PSBMA为实施例1的制备结果。
表1 抗菌测试结果
Figure 4378DEST_PATH_IMAGE002

Claims (1)

1.一种用于防污涂层的超亲水ZnO的改性方法,其特征是包括以下步骤:
(1)取30-90纳米之间的纳米ZnO与乙醇、去离子水按3.0-5.0﹕30.0-50.0﹕1.0-5.0质量分数的比例混合搅拌均匀,超声震荡,得混合液;
(2)按纳米ZnO质量百分比取偶联剂0.1wt%-0.5wt%加入步骤(1)的混合液中,加热至40℃-80℃,搅拌4-10小时;
(3)将步骤(2)的混合液抽滤,乙醇洗反复3遍,去除多余的杂质,鼓风干燥,研磨得改性的ZnO粉末;
(4)将磺基甜菜碱甲基丙烯酸酯与改性的ZnO、引发剂、亚硫酸氢纳、去离子水按3.0-5.0﹕3.0-5.0:3.0-5.0:0.1-0.2:30.0-50.0的质量比混合,搅拌均匀,超声震荡;加热至40℃-80℃,搅拌4-10小时;
(5)再将搅拌好的溶液装入透析袋中,在去离子水中透析48小时;
(6)将透析完的溶液进行冷冻干燥72-96h,得ZnO@PSBMA粉末;
步骤(2)所述的偶联剂为KH-550、KH-540、KH-792、KH-602中的一种;
步骤(4)所述的引发剂为偶氮二异丁腈、过氧化二酰、过硫酸钾、过硫酸纳中的一种。
CN202111441542.9A 2021-11-30 2021-11-30 一种用于防污涂层的超亲水ZnO的改性方法 Pending CN114085550A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111441542.9A CN114085550A (zh) 2021-11-30 2021-11-30 一种用于防污涂层的超亲水ZnO的改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111441542.9A CN114085550A (zh) 2021-11-30 2021-11-30 一种用于防污涂层的超亲水ZnO的改性方法

Publications (1)

Publication Number Publication Date
CN114085550A true CN114085550A (zh) 2022-02-25

Family

ID=80305821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111441542.9A Pending CN114085550A (zh) 2021-11-30 2021-11-30 一种用于防污涂层的超亲水ZnO的改性方法

Country Status (1)

Country Link
CN (1) CN114085550A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026155A1 (en) * 2005-07-29 2007-02-01 Nichiha Co., Ltd. Stain-proofing agent and building board using same
US20100178512A1 (en) * 2006-12-06 2010-07-15 Ciba Corporation Changing surface properties by functionalized nanoparticles
CN104548961A (zh) * 2014-12-24 2015-04-29 福州大学 一种亲水性抗污染聚偏氟乙烯膜的制备方法
CN107617126A (zh) * 2017-08-11 2018-01-23 天津大学 一种多孔材料的表面修饰方法及应用
EP3816240A1 (en) * 2019-10-29 2021-05-05 Lanzhou Institute Of Chemical Physics Chinese Academy of Sciences Betaine ionic liquid-modified coating, and preparation method and use thereof
JP2021513503A (ja) * 2018-02-08 2021-05-27 東旭科技集団有限公司Tunghsu Technology Group Co., Ltd. グラフェンの変性方法、変性グラフェン及びグラフェンを含有する組成物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070026155A1 (en) * 2005-07-29 2007-02-01 Nichiha Co., Ltd. Stain-proofing agent and building board using same
US20100178512A1 (en) * 2006-12-06 2010-07-15 Ciba Corporation Changing surface properties by functionalized nanoparticles
CN104548961A (zh) * 2014-12-24 2015-04-29 福州大学 一种亲水性抗污染聚偏氟乙烯膜的制备方法
CN107617126A (zh) * 2017-08-11 2018-01-23 天津大学 一种多孔材料的表面修饰方法及应用
JP2021513503A (ja) * 2018-02-08 2021-05-27 東旭科技集団有限公司Tunghsu Technology Group Co., Ltd. グラフェンの変性方法、変性グラフェン及びグラフェンを含有する組成物
EP3816240A1 (en) * 2019-10-29 2021-05-05 Lanzhou Institute Of Chemical Physics Chinese Academy of Sciences Betaine ionic liquid-modified coating, and preparation method and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARTA RUSCELLO, SEBASTIAN STOLZ, D. LEONARDO GONZALEZ ARELLANO: ""Electron injection and interfacial trap passivation in solution-processed organic light-emitting diodes using a polymer zwitterion interlayer"", 《ORGANIC ELECTRONICS》 *
ZHIXIN DONG: "Phase Behavior of Poly(sulfobetaine methacrylate)-Grafted Silica Nanoparticles and Their Stability in Protein Solutions", 《LANGMUIR》 *

Similar Documents

Publication Publication Date Title
Lin et al. Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property
Fu et al. Robust liquid-repellent coatings based on polymer nanoparticles with excellent self-cleaning and antibacterial performances
Podsiadlo et al. Layer-by-layer assembly of nacre-like nanostructured composites with antimicrobial properties
Zhang et al. Preparation and characterization of novel polyethersulfone hybrid ultrafiltration membranes bending with modified halloysite nanotubes loaded with silver nanoparticles
Dong et al. Superhydrophilic surfaces via polymer− SiO2 nanocomposites
Wang et al. Temperature-driven precise control of biological droplet’s adhesion on a slippery surface
Dong et al. Immobilization of cyclic N-halamine on polystyrene-functionalized silica nanoparticles: synthesis, characterization, and biocidal activity
Pounraj et al. Chitosan and graphene oxide hybrid nanocomposite film doped with silver nanoparticles efficiently prevents biofouling
CN108905653B (zh) 一种超支化两性离子改性聚偏氟乙烯油水乳液分离膜的制备方法及应用
Su et al. Design of hierarchical comb hydrophilic polymer brush (HCHPB) surfaces inspired by fish mucus for anti-biofouling
JP5406719B2 (ja) Si−H基を含有する表面を処理する方法
Wang et al. Facile fabrication of flowerlike natural nanotube/layered double hydroxide composites as effective carrier for lysozyme immobilization
CN104255797A (zh) 聚多巴胺界面修饰银/氧化钛纳米管防污剂及其制备方法
CN106636058A (zh) 一种纳米材料/群体感应淬灭酶颗粒改性复合膜制备方法
Wang et al. Quaternary ammonium compound functionalized activated carbon electrode for capacitive deionization disinfection
Yang et al. Performance comparison of immobilized enzyme on the titanate nanotube surfaces modified by poly (dopamine) and poly (norepinephrine)
Xu et al. Antibacterial waterborne epoxy coatings containing poly m-aminophenol-deposited graphene oxide
Zhang et al. Self-lubricating interpenetrating polymer networks with functionalized nanoparticles enhancement for quasi-static and dynamic antifouling
Jin et al. Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release
Agarwal et al. Continuous fabrication of slippery liquid-infused coatings on rolls of flexible materials
Wu et al. Photothermal superhydrophobic cotton fabric based on silver nanoparticles cross-linked by polydopamine and polyethylenimide
Gao et al. Preparation and characterization of coatings incorporated with poly (aniline-co-nitroaniline) nanoparticles having antifouling and anticorrosion behavior
Zhao et al. pH-responsive intelligent antibacterial coatings based on 2D-COF for controlled release of capsaicin
Zhang et al. The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance
Wang et al. Low surface energy self‐polishing polymer grafted MWNTs for antibacterial coating and controlled‐release property of Cu2O

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Xue Zhiye

Inventor after: Li Changquan

Inventor after: Wang Chen

Inventor after: Mao Tianci

Inventor after: Mao Feifei

Inventor after: Xu Guoqiang

Inventor after: Arida amifazli

Inventor before: Li Changquan

Inventor before: Wang Chen

Inventor before: Mao Tianci

Inventor before: Mao Feifei

Inventor before: Xue Zhiye

Inventor before: Xu Guoqiang

Inventor before: Arida amifazli

CB03 Change of inventor or designer information
RJ01 Rejection of invention patent application after publication

Application publication date: 20220225

RJ01 Rejection of invention patent application after publication