CN113846259A - 一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法 - Google Patents

一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法 Download PDF

Info

Publication number
CN113846259A
CN113846259A CN202110981196.7A CN202110981196A CN113846259A CN 113846259 A CN113846259 A CN 113846259A CN 202110981196 A CN202110981196 A CN 202110981196A CN 113846259 A CN113846259 A CN 113846259A
Authority
CN
China
Prior art keywords
rare earth
steel
equal
temperature
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110981196.7A
Other languages
English (en)
Inventor
张军
隋鑫
薛越
张帅
柳婕
谷鑫
孙长玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baotou Iron and Steel Group Co Ltd
Original Assignee
Baotou Iron and Steel Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baotou Iron and Steel Group Co Ltd filed Critical Baotou Iron and Steel Group Co Ltd
Priority to CN202110981196.7A priority Critical patent/CN113846259A/zh
Publication of CN113846259A publication Critical patent/CN113846259A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0056Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0068Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 by introducing material into a current of streaming metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明公开了一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法,在钢液凝固过程中以喂入合金稀土丝的方式加入稀土,析出的稀土硫化物尺寸更小,相同稀土加入量时收得率大大提高,钢中析出的稀土硫化物的数量也更多,大量细小弥散的稀土硫化物能对晶界起到强烈的钉轧作用,有助于改善钢板的冲击韧性的同时提升钢板的耐腐蚀性能。本发明避免了在炼钢过程加入稀土,由于稀土元素活泼性很强,在炼钢温度下挥发较快,成品的稀土收得率很低,且钢液中生成的稀土夹杂物尺寸较大,不利于改善钢的内部组织这一弊端。

Description

一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢 的制造方法
技术领域
本发明涉及中厚板领域,尤其涉及一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法。
背景技术
近年来交通运输业的发展带动了我国桥梁建设事业的极大进步,各种公路桥、铁路桥、跨海大桥等大规模建设为桥梁用钢创造了巨大的市场,社会、科技的进步也对桥梁用钢的性能提出了更高的要求,高强度、高韧性、优异的可焊接性、耐腐蚀性以及抗疲劳性能等成为了高性能桥梁用钢所应具备的特性。同时桥梁设计理念的转变以及对桥梁制造周期等方面的要求也日益提高,传统的结构钢板已不能完全满足桥梁设计及施工要求,开发强度、断裂韧性、焊接性、耐蚀性以及加工性能等方面均优于传统钢铁材料的高性能桥梁用钢十分必要。对高性能、高强度钢材的研究及推广不仅促进了钢桥结构形式的多样化、合理化,并使钢桥能够在更广范围内得以应用。
稀土元素作为包头地区的特色资源,随着近些年钢铁行业去产能和转型升级的推动,发挥稀土资源优势,提高稀土钢的市场地位必然成为重要课题,目前研究的稀土钢板(如稀土桥梁钢、稀土高强钢、稀土耐磨钢等),稀土含量都是在30ppm以下,对于高稀土含量的钢板研究甚少。
发明内容
本发明的目的是提供一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法,在钢液凝固过程中以喂入合金稀土丝的方式加入稀土,析出的稀土硫化物尺寸更小,相同稀土加入量时收得率大大提高,钢中析出的稀土硫化物的数量也更多,大量细小弥散的稀土硫化物能对晶界起到强烈的钉轧作用,有助于改善钢板的冲击韧性的同时提升钢板的耐腐蚀性能。避免了在炼钢过程加入稀土,由于稀土元素活泼性很强,在炼钢温度下挥发较快,成品的稀土收得率很低,且钢液中生成的稀土夹杂物尺寸较大,不利于改善钢的内部组织这一弊端。
不同于常规操作在RH精炼过程中加入稀土合金的操作方法,本发明是在板坯浇注的过程中加入含有稀土铈Ce的稀土丝,使稀土铈Ce在铸坯中均匀扩散,成品钢板中的稀土铈Ce含量在60ppm以上,稀土元素收得率大于80%。
为解决上述技术问题,本发明采用如下技术方案:
本发明一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法,采用工艺路线为::KR脱硫扒渣→转炉冶炼→LF精炼→RH精炼→连铸及喂入稀土丝→加热→TMCP轧制→加速冷却→剪切→取样→入库;
其中钢的化学成分百分比为C=0.060~0.100%,Si=0.15~0.45%,Mn=1.30~1.70%,P≤0.020%,S≤0.005%,Als=0.015~0.035%,Nb=0.020~0.040,V=0.005~0.010,Ti=0.010~0.020,Gr=0.020~0.060,Mo=0.010~0.020,Ni=0.015~0.035,Cu=0.015~0.035%,Ce≥0.0060%,其余为Fe及不可避免的杂质;
其制造方法具体包括如下步骤:
1)KR脱硫及转炉炼钢:铁水预处理后铁水硫含量S≤0.010%,温度≥1280℃,铁水入转炉前将渣扒干净,转炉终点控制C-T协调出钢,P≤0.010%,S≤0.015%,出钢时间4~7min,出钢1/5时加入合金,加铝铁对钢液进行脱氧,除Al以外的合金按正常要求添加,出钢2/5量加完合金,出钢过程中视终点氧含量加入适量的改质剂和石灰;
2)炉外精炼:LF炉精炼采用氧化物冶金技术对钢液进行造渣和脱氧操作,快速造白渣,且保证白渣时间15min以上,稳定渣碱度;LF精炼出站前尽量将合金配加至目标要求范围,保证S含量低于0.003%,喂丝吹氩5min后加入B-Fe=0.018~0.020;
3)RH精炼:RH尽量不调整成分,所有成分调整要在LF完成,RH到站钢液温度1590~1620℃,要求抽气≯4分钟最小真空度即可达到266Pa以下且真空处理过程中真空度波动反弹≤100Pa,真空处理过程中调节环流氩气流量,保证钢水充分的循环,软吹5~6分钟,总真空处理时间>20min,破空后钢水中[H]≤1.2ppm、[O]≤20ppm、[N]≤40ppm;
4)连铸及稀土处理:强化大包-中包-结晶器之间保证密闭性和中包液面覆盖剂厚度,强化中包氩气吹扫,避免连铸过程中吸气,全程增N量控制在5ppm以内;液相线1520℃,中包过热度控制23~33℃,连铸拉速采用中板铸坯生产拉速执行稳态浇铸,同时在浇注过程中以喂丝的方式在结晶器喂入铈铁稀土包芯线,稀土添加量由稀土包芯线喂丝速度进行调整,生产连铸坯厚度250mm,连铸全程实行保护浇铸;
5)加热:加热温度1220~1260℃,出炉板坯心部温度大于1180℃,确保均热段保温≥60分钟,保证钢坯烧透、均匀;
6)轧制工艺:采用两阶段控轧,一阶段开轧温度大于1150℃,压下率60%~70%;二阶段开轧温度850~900℃,终轧温度控制在750~800℃,每道次压下率均≥12%,最后三道次累计压下率不小于≥40%;轧后水冷:冷却速率14℃/s~21℃/s,终冷温度600~680℃,下线堆垛缓冷;
7)剪切:采用常规空冷方式冷却以后,经过分段剪切,取样后入库。
进一步的,钢的成分质量百分组成为:
C=0.076%,Si=0.35%,Mn=1.52%,P=0.016%,S=0.004%,Als=0.023%,Nb=0.025%,V=0.007%,Ti=0.013%,Cr=0.036%,Mo=0.008%,Ni=0.020%,Cu=0.018%,Ce=0.0150%,其余为Fe及不可避免的杂质。
进一步的,钢的成分质量百分组成为:
C=0.080%,Si=0.37,Mn=1.50%,P=0.015%,S=0.005%,Als=0.023%,Nb=0.024%,V=0.006%,Ti=0.013%,Cr=0.038%,Mo=0.009%,Ni=0.021%,Cu=0.017%,Ce=0.0330%,其余为Fe及不可避免的杂质。
与现有技术相比,本发明的有益技术效果:
本发明通过板坯浇注的过程中加入含有稀土铈Ce的稀土丝,改善了在RH精炼过程中加入稀土合金造成稀土收得率低的弊端,稀土元素收得率大于80%。而且桥梁钢钢板的稀土含量大于60ppm,通过较高的稀土含量来提升钢板的低温冲击性能,改善耐候性能,一定程度上颠覆了长期以来认为的只有少量稀土(0~10ppm)会对钢板产生有益的改善,大量添加稀土反而会产生夹杂物影响钢板性能的这一认知。
附图说明
下面结合附图说明对本发明作进一步说明。
图1为Q370qD-RE桥梁钢典型金相组织;
图2为Q370qD-RE桥梁钢典型金相组织;
图3为不同稀土含量Q370qD-RE桥梁钢72h盐雾腐蚀形貌典型图;
图4为不同稀土含量Q370qD-RE桥梁钢216h盐雾腐蚀形貌典型图。
具体实施方式
实施例1:生产Q370qD-RE桥梁钢钢板生产工艺,钢的成分质量百分组成为:C=0.076,Si=0.35,Mn=1.52,P=0.016,S=0.004,Als=0.023,Nb=0.025,V=0.007,Ti=0.013,Cr=0.036,Mo=0.008,Ni=0.020,Cu=0.018,Ce=0.0150。
主要工艺步骤及参数如下:
入炉铁水必须先进行铁水预处理,处理后铁水硫含量s≤0.010%,温度≥1250℃,铁水入转炉前必须将渣扒干净,转炉冶炼过程加入铁水及废钢,铁水与废钢配比为铁水85%左右,废钢15%左右。转炉终点控制C-T协调出钢,P≤0.012%,S≤0.015%,严格挡渣出钢,出钢时间4~7min,出钢1/5时加入合金,出钢2/5量加完合金,出钢过程中视终点氧含量加入适量的改质剂和石灰,氧不少于250m,并视装入量、终点C、钢水氧化性的变化进行适当调整,然后将钢水运送到LF精炼炉进行精炼操作。
LF精炼对钢液进行造白渣和脱氧操作,确保钢中氧、硫等元素的含量控制在较低的水平,快速造白渣,且保证白渣时间15min以上,稳定渣碱度;LF精炼出站前尽量将合金配加至目标要求范围,OT≤20ppm,N≤40ppm,保证S含量低于0.003%。
RH到站钢液温度1590~1620℃,要求抽气≯4分钟最小真空度即可达到266Pa以下且真空处理过程中真空度波动反弹≤100Pa,真空处理过程中调节环流氩气流量,保证钢水充分的循环,软吹5~6分钟,总真空处理时间>20min,破空后钢水中[H]≤1.2ppm、[O]≤20ppm、[N]≤40ppm;
强化大包-中包-结晶器之间保证密闭性和中包液面覆盖剂厚度,强化中包氩气吹扫,避免连铸过程中吸气,全程增N量控制在5ppm以内;液相线1520℃,中包过热度控制23~33℃,连铸拉速采用中板铸坯生产拉速执行稳态浇铸,同时在浇注过程中以喂丝的方式在结晶器喂入铈铁稀土包芯线,稀土添加量由稀土包芯线喂丝速度进行调整,生产连铸坯厚度250mm,连铸全程实行保护浇铸;
加热制度:加热段温度不高于1260℃,均热温度1220℃~1260℃,确保均热段保温≥60分钟,保证钢坯烧透、均匀。轧制工艺:两阶段控轧,一阶段开轧温度大于1150℃,压下率60%~70%;二阶段开轧温度850~900℃,终轧温度控制在750~800℃,每道次压下率均≥12%,最后三道次累计压下率不小于≥40%;轧后水冷:冷却速率14℃/s~21℃/s,终冷温度600~680℃,下线堆垛缓冷。按上述技术方案生产的钢板性能实绩如表1、表2。
表1拉伸性能典型值
Figure BDA0003229190570000061
表2横、纵向系列温度冲击功典型值(kJ/m2)
Figure BDA0003229190570000062
按本技术方案生产的Q370qD-RE桥梁钢钢板稀土Ce含量为150ppm,-20℃低温冲击远高于标准要求的120kJ/m2。金相显微组织如图1所示,从金相显微组织可以看出,组织为均匀分布的细小的铁素体+珠光体组织,与表1、表2的机械性能是相一致的。
实施例2:生产Q370qD-RE桥梁钢钢板生产工艺,钢的成分质量百分组成为:C=0.080,Si=0.37,Mn=1.50,P=0.015,S=0.005,Als=0.023,Nb=0.024,V=0.006,Ti=0.013,Cr=0.038,Mo=0.009,Ni=0.021,Cu=0.017,Ce=0.0330。
主要工艺步骤及参数如下:
入炉铁水必须先进行铁水预处理,处理后铁水硫含量s≤0.010%,温度≥1250℃,铁水入转炉前必须将渣扒干净,转炉冶炼过程加入铁水及废钢,铁水与废钢配比为铁水85%左右,废钢15%左右。转炉终点控制C-T协调出钢,P≤0.012%,S≤0.015%,严格挡渣出钢,出钢时间4~7min,出钢1/5时加入合金,出钢2/5量加完合金,出钢过程中视终点氧含量加入适量的改质剂和石灰,氧不少于250m,并视装入量、终点C、钢水氧化性的变化进行适当调整,然后将钢水运送到LF精炼炉进行精炼操作。
LF精炼对钢液进行造白渣和脱氧操作,确保钢中氧、硫等元素的含量控制在较低的水平,快速造白渣,且保证白渣时间15min以上,稳定渣碱度;LF精炼出站前尽量将合金配加至目标要求范围,OT≤20ppm,N≤40ppm,保证S含量低于0.003%。
RH到站钢液温度1590~1620℃,要求抽气≯4分钟最小真空度即可达到266Pa以下且真空处理过程中真空度波动反弹≤100Pa,真空处理过程中调节环流氩气流量,保证钢水充分的循环,软吹5~6分钟,总真空处理时间>20min,破空后钢水中[H]≤1.2ppm、[O]≤20ppm、[N]≤40ppm;
强化大包-中包-结晶器之间保证密闭性和中包液面覆盖剂厚度,强化中包氩气吹扫,避免连铸过程中吸气,全程增N量控制在5ppm以内;液相线1520℃,中包过热度控制23~33℃,连铸拉速采用中板铸坯生产拉速执行稳态浇铸,同时在浇注过程中以喂丝的方式在结晶器喂入铈铁稀土包芯线,稀土添加量由稀土包芯线喂丝速度进行调整,生产连铸坯厚度250mm,连铸全程实行保护浇铸;
加热制度:加热段温度不高于1260℃,均热温度1220℃~1260℃,确保均热段保温≥60分钟,保证钢坯烧透、均匀。轧制工艺:两阶段控轧,一阶段开轧温度大于1150℃,压下率60%~70%;二阶段开轧温度850~900℃,终轧温度控制在750~800℃,每道次压下率均≥12%,最后三道次累计压下率不小于≥40%;轧后水冷:冷却速率14℃/s~21℃/s,终冷温度600~680℃,下线堆垛缓冷。按上述技术方案生产的钢板性能实绩如表3、表4。
表3拉伸性能典型值
Figure BDA0003229190570000081
表4横、纵向系列温度冲击功典型值(kJ/m2)
Figure BDA0003229190570000082
按本技术方案生产的Q370qD-RE桥梁钢钢板稀土Ce含量为330ppm,-20℃低温冲击远高于标准要求的120kJ/m2。金相显微组织如图2所示,从金相显微组织可以看出,组织为均匀分布的细小的铁素体+珠光体组织,与表3、表4的机械性能是相一致的。
如图3和4所示,盐雾试验结果表明,随着稀土含量的增加,腐蚀速率下降。72h周浸试验后,加入150ppm稀土试样对比未加入稀土试样,其相对腐蚀速率为76%,耐腐蚀性能最佳。216h周浸试验后,腐蚀速率无明显差异,可能与周浸长时试验中试样由于浸泡干燥往复试验,稳定的锈层反复被破坏有关。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (3)

1.一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法,其特征在于,采用工艺路线为:KR脱硫扒渣→转炉冶炼→LF精炼→RH精炼→连铸及喂入稀土丝→加热→TMCP轧制→加速冷却→剪切→取样→入库;
其中钢的化学成分百分比为C=0.060~0.100%,Si=0.15~0.45%,Mn=1.30~1.70%,P≤0.020%,S≤0.005%,Als=0.015~0.035%,Nb=0.020~0.040,V=0.005~0.010,Ti=0.010~0.020,Gr=0.020~0.060,Mo=0.010~0.020,Ni=0.015~0.035,Cu=0.015~0.035%,Ce≥0.0060%,其余为Fe及不可避免的杂质;
其制造方法具体包括如下步骤:
1)KR脱硫及转炉炼钢:铁水预处理后铁水硫含量S≤0.010%,温度≥1280℃,铁水入转炉前将渣扒干净,转炉终点控制C-T协调出钢,P≤0.010%,S≤0.015%,出钢时间4~7min,出钢1/5时加入合金,加铝铁对钢液进行脱氧,除Al以外的合金按正常要求添加,出钢2/5量加完合金,出钢过程中视终点氧含量加入适量的改质剂和石灰;
2)炉外精炼:LF炉精炼采用氧化物冶金技术对钢液进行造渣和脱氧操作,快速造白渣,且保证白渣时间15min以上,稳定渣碱度;LF精炼出站前尽量将合金配加至目标要求范围,保证S含量低于0.003%,喂丝吹氩5min后加入B-Fe=0.018~0.020;
3)RH精炼:RH尽量不调整成分,所有成分调整要在LF完成,RH到站钢液温度1590~1620℃,要求抽气≯4分钟最小真空度即可达到266Pa以下且真空处理过程中真空度波动反弹≤100Pa,真空处理过程中调节环流氩气流量,保证钢水充分的循环,软吹5~6分钟,总真空处理时间>20min,破空后钢水中[H]≤1.2ppm、[O]≤20ppm、[N]≤40ppm;
4)连铸及稀土处理:强化大包-中包-结晶器之间保证密闭性和中包液面覆盖剂厚度,强化中包氩气吹扫,避免连铸过程中吸气,全程增N量控制在5ppm以内;液相线1520℃,中包过热度控制23~33℃,连铸拉速采用中板铸坯生产拉速执行稳态浇铸,同时在浇注过程中以喂丝的方式在结晶器喂入铈铁稀土包芯线,稀土添加量由稀土包芯线喂丝速度进行调整,生产连铸坯厚度250mm,连铸全程实行保护浇铸;
5)加热:加热温度1220~1260℃,出炉板坯心部温度大于1180℃,确保均热段保温≥60分钟,保证钢坯烧透、均匀;
6)轧制工艺:采用两阶段控轧,一阶段开轧温度大于1150℃,压下率60%~70%;二阶段开轧温度850~900℃,终轧温度控制在750~800℃,每道次压下率均≥12%,最后三道次累计压下率不小于≥40%;轧后水冷:冷却速率14℃/s~21℃/s,终冷温度600~680℃,下线堆垛缓冷;
7)剪切:采用常规空冷方式冷却以后,经过分段剪切,取样后入库。
2.根据权利要求1所述的屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法,其特征在于,钢的成分质量百分组成为:C=0.076%,Si=0.35%,Mn=1.52%,P=0.016%,S=0.004%,Als=0.023%,Nb=0.025%,V=0.007%,Ti=0.013%,Cr=0.036%,Mo=0.008%,Ni=0.020%,Cu=0.018%,Ce=0.0150%,其余为Fe及不可避免的杂质。
3.根据权利要求1所述的屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法,其特征在于,钢的成分质量百分组成为:C=0.080%,Si=0.37,Mn=1.50%,P=0.015%,S=0.005%,Als=0.023%,Nb=0.024%,V=0.006%,Ti=0.013%,Cr=0.038%,Mo=0.009%,Ni=0.021%,Cu=0.017%,Ce=0.0330%,其余为Fe及不可避免的杂质。
CN202110981196.7A 2021-08-25 2021-08-25 一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法 Pending CN113846259A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110981196.7A CN113846259A (zh) 2021-08-25 2021-08-25 一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110981196.7A CN113846259A (zh) 2021-08-25 2021-08-25 一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法

Publications (1)

Publication Number Publication Date
CN113846259A true CN113846259A (zh) 2021-12-28

Family

ID=78976289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110981196.7A Pending CN113846259A (zh) 2021-08-25 2021-08-25 一种屈服强度370MPa级高寒地区用稀土微合金化耐候桥梁钢的制造方法

Country Status (1)

Country Link
CN (1) CN113846259A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624584A (zh) * 2014-11-06 2016-06-01 中国石油天然气集团公司 一种高寒地区用k65控轧钢板、直缝埋弧焊管及其制造方法
CN107574374A (zh) * 2017-08-30 2018-01-12 包头钢铁(集团)有限责任公司 一种屈服强度420MPa级稀土耐候桥梁钢板及其生产方法
CN110129508A (zh) * 2019-05-23 2019-08-16 包头钢铁(集团)有限责任公司 一种提高稀土高强钢冲击韧性的工艺
CN111676425A (zh) * 2020-08-12 2020-09-18 宝武集团鄂城钢铁有限公司 一种极限低温下韧性优疲劳性强的桥梁钢及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624584A (zh) * 2014-11-06 2016-06-01 中国石油天然气集团公司 一种高寒地区用k65控轧钢板、直缝埋弧焊管及其制造方法
CN107574374A (zh) * 2017-08-30 2018-01-12 包头钢铁(集团)有限责任公司 一种屈服强度420MPa级稀土耐候桥梁钢板及其生产方法
CN110129508A (zh) * 2019-05-23 2019-08-16 包头钢铁(集团)有限责任公司 一种提高稀土高强钢冲击韧性的工艺
CN111676425A (zh) * 2020-08-12 2020-09-18 宝武集团鄂城钢铁有限公司 一种极限低温下韧性优疲劳性强的桥梁钢及其制造方法

Similar Documents

Publication Publication Date Title
CN110129508A (zh) 一种提高稀土高强钢冲击韧性的工艺
CN107151763B (zh) 薄规格高强度冷成型用热轧钢带及其生产方法
CN103320713B (zh) 一种高强度耐候钢及制备方法
CN107236905B (zh) 600MPa级高强度低屈强比结构钢板及其制造方法
CN109536846B (zh) 屈服强度700MPa级高韧性热轧钢板及其制造方法
CN108315646B (zh) 一种连铸生产的热轧圆钢及其生产方法
CN112063930B (zh) 稀土处理低成本高韧性低温压力容器钢板及其生产方法
CN109321815B (zh) 一种耐大线能量焊接高强度厚钢板的制造方法
JP7483036B2 (ja) 355MPaグレードの海洋工学用低温耐性の熱間圧延されたH字型鋼及びその製造方法
CN111304531B (zh) 一种屈服强度550MPa级热轧H型钢及其生产方法
CN111455278A (zh) 低温韧性优异的800MPa级冷成型用厚规格热轧高强钢板卷及其制造方法
CN108866444A (zh) 耐腐蚀镜面模具钢及其制备方法
CN110029268B (zh) 一种保心部低温韧性的低温压力容器用09MnNiDR钢板及制造方法
CN101705334A (zh) 一种钢液深脱硫、终脱氧和调质用铝钙镁铈复合合金
CN109161671B (zh) 一种大线能量焊接用高强度eh36钢板及其制造方法
CN109706404B (zh) 一种含钛碳素钢及其生产方法
CN103695801A (zh) 一种高韧性、高耐候钢及其制造方法
CN114672605B (zh) 耐蚀钢筋机械连接套筒、盘条及盘条的生产方法
CN102776443B (zh) 一种420MPa级别低合金高强度特厚钢板及其制造方法
CN112322983A (zh) 一种Ti+Nb微合金化成分汽轴用钢热轧钢带及其制备方法
CN102732784A (zh) 一种590l汽车大梁用钢及其csp制备方法
CN113652615A (zh) 一种高效的管线钢l245n生产工艺
CN114480987A (zh) 一种含稀土的nm600耐磨钢板及其制备方法
CN107904485B (zh) 屈服强度420MPa级冷轧低合金高强钢及其制造方法
CN113667883A (zh) 一种高寒地区用稀土微合金化耐候桥梁钢的制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211228