CN113783438A - 一种纹波小的特高压直流发生器 - Google Patents

一种纹波小的特高压直流发生器 Download PDF

Info

Publication number
CN113783438A
CN113783438A CN202110864115.5A CN202110864115A CN113783438A CN 113783438 A CN113783438 A CN 113783438A CN 202110864115 A CN202110864115 A CN 202110864115A CN 113783438 A CN113783438 A CN 113783438A
Authority
CN
China
Prior art keywords
voltage
module
direct current
extra
secondary windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110864115.5A
Other languages
English (en)
Other versions
CN113783438B (zh
Inventor
张宏达
雷民
周峰
姚力
李熊
许灵洁
岳长喜
李登云
朱凯
吕几凡
姜杏辉
鲍清华
陈欢军
严华江
周永佳
胡瑛俊
陈骁
郭鹏
刘勇
南昊
孙剑桥
丁徐楠
孙钢
章江铭
张卫华
刘思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Electric Power Research Institute Co Ltd CEPRI
Marketing Service Center of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
China Electric Power Research Institute Co Ltd CEPRI
Marketing Service Center of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Electric Power Research Institute Co Ltd CEPRI, Marketing Service Center of State Grid Zhejiang Electric Power Co Ltd filed Critical China Electric Power Research Institute Co Ltd CEPRI
Priority to CN202110864115.5A priority Critical patent/CN113783438B/zh
Publication of CN113783438A publication Critical patent/CN113783438A/zh
Application granted granted Critical
Publication of CN113783438B publication Critical patent/CN113783438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/064Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode with several outputs
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/066Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode particular circuits having a special characteristic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/068Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode mounted on a transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • H02M7/103Containing passive elements (capacitively coupled) which are ordered in cascade on one source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage
    • H02M7/103Containing passive elements (capacitively coupled) which are ordered in cascade on one source
    • H02M7/106With physical arrangement details

Abstract

本发明属于特高压技术领域,具体涉及一种纹波小的特高压直流发生器。针对现有高压直流发生器的谐波较大的不足,本发明采用如下技术方案:一种纹波小的特高压直流发生器,所述纹波小的特高压直流发生器包括:整流滤波模块;稳压模块;稳压控制模块;桥式逆变器;移相中频高压变压器;倍压整流模块;其中,所述移相中频高压变压器包括一初级绕组和六个副级绕组,所述初级绕组与所述桥式逆变器的输出端相连,每个副级绕组连接一个多阶倍压电路,相邻副级绕组间电压相位差为60°,每两个副级绕组为一对,对内两个副级绕组上的两个多阶倍压电路对称设置。本发明的纹波小的特高压直流发生器的有益效果是:降低谐波和纹波。

Description

一种纹波小的特高压直流发生器
技术领域
本发明属于特高压技术领域,具体涉及一种纹波小的特高压直流发生器。
背景技术
目前高压直流发生器可以分成三种类型。第一种是由工频变压器调压电路、桥式整流滤波电路(将输入的交流市电转换为直流电)、稳压电路、桥式逆变输出电路(将稳压电路输出的直流电转换成交流电)和倍压整流高压输出电路组成的高工作频率、大功率输出的高压直流发生器。该种高压直流发生器由于采用了工频变压器进行调压,输出的高压直流具有较大的纹波,设备的重量体积也较大。
第二种高压直流发生器是由工频变压器调压电路和直流倍压电路组成的工频倍压高压直流发生器。该种高压直流发生器具有电路简单、不怕潮湿、不怕震动的特点,极其适用于农村基层电网。但由于该种高压直流发生器需要较大的工频变压器,而且倍压电路需要较大的滤波电容,因此目前仅适用于小功率的产品。
第三种高压直流发生器采用了脉宽调制技术、大功率全控型自关断器件IGBT、MOSFET及中频逆变变压器等。在电路的设计上,该种高压直流发生器采用PWM(脉冲宽度调制)脉冲控制的直流降压斩波电路来替代常规工频变压器调压方式,减小了产品的体积和重量,降低了载波,减小了谐波,正逐步占据市场。但是,对于高要求的后端设备和实验环境(如1000kV),该种高压直流发生器的谐波仍然较大,还有待改进。
发明内容
本发明针对现有高压直流发生器的纹波较大的不足,提供一种纹波小的特高压直流发生器,在不提高载波频率的条件下,减小纹波。
为实现上述目的,本发明采用如下技术方案:一种纹波小的特高压直流发生器,所述纹波小的特高压直流发生器包括:
整流滤波模块,所述整流滤波模块将输入的交流市电转换为直流电;
稳压模块,所述稳压模块与所述整流滤波模块的输出端相连接;
稳压控制模块,所述稳压控制模块控制所述稳压模块;
桥式逆变器,所述桥式逆变器与所述稳压模块的输出端相连接,所述桥式逆变器将稳压模块输出的直流电转换成交流电;
移相中频高压变压器,所述移相中频高压变压器将所述桥式逆变器输出的交流电转换成直流电;
倍压整流模块,所述倍压整流模块将所述移相中频高压变压器输出的直流电放大;
其中,所述移相中频高压变压器包括一初级绕组和六个副级绕组,所述倍压整流模块包括六个多阶倍压电路,所述初级绕组与所述桥式逆变器的输出端相连,每个副级绕组连接一个多阶倍压电路,相邻副级绕组间电压相位差为60°,每两个副级绕组为一对,对内两个副级绕组上的两个多阶倍压电路对称设置,对内第一副级绕组的异名端与第二副级绕组的同名端相连接并接地,三对副级绕组并联输出。
本发明的纹波小的特高压直流发生器,运用移相中频高压变压器,采用移相中频变移相后倍压整流的方法,移相变压器副边绕组根据相位异同,共分为6组,因各组之间具有一定的相位差,这样各功率单元独立整流(即移相整流),就可以消除电网侧(输入)因单元内整流器件工作而产生的谐波电流,输入电流的总谐波含量(THD)极低,远小于国家标准允许的要求,并且能保持近似为1的输入功率因数,极大的改善了网侧电源的质量;在变压器的两个副级绕组上对称地设置有多阶倍压电路,两路多阶倍压电路相对的纹波电流会互相抵消,适当的调整倍压电路的阶数以及电容的大小,可使得输出电压的纹波大大减少。当副级绕组数量越多,谐波越小,纹波也越小,但是,副级绕组数量越多,结构越复杂、成本越高,也会间接导致可能的故障越多。采用六组副级绕组,可以兼顾谐波小、纹波小和结构简单、成本不至过高。
作为改进,所述移相中频变压器的初级绕组星形连接,所述六个副级绕组延边三角形连接。
作为改进,所述多阶倍压电路包括串联的多个整流电容、多个整流二极管和多个倍压大电容。
作为改进,所述六个副级绕组共用倍压大电容,减少零件数量的同时,保证输出电压稳定。
作为改进,所述倍压整流模块集成到所述移相中频高压变压器上。相比移相中频高压变压器和倍压整流模块相互独立设置的结构,新集成结构,精简了结构,减小了体积重量,增加了抗干扰能力强,更加可靠安全。
作为改进,所述移相中频高压变压器包括变压器绝缘筒、设于所述变压器绝缘筒中的初级绕组和六个副级绕组,所述倍压整流模块设于所述变压器绝缘筒上。
作为改进,所述副级绕组的多个整流电容竖直排布,所述六个副级绕组呈正六边形分布,所述多个倍压大电容竖直排布且位于所述正六边形的中心。
作为改进,所述变压器绝缘筒上设有呈正三角形分布的三块安装板,同一对的两个副级绕组设于同一所述安装板上,同一对的两个副级绕组间设有两块隔离板,相邻安装板间具有绝缘空间。安装板既起到安装作用,也起到绝缘作用。
作为改进,所述变压器绝缘筒上设有倍压绝缘套。
作为改进,根据不同的电压等级、负载状况以及用户的要求,可以针对性实现各种不同串联级数的高压倍压。
作为改进,所述纹波小的特高压直流发生器还包括高压电流取样模块和高压电流指示模块,所述高压电流取样模块设于所述倍压整流模块的下游。
作为改进,所述纹波小的特高压直流发生器还包括高压电压指示模块,所述高压电压指示模块设于所述倍压整流模块的下游。
作为改进,所述移相中频高压变压器处还设有保护电路。
作为改进,所述纹波小的特高压直流发生器还包括电压反馈模块,所述电压反馈模块采集所述稳压模块和所述桥式逆变器之间的电压,所述电压反馈模块还采集倍压整流模块下游的电压,所述纹波小的特高压直流发生器还包括直流高压调节模块,所述直流高压调节模块连接所述电压反馈模块和所述稳压控制模块。
本发明的纹波小的特高压直流发生器的有益效果是:运用移相中频高压变压器,采用移相中频变移相后倍压整流的方法,移相变压器副边绕组根据相位异同,共分为6组,因各组之间具有一定的相位差,这样各功率单元独立整流(即移相整流),就可以消除电网侧(输入)因单元内整流器件工作而产生的谐波电流,输入电流的总谐波含量(THD)极低,远小于国家标准允许的要求,并且能保持近似为1的输入功率因数,极大的改善了网侧电源的质量;在变压器的两个副级绕组上对称地设置有多阶倍压电路,两路多阶倍压电路相对的纹波电流会互相抵消,适当的调整倍压电路的阶数以及电容的大小,可使得输出电压的纹波大大减少。
附图说明
图1是本发明实施例一的特高压直流发生器的结构框图。
图2是本发明实施例一的特高压直流发生器的移相中频高压变压器和倍压整流模块的电路原理图。
图3至图5是本发明实施例一的特高压直流发生器的移相中频高压变压器和倍压整流模块的结构示意图。
图中,1、移相中频高压变压器;11、初级绕组;12、副级绕组;
2、倍压整流模块;21、整流电容;22、整流二极管;23、倍压大电容;24、安装板;25、隔离板。
具体实施方式
下面结合本发明创造实施例的附图,对本发明创造实施例的技术方案进行解释和说明,但下述实施例仅为本发明创造的优选实施例,并非全部。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的其他实施例,都属于本发明创造的保护范围。
参见图1至图5,本发明的一种纹波小的特高压直流发生器,所述纹波小的特高压直流发生器包括:
整流滤波模块,所述整流滤波模块将输入的交流市电转换为直流电;
稳压模块,所述稳压模块与所述整流滤波模块的输出端相连接;
稳压控制模块,所述稳压控制模块控制所述稳压模块;
桥式逆变器,所述桥式逆变器与所述稳压模块的输出端相连接,所述桥式逆变器将稳压模块输出的直流电转换成交流电;
移相中频高压变压器,所述移相中频高压变压器将所述桥式逆变器输出的交流电转换成直流电;
倍压整流模块,所述倍压整流模块将所述移相中频高压变压器输出的直流电放大;
其中,所述移相中频高压变压器包括一初级绕组和六个副级绕组,所述倍压整流模块包括六个多阶倍压电路,所述初级绕组与所述桥式逆变器的输出端相连,每个副级绕组连接一个多阶倍压电路,相邻副级绕组间电压相位差为60°,每两个副级绕组为一对,对内两个副级绕组上的两个多阶倍压电路对称设置,对内第一副级绕组的异名端与第二副级绕组的同名端相连接并接地,三对副级绕组并联输出。
本发明的纹波小的特高压直流发生器,运用移相中频高压变压器,采用移相中频变移相后倍压整流的方法,移相变压器副边绕组根据相位异同,共分为6组,因各组之间具有一定的相位差,这样各功率单元独立整流(即移相整流),就可以消除电网侧(输入)因单元内整流器件工作而产生的谐波电流,输入电流的总谐波含量(THD)极低,远小于国家标准允许的要求,并且能保持近似为1的输入功率因数,极大的改善了网侧电源的质量;在变压器的两个副级绕组上对称地设置有多阶倍压电路,两路多阶倍压电路相对的纹波电流会互相抵消,适当的调整倍压电路的阶数以及电容的大小,可使得输出电压的纹波大大减少。
实施例一
参见图1至图5,本发明实施例一的一种纹波小的特高压直流发生器,所述纹波小的特高压直流发生器包括:
整流滤波模块,所述整流滤波模块将输入的交流市电转换为直流电;
稳压模块,所述稳压模块与所述整流滤波模块的输出端相连接;
稳压控制模块,所述稳压控制模块控制所述稳压模块;
桥式逆变器,所述桥式逆变器与所述稳压模块的输出端相连接,所述桥式逆变器将稳压模块输出的直流电转换成交流电;
移相中频高压变压器,所述移相中频高压变压器将所述桥式逆变器输出的交流电转换成直流电;
倍压整流模块,所述倍压整流模块将所述移相中频高压变压器输出的直流电放大;
其中,所述移相中频高压变压器包括一初级绕组和六个副级绕组,所述倍压整流模块包括六个多阶倍压电路,所述初级绕组与所述桥式逆变器的输出端相连,每个副级绕组连接一个多阶倍压电路,相邻副级绕组间电压相位差为60°,每两个副级绕组为一对,对内两个副级绕组上的两个多阶倍压电路对称设置,对内第一副级绕组的异名端与第二副级绕组的同名端相连接并接地,三对副级绕组并联输出。
本实施例中,所述移相中频变压器的初级绕组星形连接,所述六个副级绕组延边三角形连接。
本实施例中,所述多阶倍压电路包括串联的多个整流电容、多个整流二极管和多个倍压大电容。
本实施例中,所述六个副级绕组共用倍压大电容,减少零件数量的同时,保证输出电压稳定。
本实施例中,所述倍压整流模块集成到所述移相中频高压变压器上。相比移相中频高压变压器和倍压整流模块相互独立设置的结构,新集成结构,精简了结构,减小了体积重量,增加了抗干扰能力强,更加可靠安全。倍压整流模块将变压器副边绕组提供的交流电源整流为脉动的直流电源,经过大容量的电解电容滤波后,可以得到较为稳定的直流电源。
本实施例中,所述移相中频高压变压器包括变压器绝缘筒、设于所述变压器绝缘筒中的初级绕组和六个副级绕组,所述倍压整流模块设于所述变压器绝缘筒上。
本实施例中,所述副级绕组的多个整流电容竖直排布,所述六个副级绕组呈正六边形分布,所述多个倍压大电容竖直排布且位于所述正六边形的中心。
本实施例中,所述变压器绝缘筒上设有呈正三角形分布的三块安装板,同一对的两个副级绕组设于同一所述安装板上,同一对的两个副级绕组间设有两块隔离板,相邻安装板间具有绝缘空间。安装板既起到安装作用,也起到绝缘作用。
本实施例中,所述变压器绝缘筒上设有倍压绝缘套。
本实施例中,根据不同的电压等级、负载状况以及用户的要求,可以针对性实现各种不同串联级数的高压倍压。
本实施例中,倍压整流模块的最大场强不大于2.5kV/cm。
本实施例中,所述纹波小的特高压直流发生器还包括高压电流取样模块和高压电流指示模块,所述高压电流取样模块设于所述倍压整流模块的下游。
本实施例中,所述纹波小的特高压直流发生器还包括高压电压指示模块,所述高压电压指示模块设于所述倍压整流模块的下游。
本实施例中,所述移相中频高压变压器处还设有保护电路。
本实施例中,所述纹波小的特高压直流发生器还包括电压反馈模块,所述电压反馈模块采集所述稳压模块和所述桥式逆变器之间的电压,所述电压反馈模块还采集倍压整流模块下游的电压,所述纹波小的特高压直流发生器还包括直流高压调节模块,所述直流高压调节模块连接所述电压反馈模块和所述稳压控制模块。
本发明实施例一的纹波小的特高压直流发生器的有益效果是:采用移相中频变移相后倍压整流的方法,在不提高载波频率的前提下,大大减小输出的谐波,最大限度的消除了高压电源输出电压中的谐波含量,电压波形接近于标准的正弦波,大大改善了电源的输出性能实现“完美无谐波”,减小了器件的发热情况,系统调整平稳,纹波极小;把移相中频高压变压器和移相倍压整流模块一体化设计,精简了设备结构,使产品体积重量小、抗干扰能力强、设备运行平稳,安全可靠性进一步提高,根据不同的电压等级、负载状况以及用户的要求,可以选择不同串联级数的高压倍压。
以上所述,仅为本发明创造的具体实施方式,但本发明创造的保护范围并不局限于此,熟悉该本领域的技术人员应该明白本发明创造包括但不限于上面具体实施方式中描述的内容。任何不偏离本发明创造的功能和结构原理的修改都将包括在权利要求书的范围中。

Claims (10)

1.一种纹波小的特高压直流发生器,其特征在于:所述纹波小的特高压直流发生器包括:
整流滤波模块,所述整流滤波模块将输入的交流市电转换为直流电;
稳压模块,所述稳压模块与所述整流滤波模块的输出端相连接;
稳压控制模块,所述稳压控制模块控制所述稳压模块;
桥式逆变器,所述桥式逆变器与所述稳压模块的输出端相连接,所述桥式逆变器将稳压模块输出的直流电转换成交流电;
移相中频高压变压器,所述移相中频高压变压器将所述桥式逆变器输出的交流电转换成直流电;
倍压整流模块,所述倍压整流模块将所述移相中频高压变压器输出的直流电放大;
其中,所述移相中频高压变压器包括一初级绕组和六个副级绕组,所述倍压整流模块包括六个多阶倍压电路,所述初级绕组与所述桥式逆变器的输出端相连,每个副级绕组连接一个多阶倍压电路,相邻副级绕组间电压相位差为60°,每两个副级绕组为一对,对内两个副级绕组上的两个多阶倍压电路对称设置,对内第一副级绕组的异名端与第二副级绕组的同名端相连接并接地,三对副级绕组并联输出。
2.根据权利要求1所述的一种纹波小的特高压直流发生器,其特征在于:所述移相中频变压器的初级绕组星形连接,所述六个副级绕组延边三角形连接。
3.根据权利要求1所述的一种纹波小的特高压直流发生器,其特征在于:所述多阶倍压电路包括串联的多个整流电容、多个整流二极管和多个倍压大电容。
4.根据权利要求3所述的一种纹波小的特高压直流发生器,其特征在于:所述六个副级绕组共用倍压大电容。
5.根据权利要求4所述的一种纹波小的特高压直流发生器,其特征在于:所述倍压整流模块集成到所述移相中频高压变压器上。
6.根据权利要求5所述的一种纹波小的特高压直流发生器,其特征在于:所述移相中频高压变压器包括变压器绝缘筒、设于所述变压器绝缘筒中的初级绕组和六个副级绕组,所述倍压整流模块设于所述变压器绝缘筒上。
7.根据权利要求6所述的一种纹波小的特高压直流发生器,其特征在于:所述副级绕组的多个整流电容竖直排布,所述六个副级绕组呈正六边形分布,所述多个倍压大电容竖直排布且位于所述正六边形的中心。
8.根据权利要求7所述的一种纹波小的特高压直流发生器,其特征在于:所述变压器绝缘筒上设有呈正三角形分布的三块安装板,同一对的两个副级绕组设于同一所述安装板上,同一对的两个副级绕组间设有两块隔离板,相邻安装板间具有绝缘空间。
9.根据权利要求1所述的一种纹波小的特高压直流发生器,其特征在于:所述纹波小的特高压直流发生器还包括高压电流取样模块和高压电流指示模块,所述高压电流取样模块设于所述倍压整流模块的下游;所述纹波小的特高压直流发生器还包括高压电压指示模块,所述高压电压指示模块设于所述倍压整流模块的下游;所述移相中频高压变压器处还设有保护电路。
10.根据权利要求1所述的一种纹波小的特高压直流发生器,其特征在于:所述纹波小的特高压直流发生器还包括电压反馈模块,所述电压反馈模块采集所述稳压模块和所述桥式逆变器之间的电压,所述电压反馈模块还采集倍压整流模块下游的电压,所述纹波小的特高压直流发生器还包括直流高压调节模块,所述直流高压调节模块连接所述电压反馈模块和所述稳压控制模块。
CN202110864115.5A 2021-07-29 2021-07-29 一种纹波小的特高压直流发生器 Active CN113783438B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110864115.5A CN113783438B (zh) 2021-07-29 2021-07-29 一种纹波小的特高压直流发生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110864115.5A CN113783438B (zh) 2021-07-29 2021-07-29 一种纹波小的特高压直流发生器

Publications (2)

Publication Number Publication Date
CN113783438A true CN113783438A (zh) 2021-12-10
CN113783438B CN113783438B (zh) 2022-04-15

Family

ID=78836471

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110864115.5A Active CN113783438B (zh) 2021-07-29 2021-07-29 一种纹波小的特高压直流发生器

Country Status (1)

Country Link
CN (1) CN113783438B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201181304Y (zh) * 2008-03-19 2009-01-14 苏州市华电电气技术有限公司 直流高压发生器
CN201290070Y (zh) * 2008-11-07 2009-08-12 苏州市华电电气技术有限公司 一种特高压直流发生器
CN202424546U (zh) * 2010-08-30 2012-09-05 中国电力科学研究院 高稳定度特高压直流高压发生器
CN106452160A (zh) * 2016-10-12 2017-02-22 苏州科技大学 多阶倍压低纹波直流高压发生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201181304Y (zh) * 2008-03-19 2009-01-14 苏州市华电电气技术有限公司 直流高压发生器
CN201290070Y (zh) * 2008-11-07 2009-08-12 苏州市华电电气技术有限公司 一种特高压直流发生器
CN202424546U (zh) * 2010-08-30 2012-09-05 中国电力科学研究院 高稳定度特高压直流高压发生器
CN106452160A (zh) * 2016-10-12 2017-02-22 苏州科技大学 多阶倍压低纹波直流高压发生装置

Also Published As

Publication number Publication date
CN113783438B (zh) 2022-04-15

Similar Documents

Publication Publication Date Title
EP3514936B1 (en) Hybrid dc converter for offshore wind farm
US8853886B2 (en) System for use of static inverters in variable energy generation environments
US9024465B2 (en) Uninterruptible power system
Akagi The state-of-the-art of active filters for power conditioning
Kasper et al. Hardware verification of a hyper-efficient (98%) and super-compact (2.2 kW/dm 3) isolated AC/DC telecom power supply module based on multi-cell converter approach
Rekola et al. Comparison of line and load converter topologies in a bipolar LVDC distribution
Komeda et al. A power decoupling control method for an isolated single-phase AC-to-DC converter based on direct AC-to-AC converter topology
CN114123268A (zh) 一种集中换流高频升压火电储能系统
CN209860804U (zh) 一种基于级联式高压变频器的单相电源拓扑结构
CN113783438B (zh) 一种纹波小的特高压直流发生器
CN201750345U (zh) 臭氧发生器用调频电源及臭氧发生器
CN107733245B (zh) 一种高效调幅恒高频电除尘电源电路
Sayed et al. DC-DC converter with three-phase power factor correction for arc welder
CN201616768U (zh) 一种中频电源电路
Amei et al. Characteristics of new single phase voltage doubler rectifier circuit using the partial switching strategy
CN214412581U (zh) 一种降低整流电路输入电流谐波与母线电压纹波的电路
CN211481147U (zh) 一种具有直流电抗器的整流滤波装置
CN115347804B (zh) Igbt三分立交错式pfc型电源装置及其控制方法
CN2363421Y (zh) 带有功率因数校正和谐波抑制电路的三相整流电路
Sayed et al. Steady-state analysis of soft-switched three-phase grid-tie DC-AC converter isolated by high-frequency transformer for high efficiency and low THD
Suryawanshi et al. Resonant converter in high power factor, high voltage dc applications
CN217335454U (zh) 一种高压大功率磁悬浮工业控制电源
CN212518413U (zh) 一种三相背景谐波隔离器
Limpaecher et al. Resonant link PFN charger and modulator power supply
CN212435603U (zh) 一种混合式海上风场变流器拓扑结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant