CN113828331B - 一种钛酸钾-四硫化七铜复合材料及其制备方法和应用 - Google Patents

一种钛酸钾-四硫化七铜复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN113828331B
CN113828331B CN202111029849.8A CN202111029849A CN113828331B CN 113828331 B CN113828331 B CN 113828331B CN 202111029849 A CN202111029849 A CN 202111029849A CN 113828331 B CN113828331 B CN 113828331B
Authority
CN
China
Prior art keywords
potassium titanate
tetrasulfide
heptacopper
composite material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111029849.8A
Other languages
English (en)
Other versions
CN113828331A (zh
Inventor
程刚
杨戈
邱佩
陈章静
熊金艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Wuhan Textile University
Original Assignee
Wuhan Institute of Technology
Wuhan Textile University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology, Wuhan Textile University filed Critical Wuhan Institute of Technology
Priority to CN202111029849.8A priority Critical patent/CN113828331B/zh
Publication of CN113828331A publication Critical patent/CN113828331A/zh
Application granted granted Critical
Publication of CN113828331B publication Critical patent/CN113828331B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/40Carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种钛酸钾‑四硫化七铜复合材料,由粒径在粒径为10~30nm的斜方蓝辉铜矿型四硫化七铜纳米颗粒负载在钛酸钾纳米线表面而成。同时公开了制备方法:将一定量的二氧化钛、氢氧化钾溶液加入到水中,混合均匀后进行水热反应,结束后经离心洗涤、干燥,得到钛酸钾纳米线;将所得钛酸钾纳米线、一定量的二水合乙酸镉加入到乙醇中,升温搅拌条件下加入硫代乙酰胺反应一段时间,再加入氯化亚铜进行反应,再经离心洗涤、干燥,得到钛酸钾‑四硫化七铜复合材料;本发明尺寸较小的四硫化七铜颗粒分布在钛酸钾纳米线上面,四硫化七铜的负载有利于光生电子‑空穴的有效分离,充分发挥光生电子还原性能实现有效光还原二氧化碳生成甲烷和一氧化碳。

Description

一种钛酸钾-四硫化七铜复合材料及其制备方法和应用
技术领域
本发明属于材料技术领域,具体涉及一种钛酸钾-四硫化七铜复合材料及其制备方法和应用。
背景技术
近些年来,对太阳能的应用技术被视为是解决能源和环境问题的潜在途径。光催化技术被广泛的应用于二氧化碳还原以及有机污染物降解。其中,二氧化碳光还原一方面能够抑制二氧化碳过度排放导致的温室效应的恶化,另一方面提供的碳氢燃料能够满足能源需求。但是由于C=O键较高的解离能(~750kJ/mol),需要较高的能量输入才能实现CO2向烃类燃料的转化,因此二氧化碳光还原具有较低的效率,性能良好的光催化剂的寻找迫在眉睫。在各种光催化剂中,钛酸钾作为一种可见光响应光催化剂,带隙值约为3.28eV。钛酸钾具备稳定的物理及化学性质,并且因为其较强的光吸收而被认为是一种具有潜力的半导体光催化剂。然而,因为其较低的导带电位,光激发产生的光生电子表现出较弱的还原性,这也抑制了二氧化碳光催化活性。
为了提升钛酸钾的光催化活性,一些方案用于对钛酸钾进行改性,如贵金属的负载、半导体的复合等应用较多。其中,半导体的复合被认为是一种弥补单一半导体缺陷的有效方式,半导体间的紧密接触及助催化作用能够促进电子-空穴对的有效分离,这对于载流子的寿命具有明显的提升作用。因此,合适的复合半导体同样重要。铜基材料在光催化领域应用广泛,其中四硫化七铜作为一种铜基半导体,带隙为1.89eV,较小的带隙使得其电子-空穴容易重组,在光催化中能够作为助催化剂从而提升半导体光催化性能。基于上述背景,作为助催化剂的四硫化七铜能够修饰钛酸钾,两者之间紧密接触能够实现载流子的有效利用。为了实现单体材料间的有效接触,需要采用合适的合成方法。
发明内容
本发明主要目的在于采用一种四硫化七铜修饰的钛酸钾复合材料,同时提供简单的离子交换法制备钛酸钾-四硫化七铜纳米复合材料,该制备方法工艺简单、成本低,具有较大的应用潜力。
为达到上述目的,采用技术方案如下:
一种钛酸钾-四硫化七铜复合材料,由粒径在粒径为10~30nm的斜方蓝辉铜矿型四硫化七铜纳米颗粒负载在钛酸钾纳米线表面而成。
上述钛酸钾-四硫化七铜复合材料的制备方法,包括以下步骤:
1)将一定量的二氧化钛、氢氧化钾溶液加入到水中,混合均匀后进行水热反应,结束后经离心洗涤、干燥,得到钛酸钾纳米线;
2)将所得钛酸钾纳米线、一定量的二水合乙酸镉加入到乙醇中,升温搅拌条件下加入硫代乙酰胺反应一段时间,再加入氯化亚铜进行反应,再经离心洗涤、干燥,得到钛酸钾-四硫化七铜复合材料。
上述方案中,步骤1中二氧化钛、氢氧化钾的用量比为1~10:40~80。
上述方案中,步骤1中水热反应温度为160~180℃,时间为10~12h。
上述方案中,步骤2中钛酸钾纳米线、二水合乙酸镉、硫代乙酰胺和氯化亚铜的用量摩尔比为(0.00007~0.0005):(0.00004~0.00016):(0.00004~0.00016):(0.00008~0.00032)。
上述方案中,步骤2升温反应温度为80~140℃,加入硫代乙酰胺反应时间为2~4h,加入氯化亚铜的反应时间为1-2h。
上述钛酸钾-四硫化七铜复合材料光催化二氧化碳还原的应用。
本发明的合成方法原理是:将乙酸镉引入到含有钛酸钾纳米线的乙醇溶液中时,搅拌条件下,Cd2+吸附在带负电的钛酸钾表面,回流搅拌下加入硫代乙酰胺生成硫化镉,随后加入氯化亚铜通过离子交换生成四硫化七铜纳米颗粒,于是四硫化七铜负载在钛酸钾纳米线的表面。
所合成的复合材料,由于四硫化七铜纳米颗粒与钛酸钾纳米线之间的紧密接触,促进了光子吸收,并且四硫化七铜起到助催化剂作用,实现光生电子-空穴对的高效分离,从而在光照射下表现较好的光催化性能,其光催化二氧化碳还原产生甲烷和一氧化碳的效率明显优于单一的钛酸钾。
本发明复合材料具有特殊的线状结构、尺寸较小的四硫化七铜颗粒分布在钛酸钾纳米线上面,四硫化七铜的负载有利于光生电子-空穴的有效分离,充分发挥光生电子还原性能实现有效光还原二氧化碳生成甲烷和一氧化碳。本发明显著的提升了单体钛酸钾光催化还原二氧化碳性能,具备良好的应用前景。
本发明产生的有益效果是:
1)本发明通过离子交换法成功合成了钛酸钾-四硫化七铜复合材料,所制备的复合材料中四硫化七铜纳米颗粒负载在钛酸钾纳米线表面,形成有效接触。
2)所合成的钛酸钾-四硫化七铜复合材料,两者间有效接触且Cu7S4起到的助催化剂作用,对电子-空穴的传输利用比较有利。因此,相比于单体,该复合材料表现出明显增强的光催化活性,可有效的将二氧化碳分子转化成甲烷和一氧化碳分子。
3)本发明制备工艺简单,操作方便,合成的催化剂里四硫化七铜纳米颗粒负载在钛酸钾纳米线表面,稳定性较好,复合实际生产需要,有较好的应用潜力。
附图说明
下面将结合附图及实施例对本发明作进一步说明:
图1为实施例1所得的K2Ti8O17-Cu7S4复合材料、K2Ti8O17、以及Cu7S4的XRD图谱;
图2为实施例1所得的K2Ti8O17-Cu7S4复合材料的X射线光电子能谱分析(XPS)图;
图3为实施例1所得K2Ti8O17的扫描电子显微镜图;
图4为实施例1所得Cu7S4的扫描电子显微镜图;
图5为实施例1所得K2Ti8O17-Cu7S4复合材料的扫描电子显微镜图;
图6为实施例1合成的K2Ti8O17-Cu7S4复合材料、K2Ti8O17、以及Cu7S4的光催化CO2还原活性图;
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1
一种钛酸钾-四硫化七铜复合光催化材料制备方法,包括如下步骤:
钛酸钾纳米线的合成:将2mmol的二氧化钛、10mL的KOH溶液(8mmol/L)加入到20mL水中超声溶解得均一混合溶液;将上述混合溶液进行水热反应,在180℃条件下水热反应12h,反应结束后经离心洗涤、干燥,得到钛酸钾纳米线;
钛酸钾-四硫化七铜纳米复合材料的合成:将合成的0.07~0.55mmol钛酸钾纳米线、0.04mmol二水合乙酸镉加入到20mL乙醇中,升温至80℃,然后加入0.04mmol硫代乙酰胺(溶于5mL乙醇)在80℃下回流搅拌4h,再加入0.08mmol氯化亚铜(溶于5mL乙醇)继续回流搅拌2h,经离心洗涤、干燥,得到钛酸钾-四硫化七铜复合材料;
四硫化七铜纳米颗粒的合成:将一定量镉源加入到20mL乙醇中,升温至80℃,然后加入硫代乙酰胺(溶于5mL乙醇)在80℃下回流搅拌4h,再加入氯化亚铜(溶于5mL乙醇)继续回流搅拌2h,经离心洗涤、干燥,得到四硫化七铜纳米颗粒。
将本实施例所得最终产物进行XRD分析,结果如图1所示。由图所得,合成的钛酸钾纳米线其衍射峰与标准图谱JCPDS-80-2023相一致,表明钛酸钾的成功合成。钛酸钾-四硫化七铜复合材料的衍射峰主要与钛酸钾(JCPSD 80-2023)相对应,主要因为四硫化七铜的含量较少,衍射峰不明显。四硫化七铜单体衍射峰与标准图谱JCPDS 22-250相一致。
为了进一步证实合成材料的组成及元素价态,对本实施例合成的复合材料进行XPS分析,如图2所示。XPS总谱图(a)可以看出本实施例合成的复合材料由K,Ti,O,Cu及S五种元素组成。其结果进一步确定了该复合材料的元素组成。XPS高分辨率光谱如图(b-f)所示,通过单元素价态分析,K元素以K+形式存在,Ti元素以Ti4+形式存在,Cu元素对应结合能位置与Cu2+和Cu+对应,S元素结合能表明金属硫化物的形成。XPS结果进一步证实K2Ti8O17-Cu7S4复合材料的合成。
图3-图5分别为本实施例所得钛酸钾、四硫化七铜、钛酸钾-四硫化七铜复合材料的SEM图。如图3所示,本实施例合成的钛酸钾表现为纳米线状形貌:图4为四硫化七铜,本实施例合成的四硫化七铜为纳米颗粒状:图5为钛酸钾-四硫化七铜复合材料,本实施例合成的复合材料表现为颗粒附着的纳米线。
图6为本实施例合成的K2Ti8O17-Cu7S4复合材料、单体K2Ti8O17和单体Cu7S4光催化还原CO2活性测试结果,结果表明,K2Ti8O17-Cu7S4复合材料的活性明显高于单体K2Ti8O17,单体Cu7S4几乎无光催化二氧化碳还原活性,主要起助催化剂作用。
实施例2
钛酸钾-四硫化七铜纳米复合材料的合成:将合成的0.55mmol钛酸钾纳米线、0.04mmol二水合乙酸镉加入到20mL乙醇中,升温至90℃,然后加入0.08mmol硫代乙酰胺(溶于5mL乙醇)在90℃下回流搅拌2h,再加入0.08mmol氯化亚铜(溶于5mL乙醇)继续回流搅拌2h,经离心洗涤、干燥,得到钛酸钾-四硫化七铜复合材料;
将制得的光催化剂用于光催化还原CO2,结果表明,CH4生成速率为1.86μmol·g-1·h-1,CO生成速率为0.34μmol·g-1·h-1
实施例3
钛酸钾-四硫化七铜纳米复合材料的合成:将合成的0.41mmol钛酸钾纳米线、0.08mmol二水合乙酸镉加入到20mL乙醇中,升温至100℃,然后加入0.04mmol硫代乙酰胺(溶于5mL乙醇)在100℃下回流搅拌2h,再加入0.16mmol氯化亚铜(溶于5mL乙醇)继续回流搅拌2h,经离心洗涤、干燥,得到钛酸钾-四硫化七铜复合材料;
将制得的光催化剂用于光催化还原CO2,结果表明,CH4生成速率为2.40μmol·g-1·h-1,CO生成速率为0.15μmol·g-1·h-1
实施例4
钛酸钾-四硫化七铜纳米复合材料的合成:将合成的0.27mmol钛酸钾纳米线、0.08mmol二水合乙酸镉加入到20mL乙醇中,升温至110℃,然后加入0.12mmol硫代乙酰胺(溶于5mL乙醇)在100℃下回流搅拌3h,再加入0.08mmol氯化亚铜(溶于5mL乙醇)继续回流搅拌2h,经离心洗涤、干燥,得到钛酸钾-四硫化七铜复合材料;
将制得的光催化剂用于光催化还原CO2,结果表明,CH4生成速率为4.89μmol·g-1·h-1,CO生成速率为0.21μmol·g-1·h-1
实施例5
钛酸钾-四硫化七铜纳米复合材料的合成:将合成的0.14mmol钛酸钾纳米线、0.12mmol二水合乙酸镉加入到20mL乙醇中,升温至120℃,然后加入0.12mmol硫代乙酰胺(溶于5mL乙醇)在120℃下回流搅拌3h,再加入0.24mmol氯化亚铜(溶于5mL乙醇)继续回流搅拌2h,经离心洗涤、干燥,得到钛酸钾-四硫化七铜复合材料;
将制得的光催化剂用于光催化还原CO2,结果表明,CH4生成速率为3.72μmol·g-1·h-1,CO生成速率为0.22μmol·g-1·h-1
实施例6
钛酸钾-四硫化七铜纳米复合材料的合成:将合成的0.07mmol钛酸钾纳米线、0.16mmol二水合乙酸镉加入到20mL乙醇中,升温至140℃,然后加入0.16mmol硫代乙酰胺(溶于5mL乙醇)在140℃下回流搅拌4h,再加入0.32mmol氯化亚铜(溶于5mL乙醇)继续回流搅拌2h,经离心洗涤、干燥,得到钛酸钾-四硫化七铜复合材料。
将制得的光催化剂用于光催化还原CO2,结果表明,CH4生成速率为2.90μmol·g-1·h-1,CO生成速率为0.11μmol·g-1·h-1

Claims (7)

1.一种钛酸钾-四硫化七铜复合材料,其特征在于由粒径为10~30 nm的斜方蓝辉铜矿型四硫化七铜纳米颗粒负载在钛酸钾K2Ti8O17纳米线表面而成。
2.权利要求1所述钛酸钾-四硫化七铜复合材料的制备方法,其特征在于包括以下步骤:
1)将一定量的二氧化钛、氢氧化钾溶液加入到水中,混合均匀后进行水热反应,结束后经离心洗涤、干燥,得到钛酸钾纳米线;
2)将所得钛酸钾纳米线、一定量的二水合乙酸镉加入到乙醇中,升温搅拌条件下加入硫代乙酰胺反应一段时间,再加入氯化亚铜进行反应,再经离心洗涤、干燥,得到钛酸钾-四硫化七铜复合材料。
3.如权利要求2所述钛酸钾-四硫化七铜复合材料的制备方法,其特征在于步骤1)中将2mmol的二氧化钛、10 mL的KOH溶液加入到20 mL水中混合均匀;所述KOH溶液浓度为8mmol/L。
4.如权利要求2所述钛酸钾-四硫化七铜复合材料的制备方法,其特征在于步骤1)中水热反应温度为160~180 ℃,时间为10~12 h。
5.如权利要求2所述钛酸钾-四硫化七铜复合材料的制备方法,其特征在于步骤2)中钛酸钾纳米线、二水合乙酸镉、硫代乙酰胺和氯化亚铜的用量摩尔比为(0.00007~0.0005):(0.00004~0.00016):(0.00004~0.00016):(0.00008~0.00032)。
6.如权利要求2所述钛酸钾-四硫化七铜复合材料的制备方法,其特征在于步骤2)升温反应温度为80~140 ℃,加入硫代乙酰胺反应时间为2~4h,加入氯化亚铜的反应时间为1-2h。
7.权利要求1所述钛酸钾-四硫化七铜复合材料在光催化二氧化碳还原的应用。
CN202111029849.8A 2021-09-03 2021-09-03 一种钛酸钾-四硫化七铜复合材料及其制备方法和应用 Active CN113828331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111029849.8A CN113828331B (zh) 2021-09-03 2021-09-03 一种钛酸钾-四硫化七铜复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111029849.8A CN113828331B (zh) 2021-09-03 2021-09-03 一种钛酸钾-四硫化七铜复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113828331A CN113828331A (zh) 2021-12-24
CN113828331B true CN113828331B (zh) 2022-12-06

Family

ID=78962118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111029849.8A Active CN113828331B (zh) 2021-09-03 2021-09-03 一种钛酸钾-四硫化七铜复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113828331B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115518690B (zh) * 2022-07-28 2023-11-10 广东工业大学 一种Cu7S4-MOF复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465017A (zh) * 2018-11-19 2019-03-15 黑龙江大学 一种四硫化七铜-八硫化九铜异质结构空心立方体催化剂的可控制备方法及应用
CN110496623A (zh) * 2019-07-05 2019-11-26 重庆大学 一种催化转化碳烟颗粒的催化剂CuO/K2Ti4O9及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109465017A (zh) * 2018-11-19 2019-03-15 黑龙江大学 一种四硫化七铜-八硫化九铜异质结构空心立方体催化剂的可控制备方法及应用
CN110496623A (zh) * 2019-07-05 2019-11-26 重庆大学 一种催化转化碳烟颗粒的催化剂CuO/K2Ti4O9及其制备方法

Also Published As

Publication number Publication date
CN113828331A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
Ran et al. Cocatalysts in semiconductor‐based photocatalytic CO2 reduction: achievements, challenges, and opportunities
Tahir Construction of a stable two-dimensional MAX supported protonated graphitic carbon nitride (pg-C3N4)/Ti3AlC2/TiO2 Z-scheme multiheterojunction system for efficient photocatalytic CO2 reduction through dry reforming of methanol
Qiao et al. CdS nanoparticles modified Ni@ NiO spheres as photocatalyst for oxygen production in water oxidation system and hydrogen production in water reduction system
Cao et al. Carbon-based H2-production photocatalytic materials
Ma et al. Ultrathin Co (Ni)-doped MoS 2 nanosheets as catalytic promoters enabling efficient solar hydrogen production
Quiroz-Cardoso et al. Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light
Zhu et al. Recent Advances in Cu‐Based Cocatalysts toward Solar‐to‐Hydrogen Evolution: Categories and Roles
CN109331883A (zh) 一种CdS/金属有机框架复合光催化材料及其制备方法和应用
Li et al. ZnO/CdSe-diethylenetriamine nanocomposite as a step-scheme photocatalyst for photocatalytic hydrogen evolution
Wang et al. Dual non-metal atom doping enabled 2D 1T-MoS2 cocatalyst with abundant edge-S active sites for efficient photocatalytic H2 evolution
Zhang et al. Nanoparticle metal Ni cocatalyst on NiTe2 microsphere for improved photocatalytic hydrogen evolution
Zhang et al. Rational design of Ag/CuO@ ZnIn2S4 S-scheme plasmonic photocatalyst for highly selective CO2 conversion
CN113058617B (zh) 一种光催化剂及其制备方法和应用
Jia et al. Pt-GdCrO3-Bi2MoO6 ternary heterojunction with high photocatalytic activities for CO2 reduction and water purification
Xu et al. Enhanced photocatalytic hydrogen evolution over coal-based carbon quantum dots modified CoMoO4/g-C3N4
Liu et al. Improved charge separation and carbon dioxide photoreduction performance of surface oxygen vacancy-enriched zinc ferrite@ titanium dioxide hollow nanospheres with spatially separated cocatalysts
Xie et al. A novel 3D floral spherical composites with double pn heterojunctions for enhanced photocatalytic hydrogen production under visible light
Jin et al. Fabrication of a novel Ni 3 N/Ni 4 N heterojunction as a non-noble metal co-catalyst to boost the H 2 evolution efficiency of Zn 0.5 Cd 0.5 S
Wang et al. Rational construction of graphdiyne (g-CnH2n− 2) coupling with Co-Co PBA S-scheme heterojunctions for efficient photocatalytic hydrogen production
Wang et al. Fabricating NixCo1− xO@ C cocatalysts sensitized by CdS through electrostatic interaction for efficient photocatalytic H2 evolution
CN113828331B (zh) 一种钛酸钾-四硫化七铜复合材料及其制备方法和应用
Devarayapalli et al. 2D ultrathin ZnIn2S4 nanosheets anchored on octahedral TiO2/Ti3C2 Z-scheme heterostructure for enhanced photocatalytic CO2 reduction
Yang et al. Loading density modulation of Zn0. 5Cd0. 5S nanoparticles on ZnS (en) 0.5 nanosheets with effective hole transfer channels towards highly efficient hydrogen evolution
Gao et al. Anchoring Zn 0.5 Cd 0.5 S solid solution onto 2D porous Co–CoO nanosheets for highly improved photocatalytic H 2 generation
Kong et al. Regulating CHO* intermediate pathway towards the significant acceleration of photocatalytic CO2 reduction to CH4 through rGO-coated ultrafine Pd nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant