CN114010845A - 一种近红外光响应抗菌涂层及制备方法 - Google Patents

一种近红外光响应抗菌涂层及制备方法 Download PDF

Info

Publication number
CN114010845A
CN114010845A CN202111281299.9A CN202111281299A CN114010845A CN 114010845 A CN114010845 A CN 114010845A CN 202111281299 A CN202111281299 A CN 202111281299A CN 114010845 A CN114010845 A CN 114010845A
Authority
CN
China
Prior art keywords
msn
feco
infrared light
antibacterial coating
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111281299.9A
Other languages
English (en)
Inventor
孙静
孙阿勇
叶玮
吴小泉
刘静静
柳森
张超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN202111281299.9A priority Critical patent/CN114010845A/zh
Publication of CN114010845A publication Critical patent/CN114010845A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/088Other specific inorganic materials not covered by A61L31/084 or A61L31/086
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/04Coatings containing a composite material such as inorganic/organic, i.e. material comprising different phases

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Communicable Diseases (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明公开了一种近红外光响应抗菌涂层及制备方法,该涂层为PDA@MSN@FeCO,包括负载于基底上用于光热响应的多巴胺层、负载于多巴胺层上的介孔二氧化硅以及负载于介孔二氧化硅孔道内的用于释放一氧化碳的羰基铁。发明以MSN为药物载体,负载热敏性CO供体,得到MSN@FeCO纳米材料,进一步利用PDA涂层的强黏附性,将MSN@FeCO负载至基底层,同时利用PDA的光热响应性能,在近红外光照下触发羰基铁释放CO分子,展现出良好的光热与CO协同抗菌疗效,实现安全可控的抗菌效果,该抗菌涂层的制备方法简单易行且成本较低,适用于生物医疗领域。

Description

一种近红外光响应抗菌涂层及制备方法
技术领域
本发明属于生物医用材料,尤其涉及一种新型的近红外光响应的抗菌涂层和制备方法。
背景技术
目前,院内感染已经被认为是医院发病率和死亡率的重要原因,特别是可植入性医疗设备(如留置针和留置管)的细菌感染,不仅增加了患者的发病率和死亡率,还可能会导致严重的公共卫生健康问题。为了防止与植入性医疗设备相关的感染,在生物医学材料表面建造抗菌涂层已被认为是减少细菌粘附,从而抵抗生物膜形成的一种简单而有效的方法,许多杀菌剂已被用于制造抗菌涂层,如季铵盐、抗菌肽、银、酶等。但季铵类化合物在长期使用后具有诱导细菌耐药性的风险,导致抗菌效果下降。抗菌肽具有高效的抗菌能力,但其诸多缺点如合成困难,应用复杂和成本高昂等问题,限制其在医学材料上的应用。金属离子如银离子等表现出高效的杀菌性能,且具有广谱抗菌性,但是其对某些哺乳动物细胞具有严重的毒副作用,使其在生物体内的应受到限制。
一些具有细胞毒性的气体分子(如:活性氧,一氧化氮,一氧化碳,硫化氢等)具有广谱抗菌性,可以有效杀灭耐药菌,且不易诱发细菌耐药性。一氧化碳(CO)气体曾被认为对人体具有毒副作用,但是近期的研究证明它们可参与多种生理和病理过程,具有多重生物学功能。已证实,CO气体可以靶向细菌呼吸链进而增强活性氧(ROS)的产生、对细菌膜结构的破坏以及干扰细菌DNA合成等过程。CO释放分子(CORMs)已被整合应用至各种纳米材料,使其具备智能响应性CO诊疗功效。但传统的CORMs可控性较差,很难实现精准的时空控释效果,进而使其诊疗效果不佳且伴有一定的潜在毒性,使其在临床应用中受到阻碍。相比较而言,羰基铁作为一种热敏性CO供体,在光热辐射条件下,Fe-CO配位键会发生断裂,进而释放CO分子,可以通过对温度的精确调控,实现安全可控的抗菌疗效。但是羰基铁的水溶性较低,稳定性较差且不具有目标选择性,使其抗菌效果受到限制。
发明内容
发明目的:本发明的第一目的是提供一种具有光热治疗与CO协同抗菌的近红外光响应抗菌涂层;本发明的第二目的在于提供上述抗菌涂层的制备方法。
技术方案:本发明的一种近红外光响应抗菌涂层,该涂层为PDA@MSN@FeCO,包括负载于基底上用于光热响应的多巴胺层、负载于多巴胺层上的介孔二氧化硅以及负载于介孔二氧化硅孔道内的用于释放一氧化碳的羰基铁。
进一步的,所述介孔二氧化硅的平均粒径为100~500 nm,内部孔道的孔径范围为2~5 nm;所述羰基铁的负载量为10~20 wt%,负载量具体是指羰基铁占MSN@FeCO总质量的质量百分比。
进一步的,所述羰基铁为Fe(CO)5或Fe3(CO)12
进一步的,所述基底选自钛合金、镁合金、留置针、留置管、聚氨酯、无纺布和硅片中的任一种。
本发明还保护一种近红外光响应抗菌涂层的制备方法,包括以下步骤:
(1)将乙醇和去离子水混合,再加入氨水溶液和烷氧基硅烷进行反应,离心洗涤后再分散至去离子水中得到SiO2分散液;将阳离子表面活性剂和醇胺加入到去离子水中,80~100℃的温度下搅拌至溶解,加入上述SiO2水溶液搅拌后,再逐滴加入烷氧基硅烷,磁力搅拌,离心洗涤,得白色粉末产物,经过萃取、真空干燥得到MSN;
(2)将MSN分散至有机溶剂,在液氮中冷冻、脱气,再加入羰基铁,在避光、N2保护条件下磁力搅拌,离心、洗涤、干燥后得到MSN@FeCO;
(3)将基底材料置于含有多巴胺的Tris-HCl缓冲液中,磁力搅拌一段时间,用去离子水清洗,干燥后得到表面沉积聚多巴胺的基底材料;
(4)将MSN@FeCO分散至含有多巴胺的Tris-HCl缓冲液中,加入表面沉积多巴胺的基底材料,磁力搅拌,用去离子水清洗,干燥处理后得到表面沉积PDA@MSN@FeCO的基底材料。
进一步的,所述步骤(1)中,氨水溶液与烷氧基硅烷的体积比为5~7:1~3;其中,烷氧基硅烷为三甲氧基硅烷、三乙氧基硅烷、四乙氧基硅烷中的一种或两种以上混合。
进一步的,所述步骤(1)中,阳离子表面活性剂与醇胺的质量比为80~100:1;其中,阳离子表面活性剂为十六烷基三甲基氯化铵、十二烷基三甲基氯化铵或二者的混合;所述的醇胺为二乙醇胺、三乙醇胺或二者的混合。
进一步的,所述步骤(2)中,MSN与羰基铁质量比为2~5:1;有机溶剂为二氯甲烷、三氯甲烷或二者的混合。
进一步的,所述步骤(3)中,多巴胺的浓度为2~4 mg/mL,磁力搅拌时间为10~24 h,干燥温度为40~60℃,干燥时间为24~48 h。
进一步的,所述步骤(4)中,MSN@FeCO的浓度为1~5 mg/mL,磁力搅拌时间为20~30h,干燥温度为40~60℃,干燥时间为24~48 h。
本发明的制备原理为:通过制备介孔二氧化硅纳米粒子(MSN),利用负压脱气的方法使羰基铁进入MSN孔道,负载热敏性CO供体(羰基铁),合成MSN@FeCO纳米材料;利用PDA优越的粘合性能,将MSN@FeCO紧密涂敷至基底材料表面,制备一种抗菌涂层PDA@MSN@FeCO,在近红外光(NIR)照射下,触发PDA的光热活性,使体系温度升高,赋予其光热治疗灭菌性能;同时在光热辐射条件下,羰基铁中的Fe-CO配位键会发生断裂,释放CO分子,展现出CO的灭菌疗效,最终达到光热治疗与CO协同抗菌的目的。
本发明将PDA的强黏附性和NIR光热响应性与纳米材料的低黏附性和羰基铁的热敏性有机结合,多巴胺的邻苯二酚基团和氨基官能团在聚多巴胺的黏附过程中起到主要作用,这种特殊结构可以使聚多巴胺分子与有机或无机表面建立共价或非共价的相互作用,强有力地与材料表面黏附,同时聚多巴胺作为一种优异的光热转换材料,可以吸收NIR光源能量,使体系温度升高,而光热效应本身也具有杀菌效果,最终可以实现CO和光热治疗协同抗菌疗效。
有益效果:与现有技术相比,本发明的显著优点为:本发明制备了一种负载热敏性CO供体的MSN材料,利用PDA涂层的强黏附性,将MSN@FeCO负载至基底层,同时利用PDA的光热响应性能,在近红外光照下触发羰基铁释放CO分子,展现出良好的光热治疗与CO协同抗菌疗效,本发明可以将光热治疗与CO抗菌疗法相统一,实现NIR诱导的安全有效且精准可控的抗菌疗效,该抗菌涂层的制备方法简单易行且成本较低,适用于生物医疗领域。
附图说明
图1为MSN@FeCO的透射电子显微镜图和元素能谱图;
图2为PDA@MSN@FeCO涂层的表征图;
图3为留置管、PDA以及PDA@MSN@FeCO涂层在808 nm红外光照射下的温度变化曲线;
图4为PDA@MSN@FeCO涂层在808 nm红外光照射下的CO释放动力学;
图5为留置管、PDA以及PDA@MSN@FeCO涂层在光照/黑暗条件下金黄色葡萄球菌分布照片;
图6为金黄色葡萄球菌的相对细菌存活率柱状图;
图7为留置管、PDA以及PDA@MSN@FeCO涂层在光照/黑暗条件下大肠杆菌分布照片;
图8为大肠杆菌的相对细菌存活率柱状图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步详细说明。
实施例1
(1)取150 mL乙醇和3 mL的去离子水混合,常温下搅拌10 min后,加入17 mL浓度为 33%的氨水溶液,搅拌5 min后再加入3 mL的四乙氧基硅烷反应6h,离心水洗,再分散至去离子水中得到SiO2分散液;将2 g十六烷基三甲基氯化铵、0.02 g 三乙醇胺与20 mL的去离子水混合,80℃搅拌溶解,加入10 mL上述所得SiO2水溶液,搅拌1 h后,逐滴加入0.3 mL的四乙氧基硅烷,搅拌1 h,离心、无水乙醇清洗,用1wt%的NaCl甲醇溶液中萃取3 h,重复该过程4次,真空干燥得到MSN纳米粒子。
(2)将10 mg MSN溶于5 mL的三氯甲烷中,液氮下冷冻、脱气后,加入5 mg Fe3(CO)12,避光、N2保护下搅拌24 h,离心,三氯甲烷洗涤,室温干燥12 h得到MSN@FeCO纳米材料。
(3)取留置管置于2 mg/mL的多巴胺Tris-HCl缓冲液中,磁力搅拌20 h,用去离子水清洗,然后50℃干燥处理36 h,得到表面沉积聚多巴胺层的留置管;将浓度为1 mg/mL 的MSN@FeCO加入20 mL Tris-HCl缓冲液配制的盐酸多巴胺溶液,搅拌1 h,将负载聚多巴胺层的留置管置于其中,搅拌24 h,用无水乙醇充分清洗,再用去离子水超声洗涤,放入真空干燥箱50℃干燥24 h,得到负载MSN@FeCO和聚多巴胺涂层的留置管。
MSN@FeCO材料的表征
参见图1,A表示MSN@FeCO的透射电子显微镜图,B表示MSN@FeCO的元素能谱图;由图可知,MSN@FeCO的透射电子显微镜结果可知其尺寸约为280 nm,同时该纳米粒子壳层结构中有蠕虫状无序的孔道结构,证明其具有介孔结构,孔径约为3nm;此外MSN@FeCO的元素能谱图显示Fe元素的存在,证明羰基铁的成功负载。
实施例2
(1)取120 mL乙醇和3 mL的去离子水混合,常温下搅拌10 min后,加入20 mL浓度为20%的氨水溶液,搅拌5 min后再加入8 mL的三甲氧基硅烷反应6h,离心水洗,再分散至去离子水中得到SiO2分散液;将1.6 g十二烷基三甲基氯化铵、0.02 g二乙醇胺与20 mL的去离子水混合,100℃搅拌溶解,加入10 mL上述所得SiO2水溶液,搅拌1 h后,逐滴加入0.3 mL的三甲氧基硅烷,搅拌1 h,离心、无水乙醇清洗,用1wt%的NaCl甲醇溶液中萃取3 h,重复该过程4次,真空干燥得到MSN纳米粒子。
(2)将10 mg MSN溶于5 mL的二氯甲烷中,液氮下冷冻、脱气后,加入2 mg Fe3(CO)12,避光、N2保护下搅拌24 h,离心,三氯甲烷洗涤,室温干燥12 h得到MSN@FeCO纳米材料。
(3)取留置针置于4 mg/mL的多巴胺Tris-HCl缓冲液中,磁力搅拌20 h,用去离子水清洗,然后60℃干燥处理24 h,得到表面沉积聚多巴胺层的留置针;将浓度为3 mg/mL 的MSN@FeCO加入20 mL Tris-HCl缓冲液配制的盐酸多巴胺溶液,搅拌1 h,将负载聚多巴胺层的留置管置于其中,搅拌30 h,用无水乙醇充分清洗,再用去离子水超声洗涤,放入真空干燥箱60℃干燥24 h,得到负载MSN@FeCO和聚多巴胺涂层的留置针。
实施例3
(1)取150 mL乙醇和3 mL的去离子水混合,常温下搅拌10 min后,加入15 mL浓度为15%的氨水溶液,搅拌5 min后再加入5 mL的三乙氧基硅烷反应6 h,离心水洗,再分散至去离子水中得到SiO2分散液;将1.8 g十六烷基三甲基氯化铵、0.02 g 三乙醇胺与20 mL的去离子水混合,90℃搅拌溶解,加入10 mL上述所得SiO2水溶液,搅拌1 h后,逐滴加入0.3mL的四乙氧基硅烷,搅拌1 h,离心、无水乙醇清洗,用1 wt%的NaCl甲醇溶液中萃取3 h,重复该过程4次,真空干燥得到MSN纳米粒子。
(2)将10 mg MSN溶于5 mL的三氯甲烷中,液氮下冷冻、脱气后,加入3.5 mg Fe3(CO)5,避光、N2保护下搅拌24 h,离心,三氯甲烷洗涤,室温干燥12 h得到MSN@FeCO纳米材料。
(3)取留置管置于3 mg/mL的多巴胺Tris-HCl缓冲液中,磁力搅拌20h,用去离子水清洗,然后40℃干燥处理48 h,得到表面沉积聚多巴胺层的留置管;将浓度为5 mg/mL 的MSN@FeCO加入20 mL Tris-HCl缓冲液配制的盐酸多巴胺溶液,搅拌1 h,将负载聚多巴胺层的留置管置于其中,搅拌24 h,用无水乙醇充分清洗,再用去离子水超声洗涤,放入真空干燥箱40℃干燥48 h,得到负载MSN@FeCO和聚多巴胺涂层的留置管。
对比例1
留置管在去离子水和无水乙醇中超声清洗15 min,然后真空干燥24 h。
对比例2
留置管在去离子水和无水乙醇中超声清洗15 min,然后真空干燥24 h。将留置管置于20 ml Tris-HCl缓冲液配制的盐酸多巴胺溶液(2 mg/ml),搅拌24 h,去离子水和无水乙醇清洗,放入真空干燥箱干燥24 h,得到负载聚多巴胺涂层的留置管。
PDA@MSN@FeCO涂层的表征
参见图2,A表示留置管表面的扫描电子显微镜图,B表示PDA@MSN@FeCO表面沉积留置管的扫描电子显微镜图,C、D和E表示PDA@MSN@FeCO的元素能谱面扫描图;F表示PDA@MSN@FeCO的元素能谱图;由图可知,A和B的对比表明PDA@MSN@FeCO黏附留置管的表面粗糙度增加,且其表面有明显的纳米粒子聚集,证明MSN@FeCO的成功黏附,且充分洗涤后不影响其表面黏附量,证明PDA@MSN@FeCO涂层具有强稳定性;元素能谱图显示N,Si,Fe元素的存在,进一步证明PDA@MSN@FeCO涂层的成功负载。
实施例4
PDA@MSN@FeCO涂层的光热效果及CO释放检测
利用808 nm近红外光照射PDA@MSN@FeCO涂层验证其光热效果及CO释放性能。如图3所示,留置管(对比例1)的温度随光照时间增加没有明显变化,光照10 min后,其温度小于32℃。相比较而言,表面黏附了PDA涂层的留置管(对比例2)以及表面黏附了PDA@MSN@FeCO涂层的留置管(实施例1)的温度随光照时间增加逐渐升高,光照10 min后,其温度达到50℃左右。该实验结果进一步证明PDA具有光热性能,可以吸收近红外光能量转化为热能。
以血红蛋白作为CO捕获剂,间接检测PDA@MSN@FeCO涂层在808 nm近红外光照射下的CO释放动力学。如图4所示,对于表面黏附了PDA@MSN@FeCO涂层的留置管(实施例1),血红蛋白的吸收峰位置随近红外光照射时间增加逐渐蓝移(430 nm → 405 nm),即血红蛋白逐渐向羧基血红蛋白转化,证明该过程中有CO气体产生。
实施例5
PDA@MSN@FeCO涂层抑菌效果实验
以大肠杆菌和金黄色葡萄球菌菌液的稀释液作为实验菌液,根据GB/T21510贴膜法测定,对实施例1以及对比例1-2制得的材料进行抑菌试验,通过菌落计数法计算抗菌率,数据如图6-8所示,实验结果表明本发明实施例1所得涂层材料在近红外光照射下对金黄色葡萄球菌和大肠杆菌均具有高效的杀灭活性,其抗菌效率可达到98%以上。

Claims (10)

1.一种近红外光响应抗菌涂层,其特征在于:该涂层为PDA@MSN@FeCO,包括负载于基底上用于光热响应的多巴胺层、负载于多巴胺层上的介孔二氧化硅以及负载于介孔二氧化硅孔道内的用于释放一氧化碳的羰基铁。
2.根据权利要求1所述的近红外光响应抗菌涂层,其特征在于:所述介孔二氧化硅的平均粒径为100~500 nm,内部孔道的孔径范围为2~5 nm;所述羰基铁的负载量为10~20 wt%。
3.根据权利要求1所述的近红外光响应抗菌涂层,其特征在于:所述羰基铁为Fe(CO)5或Fe3(CO)12
4.根据权利要求1所述的近红外光响应抗菌涂层,其特征在于:所述基底选自钛合金、镁合金、留置针、留置管、聚氨酯、无纺布和硅片中的任一种。
5.权利要求1-4任一项所述的近红外光响应抗菌涂层的制备方法,其特征在于,包括以下步骤:
(1)将乙醇和去离子水混合,再加入氨水溶液和烷氧基硅烷进行反应,离心洗涤后再分散至去离子水中得到SiO2分散液;将阳离子表面活性剂和醇胺加入到去离子水中,80~100℃的温度下搅拌至溶解,加入上述SiO2水溶液搅拌后,再逐滴加入烷氧基硅烷,磁力搅拌,离心洗涤,得白色粉末产物,经过萃取、真空干燥得到MSN;
(2)将MSN分散至有机溶剂,在液氮中冷冻、脱气,再加入羰基铁,在避光、N2保护条件下磁力搅拌,离心、洗涤、干燥后得到MSN@FeCO;
(3)将基底材料置于含有多巴胺的Tris-HCl缓冲液中,磁力搅拌一段时间,用去离子水清洗,干燥后得到表面沉积聚多巴胺的基底材料;
(4)将MSN@FeCO分散至含有多巴胺的Tris-HCl缓冲液中,加入表面沉积多巴胺的基底材料,磁力搅拌,用去离子水清洗,干燥处理后得到表面沉积PDA@MSN@FeCO的基底材料。
6.根据权利要求5所述的近红外光响应抗菌涂层的制备方法,其特征在于:所述步骤(1)中,氨水溶液与烷氧基硅烷的体积比为5~7:1~3;其中,烷氧基硅烷为三甲氧基硅烷、三乙氧基硅烷、四乙氧基硅烷中的一种或两种以上的混合。
7.根据权利要求5所述的近红外光响应抗菌涂层的制备方法,其特征在于:所述步骤(1)中,阳离子表面活性剂与醇胺的质量比为80~100:1;其中,阳离子表面活性剂为十六烷基三甲基氯化铵、十二烷基三甲基氯化铵或二者的混合;所述的醇胺为二乙醇胺、三乙醇胺或二者的混合。
8.根据权利要求5所述的近红外光响应抗菌涂层的制备方法,其特征在于:所述步骤(2)中,MSN与羰基铁质量比为2~5:1;有机溶剂为二氯甲烷、三氯甲烷或二者的混合。
9.根据权利要求5所述的近红外光响应抗菌涂层的制备方法,其特征在于:所述步骤(3)中,多巴胺的浓度为2~4 mg/mL,磁力搅拌时间为10~24 h,干燥温度为40~60℃,干燥时间为24~48 h。
10.根据权利要求5所述的近红外光响应抗菌涂层的制备方法,其特征在于:所述步骤(4)中,MSN@FeCO的浓度为1~5 mg/mL,磁力搅拌时间为20~30 h,干燥温度为40~60℃,干燥时间为24~48 h。
CN202111281299.9A 2021-11-01 2021-11-01 一种近红外光响应抗菌涂层及制备方法 Pending CN114010845A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111281299.9A CN114010845A (zh) 2021-11-01 2021-11-01 一种近红外光响应抗菌涂层及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111281299.9A CN114010845A (zh) 2021-11-01 2021-11-01 一种近红外光响应抗菌涂层及制备方法

Publications (1)

Publication Number Publication Date
CN114010845A true CN114010845A (zh) 2022-02-08

Family

ID=80059414

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111281299.9A Pending CN114010845A (zh) 2021-11-01 2021-11-01 一种近红外光响应抗菌涂层及制备方法

Country Status (1)

Country Link
CN (1) CN114010845A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143499A (zh) * 2020-08-25 2020-12-29 上海大学 一种诊疗一体化的稀土发光纳米诊疗剂、制备方法及其应用
CN114906856A (zh) * 2022-05-06 2022-08-16 西北工业大学 一种可释放h2s/co的纳米介孔二氧化硅球及其制备方法与应用
CN115177784A (zh) * 2022-07-31 2022-10-14 西南大学 具近红外光触发抗菌抗炎功能的钛骨钉

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018934A1 (en) * 2002-08-05 2006-01-26 Navin Vaya Novel drug delivery system
ITRM20050393A1 (it) * 2005-07-22 2007-01-23 Adele Bolognese Sistema di rilascio controllato di sostanze farmacologicamente attive, processo di preparazione e impieghi in campo medico.
WO2009007768A1 (en) * 2007-07-06 2009-01-15 Gumlink A/S Compressed tablet comprising polyol
JP2009051895A (ja) * 2007-08-24 2009-03-12 Niigata Univ 抗菌性発泡樹脂
JP2009093876A (ja) * 2007-10-05 2009-04-30 Kao Corp 中空シリカ粒子
WO2010056200A1 (en) * 2008-11-17 2010-05-20 Agency For Science, Technology And Research Hydrophobic magnetic particles
CN102583405A (zh) * 2012-03-23 2012-07-18 山东大学 一种孔径可调节的介孔二氧化硅纳米粒的制备方法
WO2012131931A1 (ja) * 2011-03-30 2012-10-04 ダイワボウホールディングス株式会社 創傷被覆材
US20130023714A1 (en) * 2008-10-26 2013-01-24 Board Of Regents, The University Of Texas Systems Medical and Imaging Nanoclusters
CN103387829A (zh) * 2013-07-02 2013-11-13 南京邮电大学 核壳结构的磷光二氧化硅纳米探针及其制备方法
CN104673096A (zh) * 2014-08-12 2015-06-03 西南交通大学 一种具有一氧化氮(no)催化活性的涂层的制备方法
CN105949861A (zh) * 2016-05-06 2016-09-21 上海海事大学 一种能自修复的超疏水复合材料、其制备方法和用途
CN105999408A (zh) * 2016-06-29 2016-10-12 南京师范大学 一种药物/介孔二氧化硅复合涂层包覆的医用钛合金复合材料及其制备方法
CN106587078A (zh) * 2016-12-19 2017-04-26 湖北工业大学 一种介孔二氧化硅纳米粒子的制备方法
CN107915230A (zh) * 2017-11-30 2018-04-17 程桂平 一种介孔硅纳米粒子的制备方法
CN108721635A (zh) * 2018-06-12 2018-11-02 西北工业大学 一种功能化介孔氧化硅、及其制备和在伤口修复中的应用方法
US20190039910A1 (en) * 2017-08-01 2019-02-07 University Of Georgia Research Foundation, Inc. Mesoporous nitric oxide-releasing silica particles, methods of making, and uses thereof
CN110433145A (zh) * 2019-07-05 2019-11-12 深圳大学 一种肿瘤靶向的纳米药物及应用和制备方法
CN110538330A (zh) * 2019-10-12 2019-12-06 深圳大学 一种线粒体靶向传输co的药物及其制备方法
CN110655817A (zh) * 2019-10-17 2020-01-07 四川大学 一种稳定性增强的长效抗菌性多功能涂层及其制备与应用
CN112143499A (zh) * 2020-08-25 2020-12-29 上海大学 一种诊疗一体化的稀土发光纳米诊疗剂、制备方法及其应用
CN112274639A (zh) * 2020-10-29 2021-01-29 中国药科大学 Fe2C@Fe3O4异质纳米颗粒、制备方法及用途
CN112618716A (zh) * 2021-01-11 2021-04-09 福州大学 一种光动力联合溶菌酶抗菌方法
CN112843250A (zh) * 2021-01-27 2021-05-28 中国科学院宁波材料技术与工程研究所 一种用于肿瘤铁死亡-气体协同治疗的纳米药物及其制备方法
CN113440654A (zh) * 2020-03-25 2021-09-28 上海交通大学医学院附属第九人民医院 一种载药抗菌涂层及其制备方法
CN113559071A (zh) * 2021-08-18 2021-10-29 苏州大学 一种co靶向递送系统及其构建方法与应用

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060018934A1 (en) * 2002-08-05 2006-01-26 Navin Vaya Novel drug delivery system
ITRM20050393A1 (it) * 2005-07-22 2007-01-23 Adele Bolognese Sistema di rilascio controllato di sostanze farmacologicamente attive, processo di preparazione e impieghi in campo medico.
WO2009007768A1 (en) * 2007-07-06 2009-01-15 Gumlink A/S Compressed tablet comprising polyol
JP2009051895A (ja) * 2007-08-24 2009-03-12 Niigata Univ 抗菌性発泡樹脂
JP2009093876A (ja) * 2007-10-05 2009-04-30 Kao Corp 中空シリカ粒子
US20130023714A1 (en) * 2008-10-26 2013-01-24 Board Of Regents, The University Of Texas Systems Medical and Imaging Nanoclusters
WO2010056200A1 (en) * 2008-11-17 2010-05-20 Agency For Science, Technology And Research Hydrophobic magnetic particles
WO2012131931A1 (ja) * 2011-03-30 2012-10-04 ダイワボウホールディングス株式会社 創傷被覆材
CN102583405A (zh) * 2012-03-23 2012-07-18 山东大学 一种孔径可调节的介孔二氧化硅纳米粒的制备方法
CN103387829A (zh) * 2013-07-02 2013-11-13 南京邮电大学 核壳结构的磷光二氧化硅纳米探针及其制备方法
CN104673096A (zh) * 2014-08-12 2015-06-03 西南交通大学 一种具有一氧化氮(no)催化活性的涂层的制备方法
CN105949861A (zh) * 2016-05-06 2016-09-21 上海海事大学 一种能自修复的超疏水复合材料、其制备方法和用途
CN105999408A (zh) * 2016-06-29 2016-10-12 南京师范大学 一种药物/介孔二氧化硅复合涂层包覆的医用钛合金复合材料及其制备方法
CN106587078A (zh) * 2016-12-19 2017-04-26 湖北工业大学 一种介孔二氧化硅纳米粒子的制备方法
US20190039910A1 (en) * 2017-08-01 2019-02-07 University Of Georgia Research Foundation, Inc. Mesoporous nitric oxide-releasing silica particles, methods of making, and uses thereof
CN107915230A (zh) * 2017-11-30 2018-04-17 程桂平 一种介孔硅纳米粒子的制备方法
CN108721635A (zh) * 2018-06-12 2018-11-02 西北工业大学 一种功能化介孔氧化硅、及其制备和在伤口修复中的应用方法
CN110433145A (zh) * 2019-07-05 2019-11-12 深圳大学 一种肿瘤靶向的纳米药物及应用和制备方法
CN110538330A (zh) * 2019-10-12 2019-12-06 深圳大学 一种线粒体靶向传输co的药物及其制备方法
CN110655817A (zh) * 2019-10-17 2020-01-07 四川大学 一种稳定性增强的长效抗菌性多功能涂层及其制备与应用
CN113440654A (zh) * 2020-03-25 2021-09-28 上海交通大学医学院附属第九人民医院 一种载药抗菌涂层及其制备方法
CN112143499A (zh) * 2020-08-25 2020-12-29 上海大学 一种诊疗一体化的稀土发光纳米诊疗剂、制备方法及其应用
CN112274639A (zh) * 2020-10-29 2021-01-29 中国药科大学 Fe2C@Fe3O4异质纳米颗粒、制备方法及用途
CN112618716A (zh) * 2021-01-11 2021-04-09 福州大学 一种光动力联合溶菌酶抗菌方法
CN112843250A (zh) * 2021-01-27 2021-05-28 中国科学院宁波材料技术与工程研究所 一种用于肿瘤铁死亡-气体协同治疗的纳米药物及其制备方法
CN113559071A (zh) * 2021-08-18 2021-10-29 苏州大学 一种co靶向递送系统及其构建方法与应用

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHAKRABORTY,I: "Mesoporous silica materials and nanoparticles as carriers for controlled and site-specific delivery of gaseous signaling molecules", 《MICROPOROUS AND MESOPOROUS MATERIALS》, vol. 234, 30 November 2016 (2016-11-30) *
KUNZ,PC等: "Metal carbonyls supported on iron oxide nanoparticles to trigger the CO-gasotransmitter release by magnetic heating", 《CHEMICAL COMMUNICATIONS》, vol. 49, no. 43, 30 December 2013 (2013-12-30) *
MODITMA MODITMA: "FeCo nanoparticles as antibacterial agents with improved response in magnetic field: An insight into the associated toxicity mechanism", 《NANOTECHNOLOGY》, vol. 32, no. 33, 13 August 2021 (2021-08-13) *
XIANXIAN YAO等: ""Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis"", 《BIOMATERIALS》 *
XIANXIAN YAO等: ""Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis"", 《BIOMATERIALS》, vol. 197, 30 March 2019 (2019-03-30), pages 269 *
ZHANG YUAN等: ""Near-Infrared Light-Activatable Dual-Action Nanoparticle Combats the Established Biofilms of Methicillin-Resistant Staphylococcus aureus and Its Accompanying Inflammation"", 《SMALL》 *
ZHANG YUAN等: ""Near-Infrared Light-Activatable Dual-Action Nanoparticle Combats the Established Biofilms of Methicillin-Resistant Staphylococcus aureus and Its Accompanying Inflammation"", 《SMALL》, vol. 17, no. 13, 30 March 2021 (2021-03-30), pages 3 *
吴凡: "生物医用金属材料表面原位构建介孔二氧化硅药物涂层及其性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
吴凡: "生物医用金属材料表面原位构建介孔二氧化硅药物涂层及其性能研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》, 15 January 2021 (2021-01-15), pages 50 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112143499A (zh) * 2020-08-25 2020-12-29 上海大学 一种诊疗一体化的稀土发光纳米诊疗剂、制备方法及其应用
CN112143499B (zh) * 2020-08-25 2023-06-16 上海大学 一种诊疗一体化的稀土发光纳米诊疗剂、制备方法及其应用
CN114906856A (zh) * 2022-05-06 2022-08-16 西北工业大学 一种可释放h2s/co的纳米介孔二氧化硅球及其制备方法与应用
CN114906856B (zh) * 2022-05-06 2024-03-19 西北工业大学 一种可释放h2s/co的纳米介孔二氧化硅球及其制备方法与应用
CN115177784A (zh) * 2022-07-31 2022-10-14 西南大学 具近红外光触发抗菌抗炎功能的钛骨钉
CN115177784B (zh) * 2022-07-31 2023-03-10 西南大学 具近红外光触发抗菌抗炎功能的钛骨钉

Similar Documents

Publication Publication Date Title
CN114010845A (zh) 一种近红外光响应抗菌涂层及制备方法
US9278113B2 (en) Titanium dioxide nanotubes for production and delivery of nitric oxide and methods for production thereof
Gao et al. Construction of durable antibacterial and anti-mildew cotton fabric based on P (DMDAAC-AGE)/Ag/ZnO composites
He et al. One-step self-assembly of biogenic Au NPs/PEG-based universal coatings for antifouling and photothermal killing of bacterial pathogens
Panáček et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity
Applerot et al. Decorating parylene-coated glass with ZnO nanoparticles for antibacterial applications: a comparative study of sonochemical, microwave, and microwave-plasma coating routes
CN114306382B (zh) 一种铜基纳米酶及其制备方法和应用
CN112080940B (zh) 一种具有持久抗菌、抗病毒特性的织物及其制备方法
EP3576798B1 (en) Method for the manufacture of functionalized fullerene metal nanocomposites
CN110051837B (zh) 一种CuO/ZnO/Au纳米粒子及其制备方法和应用
CN109200334A (zh) 一种光动力治疗伤口感染用的复合水凝胶敷料及其制备方法
CN102849730A (zh) 一种制备纳米银-石墨烯仿生纳米结构复合薄膜的方法
Dong et al. Preparation and characterization of SiO2/polydopamine/Ag nanocomposites with long-term antibacterial activity
CN107441489A (zh) 抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途
TWI640565B (zh) 一種含奈米銀粒子之高分子乳膠顆粒組成物
CN114848818A (zh) 黄连素衍生物-金属络合物纳米材料及其制备方法和应用
Jiang et al. A multifunctional superhydrophobic coating with efficient anti-adhesion and synergistic antibacterial properties
Bose et al. Near-infrared light-responsive Cu2O@ CuFeS2-hydroxyapatite-chitosan based antibacterial coating on titanium bioimplant
Peter et al. Carboxymethyl chitosan capped copper oxide nanomaterials as antibacterial and antibiofilm coating for vulcanized natural rubber film
CN104707138B (zh) 一种具有近红外光远程响应的三层核‑壳结构药物载体的制备方法
CN110669369A (zh) 一种具有pH监测功能的抗菌涂层、具有pH监测功能的抗菌涂层的功能材料及其制备方法
Gao et al. Bio-inspired growth of silver nanoparticles on 2D material’s scaffolds as heterostructures with their enhanced antibacterial property
Wang et al. Ag/MoS2 nanozyme-modified ZnO nanopillar surface for enhanced synergistic mechanical and chemical antibacterial activity
Lv et al. Mo2C nanosheets decorated with boron dipyrromethene enabling photothermal and photodynamic attributes for highly efficient antibacterials
EP3329778B1 (en) Process for the synthesis of antimicrobial copper nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220208

RJ01 Rejection of invention patent application after publication