CN114050181A - 一种nldmos器件及制备方法、芯片 - Google Patents

一种nldmos器件及制备方法、芯片 Download PDF

Info

Publication number
CN114050181A
CN114050181A CN202210014429.0A CN202210014429A CN114050181A CN 114050181 A CN114050181 A CN 114050181A CN 202210014429 A CN202210014429 A CN 202210014429A CN 114050181 A CN114050181 A CN 114050181A
Authority
CN
China
Prior art keywords
type
region
voltage
low
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210014429.0A
Other languages
English (en)
Other versions
CN114050181B (zh
Inventor
赵东艳
王于波
邓永峰
陈燕宁
付振
刘芳
余山
吴波
郁文
王凯
刘倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Information and Telecommunication Co Ltd
Beijing Smartchip Microelectronics Technology Co Ltd
Beijing Core Kejian Technology Co Ltd
Original Assignee
State Grid Information and Telecommunication Co Ltd
Beijing Smartchip Microelectronics Technology Co Ltd
Beijing Core Kejian Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Information and Telecommunication Co Ltd, Beijing Smartchip Microelectronics Technology Co Ltd, Beijing Core Kejian Technology Co Ltd filed Critical State Grid Information and Telecommunication Co Ltd
Priority to CN202210014429.0A priority Critical patent/CN114050181B/zh
Publication of CN114050181A publication Critical patent/CN114050181A/zh
Application granted granted Critical
Publication of CN114050181B publication Critical patent/CN114050181B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明实施例提供一种NLDMOS器件及制备方法、芯片,所述NLDMOS器件包括:衬底,所述衬底上方设有第一高压N阱区和第二高压N阱区,所述第一高压N阱区和第二高压N阱区之间留有衬底间隙;所述第一高压N阱区和第二高压N阱区上设有P型降低电场区,所述P型降低电场区经过所述衬底间隙;所述第一高压N阱区上还设有P型体区,所述第二高压N阱区上设有N型漂移区;所述P型体区、衬底间隙以及N型漂移区形成PIN结。所述NLDMOS器件的结构设计有效的提高了击穿电压。

Description

一种NLDMOS器件及制备方法、芯片
技术领域
本发明涉及半导体集成电路制造领域,具体地涉及一种NLDMOS器件及制备方法、芯片。
背景技术
随着集成电路的快速发展,LDMOS器件已经融入到生活中的方方面面,如智能穿戴、白色家电、CPU等快速消费类的产品;同时由于其独特的结构以及优良的性能,能够与标准的CMOS工艺进行很好的兼容而快速发展,进而被应用到智能电网、轨道交通、汽车电子等工业领域。
衡量LDMOS器件性能有两个重要的参数,即击穿电压与导通电阻,然而击穿电压与导通电阻是相关矛盾的关系,因此不可能同时将两个参数性能调到最佳。为此,在实际的工艺生产中,必须取其折衷,在保障一个参数基本不变或者略有降低的前提下来提升LDMOS器件另一个参数性能,使器件的整体性能有所提升。
现有的技术方案中大多为引入场板,或者是应用RESURF技术。而由于场板形状结构各不相同,这给工艺实现带来很大的困难;其次是应用RESURF技术会重新引入掩模版,这大大增加了生产成本。
发明内容
本发明实施例的目的是提供一种NLDMOS器件及制备方法、芯片,所述NLDMOS器件的结构设计是在保障了导通电阻基本不变或者略有增高的情况下有效的提高的了击穿电压。
为了实现上述目的,本发明实施例提供一种NLDMOS器件包括:衬底,所述衬底上方设有第一高压N阱区和第二高压N阱区,所述第一高压N阱区和第二高压N阱区之间留有衬底间隙;所述第一高压N阱区和第二高压N阱区上设有P型降低电场区,所述P型降低电场区经过所述衬底间隙;所述第一高压N阱区上还设有P型体区,所述第二高压N阱区上设有N型漂移区;所述P型体区、衬底间隙以及N型漂移区形成PIN结。
可选的,所述N型漂移区包括低剂量N型漂移区和高剂量N型漂移区。
可选的,所述低剂量N型漂移区上设有低剂量、低能量P型离子注入层;所述高剂量N型漂移区上设有低掺杂N型离子注入层;所述高剂量N型漂移区上设有重掺杂N型离子注入层,场氧的一端与所述重掺杂N型离子注入层一端相接;所述场氧的底部设于所述低剂量、低能量P型离子注入层上。
可选的,所述NLDMOS器件上方还设有栅极;所述低剂量、低能量P型离子注入层的一侧超出所述栅极同侧的外沿。
可选的,所述衬底为P型衬底。
可选的,所述第一高压N阱区设有隔离区、重掺杂N型离子注入层、重掺杂P型离子注入层;第二高压N阱区上设有隔离区和重掺杂N型离子注入层。
另一方面,本发明提供一种NLDMOS器件的制备方法,包括:形成衬底;在所述衬底上方形成第一高压N阱区和第二高压N阱区,所述第一高压N阱区和第二高压N阱区之间留有衬底间隙;在所述第一高压N阱区和第二高压N阱区上形成P型降低电场区,所述P型降低电场区经过所述衬底间隙;在所述第一高压N阱区上还形成P型体区,在所述第二高压N阱区上形成N型漂移区;将所述P型体区、衬底间隙以及N型漂移区形成PIN结。
可选的,所述N型漂移区包括低剂量N型漂移区和高剂量N型漂移区。
可选的,在所述低剂量N型漂移区上形成低剂量、低能量P型离子注入层;在所述高剂量N型漂移区上形成低掺杂N型离子注入层;所述高剂量N型漂移区上设有重掺杂N型离子注入层,场氧的一端与所述重掺杂N型离子注入层的一端相接;所述场氧的底部设于所述低剂量、低能量P型离子注入层上。
可选的,在所述NLDMOS器件上方形成栅极,所述低剂量、低能量P型离子注入层的一侧超出所述栅极同侧的外沿。
可选的,所述衬底为P型衬底。
可选的,所述第一高压N阱区设有隔离区、重掺杂N型离子注入层、重掺杂P型离子注入层;第二高压N阱区上设有隔离区和重掺杂N型离子注入层。
另一方面,本发明提供一种芯片,该芯片包括上述任一项所述的NLDMOS器件。
本发明提供的NLDMOS器件包括:衬底,所述衬底上方设有第一高压N阱区和第二高压N阱区,所述第一高压N阱区和第二高压N阱区之间留有衬底间隙;所述第一高压N阱区和第二高压N阱区上设有P型降低电场区,所述P型降低电场区经过所述衬底间隙;所述第一高压N阱区上还设有P型体区,所述第二高压N阱区上设有N型漂移区;所述P型体区、衬底间隙以及N型漂移区形成PIN结。本发明将高压N阱区分隔为第一高压N阱区和第二高压N阱区,使原有结构中的PN结变成PIN结,使PN结处的电场强度降低,进而提高此处的击穿电压。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1是现有技术中的NLDMOS器件的结构示意图;
图2是本发明的一种NLDMOS器件的结构示意图;
图3至图10是本发明的一种NLDMOS器件的制备方法的示意图。
附图标记说明
1-P型衬底;
2-高压N阱区;
2a-第一高压N阱区;
2b-第二高压N阱区;
3-浅隔离槽;
4-场氧;
5-P型降低电场区;
6-高剂量N型漂移区;
7-低剂量N型漂移区;
8-低剂量、低能量P型离子注入层;
9-P型体区;
10-栅氧化层;
11-多晶硅栅;
12-低掺杂N型离子注入层;
13-重掺杂N型离子注入层;
14-重掺杂P型离子注入层。
具体实施方式
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
图1是现有技术中的NLDMOS器件的结构示意图,如图1所示,现有的NLDMOS器件采用场板技术和RESURF(Reduce Surface Field)技术的综合,其中,栅极与场氧4交叠的部分起到场板调制的作用,PRF(P型降低电场区5)用来降低表面电场强度,N型漂移区/场氧4厚度等决定了NLDMOS的击穿电压与导通电阻。发明人通过研究发现,现有技术中漂移区为一次形成,经过退火工艺后在同一深度位置处离子浓度相同(横向来看);其在漏端也有相同的问题,即漏端没有形成离子浓度梯度;并且在场板末端对应漂移区的位置没有保护,导致此处的电场强度最大;高压N阱区2(HVNW区域)将整个器件包住,造成了P型体区9和HVNW形成PN结,漂移区直接相接,导致此处的电场峰值较大。由于以上种种因素,导致了现有的NLDMOS器件性能较差。
为了解决上述问题,本发明提出一种 NLDMOS器件,图2是本发明的一种NLDMOS器件的结构示意图,如图2所述,所述NLDMOS器件包括:衬底,优选P型衬底1,或P型衬底1加上P型外延层,所述P型衬底1上方设有第一高压N阱区2a和第二高压N阱区2b,所述第一高压N阱区2a和第二高压N阱区2b之间留有衬底间隙;所述第一高压N阱区2a和第二高压N阱区2b上设有P型降低电场区5,所述P型降低电场区5经过所述衬底间隙;所述第一高压N阱区2a上还设有P型体区9,所述第二高压N阱区2b上设有N型漂移区,所述N型漂移区包括低剂量N型漂移区7和高剂量N型漂移区6;所述P型体区9、衬底间隙以及N型漂移区形成PIN结。所述低剂量N型漂移区7上设有低剂量、低能量P型离子注入层8,所述低剂量、低能量P型离子注入层8不会额外增加mask的成本;所述高剂量N型漂移区6上设有低掺杂N型离子注入层12;该低掺杂N型离子注入层不会额外增加mask的成本,不增加成本。所述场氧4横跨低剂量N型漂移区7和高剂量N型漂移区6两个区域但不会超出这两个区域,如图2所示,其右端与高剂量N型漂移区6上重掺杂N型离子注入层13左侧相接,其底部位于低剂量、低能量P型离子注入层8上。本发明将高压N阱区2(HVNW的区域)分隔开,使原有结构中的PN结变成PIN结,使PN结处的电场强度降低,进而提高此处的击穿电压。
所述N型漂移区包括低剂量N型漂移区7和高剂量N型漂移区6。优选的,所述高剂量N型漂移区6的离子浓度与图1中NDF的离子浓度相同,但是低剂量N型漂移区7的离子浓度要小于所述高剂量N型漂移区6的离子浓度,即在现有漂移区中引入了变掺杂的离子浓度,从而进一步提高漂移区的耐压。
所述低剂量N型漂移区7上设有低剂量、低能量P型离子注入层8;所述高剂量N型漂移区6上设有低掺杂N型离子注入层12;所述高剂量N型漂移区上设有重掺杂N型离子注入层,所述场氧的一端与所述重掺杂N型离子注入层的一端相接;所述场氧的底部设于所述低剂量、低能量P型离子注入层上。通过在所述低剂量N型漂移区7上形成低剂量、低能量P型离子注入层8,将该反型的离子(低剂量、低能量P型离子)注入达到了加速了NLDMOS器件表面漂移区的耗尽,降低表面电场,最终提高击穿电压的目的。
由于场板末端垂直向下所对应的漂移区电场强度最大,如果器件击穿,则最先在此处击穿。因此所述低剂量、低能量P型离子注入层8的一侧超出所述栅极同侧的外沿,即将低剂量、低能量P型离子注入层8(LNDF2)右端要延伸出多晶硅栅11的右端,实现了降低场板末端对应处的电场强度,进一步提高了NLDMOS器件的击穿电压。
在所述NLDMOS器件的场氧4的末端引入低掺杂N型离子注入层12(NLDD),可以使漏端处的离子浓度变掺杂,降低漏端处的电场强度,提高漏端处的击穿电压。
图3至图10是本发明的一种NLDMOS器件的制备方法的示意图,如图3所示,形成衬底,优选P型衬底1,在所述P型衬底1上方形成第一高压N阱区2a和第二高压N阱区2b,所述第一高压N阱区2a和第二高压N阱区2b之间留有衬底间隙。具体的,在衬底上依次生长垫底氧化层和氮化硅,然后采用光刻工艺在P型衬底1上曝光出需要掺杂高压的N型阱区域(HVNW),将高能量、高剂量的N型离子注入该区域,最后经过高温退火工艺使离子浓度扩散均匀,同时激活掺杂的N型离子。
如图4所示,通过有源区的光刻、刻蚀工艺形成有源区,然后在浅隔离槽3中填充二氧化硅并磨平。通过回刻蚀工艺调整浅隔离槽3的顶部到衬底表面的高度,再依次将氮化硅及垫底氧化层去除掉,最终形成器件与器件之间的浅隔离槽3。
如图5所示,重新生长一层氧化硅和氮化硅,然后对场氧4区域进行光刻、刻蚀,确保该区域氧化硅和氮化硅被刻蚀干净,进而露出硅表面。通过炉管工艺对裸露出的硅表面进行高温氧化,形成场氧4,最后将场氧4外部分的氮化硅及氧化硅去除掉,形成最终的场氧4。
如图6所示,再生长一次牺牲氧化层,目的是减少后续离子注入工艺中的离子隧穿效应。P型降低电场区5(PRF)的光刻工艺定义出需要注入离子的区域,然后将P型的高能量、高剂量的离子注入到该区域,形成P型降低电场区5(PRF区)。
如图7所示,NDF的光刻工艺中,首先在HNDF的区域曝光显影,然后将高剂量N型离子注入到所定义的HNDF区域,即为高剂量N型漂移区6;其次在LNDF区域曝光显影,然后将低剂量的N型离子注入该区域,即为低剂量N型漂移区7,之后在相同的区域注入低能量的P型离子,即低剂量、低能量P型离子注入层8,所述P型离子在场氧4的下方,目的是加速漂移区的耗尽,同时降低后续场板末端对应漂移区位置的电场强度,提高器件的击穿电压。
如图8所示,在P型体区9的位置进行光刻工艺,然后四道P型离子注入按照能量从大到小的顺序依次注入,形成P型体区9。最后将以上P型降低电场区5(PRF)、NDF(高剂量N型漂移区6、低剂量N型漂移区7、低剂量、低能量P型离子注入层8)、PB(P型体区9)的离子注入一起经过退火工艺,目的使注入的离子扩散均匀。
如图9所示,经过以上几步的离子注入后,牺牲氧化层的质量已经非常差。通过湿法刻蚀去除掉牺牲氧化层,然后在炉管中生长一层约100-150埃的栅氧化层10。之后通过光刻定义出双栅氧的区域,采用刻蚀工艺将第一层生长的部分栅氧化层10去除掉,然后在炉管中生长需要的第二次的栅氧化层10,第二次的栅氧化层10厚度约为20-40埃,通过两次生长形成最终的栅氧结构。
如图10所示,采用化学气相沉积的方法淀积一层多晶硅,然后通过光刻、刻蚀工艺形成多晶硅栅11。
光刻工艺定义出来NLDD的区域(低掺杂N型离子注入层12),然后注入轻掺杂的N型的离子,与后续的漏端N型重掺杂形成一定的浓度梯度。所述N型重掺杂于重掺杂N型离子注入层13,P型重掺杂于重掺杂P型离子注入层14。然后采用CVD的方法淀积一层氧化物和一层氮化硅,通过刻蚀工艺形成侧墙。最后在漏、源相应的位置处光刻显影,定义出漏区(Drain)、源区(Source)等,注入相应的重掺杂离子,形成漏、源以及衬底接口(Bulk)。器件之外的N+为重掺杂N型离子注入层13,目的是降低器件受到其他器件的影响,降低噪声。最终形成的NLDMOS器件形貌。
本发明提供的NLDMOS器件包括:衬底,所述衬底上方设有第一高压N阱区2a和第二高压N阱区2b,所述第一高压N阱区2a和第二高压N阱区2b之间留有衬底间隙;所述第一高压N阱区2a和第二高压N阱区2b上设有P型降低电场区,所述P型降低电场区经过所述衬底间隙;所述第一高压N阱区2a上还设有P型体区9,所述第二高压N阱区2b上设有N型漂移区;所述P型体区9、衬底间隙以及N型漂移区形成PIN结。本发明的NLDMOS器件的结构和工艺上的设计,有效的提高的了整体器件的击穿电压,具体包括:将高压N阱区2(HVNW的区域)分隔开,使原有结构中的PN结变成PIN结,使PN结处的电场强度降低,进而提高此处的击穿电压;在现有漂移区中引入了变掺杂的离子浓度,从而提高漂移区的耐压;在不增加光罩成本的前提下所引入的反型的离子(低剂量、低能量P型离子)注入,加速了NLDMOS器件表面漂移区的耗尽,降低表面电场,提高了击穿电压;将低剂量、低能量P型离子注入层8(LNDF2)右端要延伸出多晶硅栅11的右端,实现了降低场板末端对应处的电场强度,提高了NLDMOS器件的击穿电压;在所述NLDMOS器件的场氧4的末端引入低掺杂N型离子注入层12(NLDD),可以使漏端处的离子浓度变掺杂,降低漏端处的电场强度,提高漏断处的击穿电压,同时低掺杂N型离子注入层12(NLDD)的引入不会额外增加光罩的成本。
以上结合附图详细描述了本发明实施例的可选实施方式,但是,本发明实施例并不限于上述实施方式中的具体细节,在本发明实施例的技术构思范围内,可以对本发明实施例的技术方案进行多种简单变型,这些简单变型均属于本发明实施例的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明实施例对各种可能的组合方式不再另行说明。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (13)

1.一种NLDMOS器件,其特征在于,包括:
衬底,所述衬底上方设有第一高压N阱区和第二高压N阱区,所述第一高压N阱区和第二高压N阱区之间留有衬底间隙;
所述第一高压N阱区和第二高压N阱区上设有P型降低电场区,所述P型降低电场区经过所述衬底间隙;
所述第一高压N阱区上还设有P型体区,所述第二高压N阱区上设有N型漂移区;
所述P型体区、衬底间隙以及N型漂移区形成PIN结。
2.根据权利要求1所述的NLDMOS器件,其特征在于,
所述N型漂移区包括低剂量N型漂移区和高剂量N型漂移区。
3.根据权利要求2所述的NLDMOS器件,其特征在于,
所述低剂量N型漂移区上设有低剂量、低能量P型离子注入层;
所述高剂量N型漂移区上设有低掺杂N型离子注入层;
将场氧设于所述低剂量N型漂移区和高剂量N型漂移区上;
所述高剂量N型漂移区上设有重掺杂N型离子注入层,所述场氧的一端与所述重掺杂N型离子注入层的一端相接;
所述场氧的底部设于所述低剂量、低能量P型离子注入层上。
4.根据权利要求3所述的NLDMOS器件,其特征在于,所述NLDMOS器件上方还设有栅极;
所述低剂量、低能量P型离子注入层的一侧超出所述栅极同侧的外沿。
5.根据权利要求1所述的NLDMOS器件,其特征在于,
所述衬底为P型衬底。
6.根据权利要求1所述的NLDMOS器件,其特征在于,
所述第一高压N阱区设有隔离区、重掺杂N型离子注入层、重掺杂P型离子注入层;第二高压N阱区上设有隔离区和重掺杂N型离子注入层。
7.一种NLDMOS器件的制备方法,其特征在于,包括:
形成衬底;
在所述衬底上方形成第一高压N阱区和第二高压N阱区,所述第一高压N阱区和第二高压N阱区之间留有衬底间隙;
在所述第一高压N阱区和第二高压N阱区上形成P型降低电场区,所述P型降低电场区经过所述衬底间隙;
在所述第一高压N阱区上还形成P型体区,在所述第二高压N阱区上形成N型漂移区;
将所述P型体区、衬底间隙以及N型漂移区形成PIN结。
8.根据权利要求7所述的制备方法,其特征在于,
所述N型漂移区包括低剂量N型漂移区和高剂量N型漂移区。
9.根据权利要求8所述的制备方法,其特征在于,
在所述低剂量N型漂移区上形成低剂量、低能量P型离子注入层;
在所述高剂量N型漂移区上形成低掺杂N型离子注入层;
所述高剂量N型漂移区上设有重掺杂N型离子注入层,场氧的一端与所述重掺杂N型离子注入层的一端相接;
所述场氧的底部设于所述低剂量、低能量P型离子注入层上。
10.根据权利要求9所述的制备方法,其特征在于,在所述NLDMOS器件上方形成栅极,所述低剂量、低能量P型离子注入层的一侧超出所述栅极同侧的外沿。
11.根据权利要求7所述的制备方法,其特征在于,
所述衬底为P型衬底。
12.根据权利要求7所述的制备方法,其特征在于,
在所述第一高压N阱区设有隔离区、重掺杂N型离子注入层、重掺杂P型离子注入层;第二高压N阱区上设有隔离区和重掺杂N型离子注入层。
13.一种芯片,其特征在于,该芯片包括权利要求1-6中任一项所述的NLDMOS器件。
CN202210014429.0A 2022-01-07 2022-01-07 一种nldmos器件及制备方法、芯片 Active CN114050181B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210014429.0A CN114050181B (zh) 2022-01-07 2022-01-07 一种nldmos器件及制备方法、芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210014429.0A CN114050181B (zh) 2022-01-07 2022-01-07 一种nldmos器件及制备方法、芯片

Publications (2)

Publication Number Publication Date
CN114050181A true CN114050181A (zh) 2022-02-15
CN114050181B CN114050181B (zh) 2022-03-22

Family

ID=80213420

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210014429.0A Active CN114050181B (zh) 2022-01-07 2022-01-07 一种nldmos器件及制备方法、芯片

Country Status (1)

Country Link
CN (1) CN114050181B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864667A (zh) * 2022-07-11 2022-08-05 北京芯可鉴科技有限公司 Nldmos器件、nldmos器件的制备方法及芯片
CN114864681A (zh) * 2022-07-11 2022-08-05 北京芯可鉴科技有限公司 Nldmos器件、nldmos器件的制备方法及芯片

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661955A (zh) * 2008-08-28 2010-03-03 新唐科技股份有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN102412126A (zh) * 2011-11-04 2012-04-11 上海华虹Nec电子有限公司 超高压ldmos的工艺制作方法
CN103035525A (zh) * 2011-10-10 2013-04-10 上海华虹Nec电子有限公司 高压隔离n型ldmos器件的制造方法
CN104716179A (zh) * 2013-12-11 2015-06-17 上海华虹宏力半导体制造有限公司 一种具有深孔的ldmos器件及其制造方法
TW201601315A (zh) * 2014-06-18 2016-01-01 旺宏電子股份有限公司 具有金屬層於漂移區之上的半導體元件
US20180102431A1 (en) * 2015-07-23 2018-04-12 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
CN107910358A (zh) * 2017-11-06 2018-04-13 上海华虹宏力半导体制造有限公司 Ldmos及其制造方法
CN112103331A (zh) * 2020-11-03 2020-12-18 晶芯成(北京)科技有限公司 Ldmos晶体管及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661955A (zh) * 2008-08-28 2010-03-03 新唐科技股份有限公司 横向扩散金属氧化物半导体器件及其制造方法
CN103035525A (zh) * 2011-10-10 2013-04-10 上海华虹Nec电子有限公司 高压隔离n型ldmos器件的制造方法
CN102412126A (zh) * 2011-11-04 2012-04-11 上海华虹Nec电子有限公司 超高压ldmos的工艺制作方法
CN104716179A (zh) * 2013-12-11 2015-06-17 上海华虹宏力半导体制造有限公司 一种具有深孔的ldmos器件及其制造方法
TW201601315A (zh) * 2014-06-18 2016-01-01 旺宏電子股份有限公司 具有金屬層於漂移區之上的半導體元件
US20180102431A1 (en) * 2015-07-23 2018-04-12 Renesas Electronics Corporation Semiconductor device and manufacturing method thereof
CN107910358A (zh) * 2017-11-06 2018-04-13 上海华虹宏力半导体制造有限公司 Ldmos及其制造方法
CN112103331A (zh) * 2020-11-03 2020-12-18 晶芯成(北京)科技有限公司 Ldmos晶体管及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864667A (zh) * 2022-07-11 2022-08-05 北京芯可鉴科技有限公司 Nldmos器件、nldmos器件的制备方法及芯片
CN114864681A (zh) * 2022-07-11 2022-08-05 北京芯可鉴科技有限公司 Nldmos器件、nldmos器件的制备方法及芯片

Also Published As

Publication number Publication date
CN114050181B (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
KR101217988B1 (ko) 적층 헤테로-도핑 림 및 점진적 드리프트 영역을 가진개선된 resurf hvpmos 장치
US8125023B2 (en) Vertical type power semiconductor device having a super junction structure
CN114050181B (zh) 一种nldmos器件及制备方法、芯片
CN102376762B (zh) 超级结ldmos器件及制造方法
CN210110783U (zh) 一种集成高性能的ldmos结构
CN113964188A (zh) 横向双扩散金属氧化物半导体场效应管及其制作方法
CN114864666B (zh) Nldmos器件、nldmos器件的制备方法及芯片
CN111969043A (zh) 高压三维耗尽超结ldmos器件及其制造方法
CN112397567A (zh) 一种具有p型横向变掺杂区的高压resurf ldmos器件
CN117712177A (zh) 具有半包裹p型屏蔽层结构的碳化硅mosfet器件
CN113823694B (zh) 集成亚微米超结的横向功率半导体器件及其制造方法
CN109830538B (zh) Ldmos器件及其制造方法
US20120098056A1 (en) Trench device structure and fabrication
CN108091684B (zh) 超结金属氧化物场效应晶体管
KR101019406B1 (ko) Ldmos 소자 제조 방법
CN102694020B (zh) 一种半导体装置
EP0817274A1 (en) Asymmetric MOS technology power device
CN114864667B (zh) Nldmos器件、nldmos器件的制备方法及芯片
KR20100046354A (ko) Ldmos 트랜지스터 및 그의 제조 방법
CN113871456B (zh) Ldmos器件及其形成方法
CN113990942B (zh) 圆形对称结构的ldmos器件及其制备方法
CN117577691B (zh) 一种具有终端结构的半导体器件及其制造方法
CN117497602B (zh) 一种分离栅沟槽型mosfet及其制备方法、芯片
CN117317023B (zh) 抗辐射半导体器件、工艺、电路、芯片及电子设备
CN112349764A (zh) 一种具有场限环结构的resurf ldmos器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant