CN113773110A - 一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法 - Google Patents

一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法 Download PDF

Info

Publication number
CN113773110A
CN113773110A CN202111160719.8A CN202111160719A CN113773110A CN 113773110 A CN113773110 A CN 113773110A CN 202111160719 A CN202111160719 A CN 202111160719A CN 113773110 A CN113773110 A CN 113773110A
Authority
CN
China
Prior art keywords
carbon nano
nano tube
fly ash
preparation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111160719.8A
Other languages
English (en)
Other versions
CN113773110B (zh
Inventor
闫姝
任晓琦
冯雪
黄凯
邢鹏飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202111160719.8A priority Critical patent/CN113773110B/zh
Publication of CN113773110A publication Critical patent/CN113773110A/zh
Application granted granted Critical
Publication of CN113773110B publication Critical patent/CN113773110B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/19Alkali metal aluminosilicates, e.g. spodumene
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法,属于废渣多孔材料绿色制备技术领域。该制备方法包括粉煤灰及碳纳米管的预处理、碱性硅溶胶激发溶液配置、碳纳米管与碱性硅溶胶激发溶液混合、混合浆料造孔、多孔前驱体低温固化成型和高温烧结陶瓷化过程。本发明以粉煤灰为原料参与碱性无机前驱体的室温合成以及碳纳米管的同步均匀分散,结合室温造孔及后续高温煅烧处理,制备了多孔陶瓷材料,解决了粉煤灰的资源化利用及多孔陶瓷的绿色制备和强度等问题,获得了一种碳纳米管/白榴石多孔陶瓷复合材料,提高了多孔材料的力学强度和孔隙率,实现了粉煤灰的再利用和低成本纳米强化多孔材料的制备。

Description

一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材 料的制备方法
技术领域
本发明属于废渣多孔材料绿色制备技术领域,涉及一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法,尤其涉及一种利用粉煤灰为原料参与碱性无机前驱体的室温合成以及碳纳米管的均匀分散特性,结合后续高温煅烧,制备碳纳米管/白榴石多孔陶瓷复合材料的方法。
背景技术
陶瓷材料本身具有稳定的物化性质,例如耐磨损、耐高温、耐腐蚀等优点,因此多孔陶瓷同样也具备陶瓷的普遍优点。除此之外,由于多孔陶瓷具有一定的气孔率,它还可以用作过滤、隔音、隔热保温材料等。常用的多孔陶瓷成型方法有颗粒堆积烧结法、模板法、溶胶-凝胶法、添加造孔剂法和直接发泡成形法等。这些方法由于制备多孔陶瓷的原材料纯度高,工艺流程长,孔隙率和强度等性能受原料纯度影响很大,因而在实际大规模生产中有一定局限。因此,选择低成本丰富的原材料尤为重要。
粉煤灰俗称飞灰,是火电厂排放的工业废弃物,如果不对粉煤灰加以处理,一旦排放到环境中,将会对水、空气、土壤造成不同程度的污染和破坏,同时对生物体也产生极大危害,粉煤灰主要以二氧化硅、氧化铝成分为主,在适当的条件下可以与碱性溶液反应而激活,可作为工业原料,应用于建材和玻璃等材料的制备,而适当的高温处理工艺,更能使其物相转化,直接获得所需组成的陶瓷材料,工艺简单,方便可控。
碳纳米管是以石墨烯卷曲而成的一维量子材料,长径比大,比表面积大,力学性能优异;相比于石墨烯来说,成本低廉且容易获得,经过表面处理后的碳纳米管具有丰富的官能团,可实现与不同基体材料的结合。多孔陶瓷的强度往往较低,一般来说,陶瓷的气孔率越高,陶瓷的强度越低,在保证高多孔陶瓷气孔率的同时,也要保证合理的陶瓷强度。在气孔率一定的情况下,气孔分布越均匀,陶瓷的强度越高,陶瓷基体的均匀化程度越高,颗粒间的结合力越强,陶瓷的强度越高,所以合理的优化制备工艺对多孔陶瓷的制备是相当重要的,将碳纳米管引入陶瓷材料基体中,可以实现孔隙结构优化的同时,提高多孔材料的强度,更赋予材料功能化优势。
发明内容
本发明针对碳纳米管/白榴石多孔陶瓷复合材料的低成本绿色制备的问题,提供了一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法,该方法以粉煤灰为原料与碱性无机前驱体在室温下反应,表面功能化的碳纳米管在碱性混合液中均匀分散,通过室温前驱体合成及高温煅烧工艺,实现碳纳米管/白榴石多孔陶瓷复合材料的低成本绿色制备,解决了碳纳米管的分散以及粉煤灰为原料制备多孔陶瓷的问题。
本发明采用如下技术方案:
一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法,以粉煤灰粉体、功能化的碳纳米管、氢氧化钾、硅溶胶为主要原料,通过室温发泡结合高温煅烧,包括原料粉煤灰及碳纳米管的预处理、配置碱性硅溶胶激发溶液、碳纳米管与碱性硅溶胶激发溶液的混合、混合浆料造孔、多孔前驱体低温固化成型、高温烧结陶瓷化等步骤,获得了碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料。所获得的复合材料孔隙在30%-50%,孔隙分布均匀,力学强度高。具体包括以下步骤:
步骤一、粉煤灰及碳纳米管的预处理
将粉煤灰研磨成1-5μm,并将碳纳米管采用硫酸溶液进行羧基化处理,使其表面具有羧基等功能基团。
所述粉煤灰为低钙粉煤灰,其成分为:质量分数为50-55wt%的SiO2、质量分数为30-38wt%的Al2O3、质量分数为2-3.5wt%的CaO、质量分数为0-4wt%的Fe2O3和质量分数为0-1wt%的MgO。
步骤二、配置碱性硅溶胶激发溶液
向质量分数为35%-45%的硅胶溶液中按照摩尔比1:(0.9-1.1)加入氢氧化钾,使用1000-1200rpm磁力搅拌器搅拌20-30min,得到主要成分为硅酸钾的碱性硅溶胶激发溶液。
步骤三、碳纳米管与碱性硅溶胶激发溶液的混合
采用超声辅助,将步骤一得到的羧基化后的碳纳米管缓慢加入到步骤二得到的碱性硅溶胶激发溶液中,机械搅拌1-5min后,再将混合后的复合溶液超声震荡处理10-15min。所述碳纳米管与碱性硅溶胶激发溶液的质量比为(0.9-1.8):17。
步骤四、混合浆料造孔
将粉煤灰加入到步骤三得到的复合溶液中,得到复合浆料,并加入去离子水调节复合浆料的粘度,采用电动搅拌器机械搅拌20-30min;加入质量分数为30%的过氧化氢和十二烷基硫酸钠,混合搅拌1-5min,得到含有碳纳米管的复合浆料。
所述粉煤灰与步骤二得到的碱性硅溶胶激发溶液的质量比为(14-18):17;去离子水添加量与步骤二得到的碱性硅溶胶激发溶液的质量比为(1.6-2):17;过氧化氢与粉煤灰的质量比为(1-5):100;十二烷基硫酸钠与粉煤灰质量比为(1-5):100。
步骤五、多孔前驱体低温固化成型
将步骤四得到的复合浆料倒入塑料模具中,先置于25℃室温条件下固化24h,实现室温发泡过程;之后置于30℃-40℃的低温条件下固化12-48h,使其完成充分发泡以及早期固化过程;之后置于60℃烘箱中固化7-28天,获得低温固化成型的多孔前驱体。
步骤六、高温烧结陶瓷化过程
在保护气氛下,将步骤五得到的已固化的多孔前驱体进行高温处理,升温速度3-5℃/min,处理温度900℃-1300℃,保温时间60-120min;再以相同速率降温至常温,得到碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料。所述保护气氛为氩气、氮气或二者的混合。
本发明的有益效果:本发明以粉煤灰为原料,利用粉煤灰中硅、铝元素自身含量的特性,通过与碱性硅溶胶溶液的配合,获得含有复合陶瓷相转化成分的多孔前驱体,在原位发泡的基础上,通过碳纳米管的预处理及引入方式的调控,实现了碳纳米管与基体材料的复合,获得的多孔前驱体通过特定条件下的高温处理,实现了碳纳米管强化的多孔陶瓷复合材料的制备,工艺简单可控;所获得的碳纳米管/白榴石多孔陶瓷复合材料密度低,强度高,孔隙可控,实现了对粉煤灰材料的增值利用,变废为宝;同时,丰富了碳纳米管增强多孔陶瓷复合材料的绿色制备和在吸附、过滤等领域的应用。
附图说明
图1为本发明实施例1所得碳纳米管/白榴石多孔陶瓷复合材料的SEM图。
图2为本发明实施例1所得碳纳米管/白榴石多孔陶瓷复合材料的XRD图。
具体实施方式
下面结合附图和技术方案对本发明作进一步说明。
实施例1
一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法,步骤如下:
步骤一、原料粉煤灰及碳纳米管的预处理
将粗粒径的粉煤灰研磨成1-5μm,并将多壁碳纳米管采用硫酸溶液进行羧基化处理,使其表面具有羧基、羟基功能基团。
所述原料粉煤灰为低钙粉煤灰,其成分为:53wt%的SiO2、37wt%的Al2O3、3wt%的CaO、3wt%的Fe2O3和0.3wt%的MgO。
步骤二、配置碱性硅溶胶激发溶液
向质量分数为40%的硅胶溶液中按照摩尔比1:1加入氢氧化钾,使用1000rpm磁力搅拌器搅拌30min,得到主要成分为硅酸钾的碱性硅溶胶激发溶液。
步骤三、碳纳米管与碱性硅溶胶激发溶液的混合
采用超声辅助,将羧基化后的碳纳米管缓慢加入到步骤二中得到的碱性硅溶胶激发溶液中,机械搅拌3min后,再将混合后的复合溶液超声震荡处理15min。其中,碳纳米管与碱性硅溶胶激发溶液的质量比为1.05:17。
步骤四、混合浆料造孔
将粉煤灰加入到步骤三得到的复合溶液中,并加入10ml去离子水调节复合浆料的粘度,采用电动搅拌器机械搅拌30min;加入质量分数为30%的过氧化氢和十二烷基硫酸钠,混合搅拌5min,得到含有碳纳米管的复合浆料。
其中,粉煤灰与碱性硅溶胶激发溶液的质量比为15:17,过氧化氢与粉煤灰粉体质量比为3:100,十二烷基硫酸钠与粉煤灰粉体质量比为4:100。
步骤五、多孔前驱体低温固化成型
将步骤四得到的复合浆料倒入塑料模具中,先置于25℃室温条件下固化24h,实现室温发泡过程;之后置于40℃的低温条件下固化48h,使其完成充分发泡以及早期固化过程;之后在60℃条件下固化7天,脱模后获得低温固化成型的多孔前驱体。
步骤六、高温烧结陶瓷化过程
在氩气保护的气氛下,将步骤五得到的已固化的多孔前驱体高温处理,升温速度4℃/min,处理温度1000℃,保温时间120min,再以4℃/min速率降温至常温,得到碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料。
本实施例获得的碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料呈现黑色,这主要是由于碳纳米管的引入造成的,材料肉眼可见分布多孔结构,孔隙分布均匀。
图1为实施例1所得的碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的显微电镜照片图;从图中可以看到,煅烧得到的多孔陶瓷材料孔隙在50-200μm分布,其孔壁上有分散的碳纳米管分布,起到了强化材料强度和充当骨架的作用。
图2为实施例1获得的碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料XRD图谱。从图中可以看出,多孔材料基体基本已经转变成白榴石物相了,但并没有检测到碳纳米管的存在,这是由于其分散在基体中,含量相对较低造成的。
本实施例得到的碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的孔隙均匀,密度为1.3g/cm3,抗压强度为26.3MPa,总孔隙率为47%,开孔孔隙率为37%。
实施例2
与实施例1不同在于步骤三中碳纳米管与碱性硅溶胶激发溶液的质量比为1.2:17,其它与实施例1相同。
本实施例得到的碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的孔隙均匀,密度为1.4g/cm3,抗压强度为30.2MPa,总孔隙率为40%,开孔孔隙率为34%。
实施例3
与实施例2不同在于步骤三中碳纳米管与碱性硅溶胶激发溶液的质量比为1.35:17;步骤六中升温速度4℃/min,处理温度1100℃,保温时间120min,再以4℃/min速率降温至常温,其它与实施例2相同。
本实施例得到的碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的孔隙均匀,密度为1.4g/cm3,抗压强度为23.7MPa,总孔隙率为39%,开孔孔隙率为34%。
实施例4
与实施例3不同在于步骤六中升温速度4℃/min,处理温度1300℃,保温时间120min,再以4℃/min速率降温至常温,其它与实施例2相同。
本实施例得到的碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料密度为1.4g/cm3,抗压强度为22.9MPa,总孔隙率为42%,开孔孔隙率为34%。
综合以上各数据分析,说明本方法可以成功制备出以粉煤灰为原料的碳纳米管/白榴石多孔陶瓷复合材料,并且复合材料的密度低、强度高。

Claims (8)

1.一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法,其特征在于,该方法包括以下步骤:
步骤一、粉煤灰及碳纳米管的预处理
对粉煤灰研磨,并将碳纳米管采用硫酸溶液进行羧基化处理,使其表面具有羧基功能基团;
步骤二、配置碱性硅溶胶激发溶液
向质量分数为35%-45%的硅胶溶液中按照摩尔比1:0.9-1.1加入氢氧化钾,搅拌得到主要成分为硅酸钾的碱性硅溶胶激发溶液;
步骤三、碳纳米管与碱性硅溶胶激发溶液的混合
采用超声辅助,将步骤一得到的羧基化后的碳纳米管缓慢加入到步骤二得到的碱性硅溶胶激发溶液中,机械搅拌后,再将混合后的复合溶液超声震荡处理10-15min;所述碳纳米管与碱性硅溶胶激发溶液的质量比为0.9-1.8:17;
步骤四、混合浆料造孔
将粉煤灰加入到步骤三得到的复合溶液中,得到复合浆料,并加入去离子水调节复合浆料的粘度,并机械搅拌;加入质量分数为30%的过氧化氢和十二烷基硫酸钠,混合搅拌得到含有碳纳米管的复合浆料;
所述粉煤灰与步骤二得到的碱性硅溶胶激发溶液的质量比为14-18:17;过氧化氢与粉煤灰的质量比为1-5:100;十二烷基硫酸钠与粉煤灰质量比为1-5:100;
步骤五、多孔前驱体低温固化成型
将步骤四得到的复合浆料倒入塑料模具中,先置于25℃室温条件下固化24h,实现室温发泡过程;之后置于30℃-40℃的低温条件下固化12-48h,使其完成充分发泡以及早期固化过程;之后置于60℃烘箱中固化7-28天,获得低温固化成型的多孔前驱体;
步骤六、高温烧结陶瓷化过程
在保护气氛下,将步骤五得到的已固化的多孔前驱体进行高温处理,升温速度3-5℃/min,处理温度900℃-1300℃,保温时间60-120min;再以相同速率降温至常温,得到碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述粉煤灰为低钙粉煤灰,其成分为:质量分数为50-55wt%的SiO2、质量分数为30-38wt%的Al2O3、质量分数为2-3.5wt%的CaO、质量分数为0-4wt%的Fe2O3和质量分数为0-1wt%的MgO。
3.根据权利要求1或2所述的制备方法,其特征在于,所述步骤一中,将粉煤灰研磨成1-5μm。
4.根据权利要求1或2所述的制备方法,其特征在于,所述步骤四中,去离子水添加量与步骤二得到的碱性硅溶胶激发溶液的质量比为1.6-2:17。
5.根据权利要求3所述的制备方法,其特征在于,所述步骤四中,去离子水添加量与步骤二得到的碱性硅溶胶激发溶液的质量比为1.6-2:17。
6.根据权利要求1、2或5所述的制备方法,其特征在于,所述步骤六中,保护气氛为氩气、氮气或二者的混合。
7.根据权利要求3所述的制备方法,其特征在于,所述步骤六中,保护气氛为氩气、氮气或二者的混合。
8.根据权利要求4所述的制备方法,其特征在于,所述步骤六中,保护气氛为氩气、氮气或二者的混合。
CN202111160719.8A 2021-09-30 2021-09-30 一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法 Active CN113773110B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111160719.8A CN113773110B (zh) 2021-09-30 2021-09-30 一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111160719.8A CN113773110B (zh) 2021-09-30 2021-09-30 一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN113773110A true CN113773110A (zh) 2021-12-10
CN113773110B CN113773110B (zh) 2022-09-06

Family

ID=78854863

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111160719.8A Active CN113773110B (zh) 2021-09-30 2021-09-30 一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN113773110B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804885A (zh) * 2022-05-30 2022-07-29 国家电投集团江西中业兴达电力实业有限公司 一种巴基纸/粉煤灰耐磨陶瓷贴片的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808976B1 (ko) * 2006-12-11 2008-03-05 강릉대학교산학협력단 다공성 세라믹스 및 그 제조방법
CN104529429A (zh) * 2015-01-14 2015-04-22 哈尔滨工业大学 一种高温原位生成的石墨烯/榴石纳米复相陶瓷材料及其制备方法
CN109437813A (zh) * 2018-12-11 2019-03-08 哈尔滨工业大学 低温冷烧制备无机聚合物复合材料的方法及其陶瓷化应用
CN110256063A (zh) * 2019-07-24 2019-09-20 东北大学 一种莫来石/白榴石多孔陶瓷复合材料的制备方法
CN110357604A (zh) * 2019-07-24 2019-10-22 东北大学 一种轻质泡沫白榴石陶瓷复合材料的制备方法
CN111004051A (zh) * 2019-12-31 2020-04-14 欧亚华都(宜兴)环保有限公司 一种废弃陶瓷掺杂垃圾焚烧飞灰烧结多孔陶瓷的方法
CN111153676A (zh) * 2019-10-25 2020-05-15 东北大学 一种轻质碳纳米管强化的铝硅酸盐聚合物泡沫材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808976B1 (ko) * 2006-12-11 2008-03-05 강릉대학교산학협력단 다공성 세라믹스 및 그 제조방법
CN104529429A (zh) * 2015-01-14 2015-04-22 哈尔滨工业大学 一种高温原位生成的石墨烯/榴石纳米复相陶瓷材料及其制备方法
CN109437813A (zh) * 2018-12-11 2019-03-08 哈尔滨工业大学 低温冷烧制备无机聚合物复合材料的方法及其陶瓷化应用
CN110256063A (zh) * 2019-07-24 2019-09-20 东北大学 一种莫来石/白榴石多孔陶瓷复合材料的制备方法
CN110357604A (zh) * 2019-07-24 2019-10-22 东北大学 一种轻质泡沫白榴石陶瓷复合材料的制备方法
CN111153676A (zh) * 2019-10-25 2020-05-15 东北大学 一种轻质碳纳米管强化的铝硅酸盐聚合物泡沫材料及其制备方法
CN111004051A (zh) * 2019-12-31 2020-04-14 欧亚华都(宜兴)环保有限公司 一种废弃陶瓷掺杂垃圾焚烧飞灰烧结多孔陶瓷的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
叶家元等: "纳米改性碱激发胶凝材料的研究进展", 《硅酸盐学报》 *
崔宏志等: "碳纳米管分散技术及碳纳米管-水泥基复合材料研究进展", 《材料导报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804885A (zh) * 2022-05-30 2022-07-29 国家电投集团江西中业兴达电力实业有限公司 一种巴基纸/粉煤灰耐磨陶瓷贴片的制备方法
CN114804885B (zh) * 2022-05-30 2023-02-17 国家电投集团江西中业兴达电力实业有限公司 一种巴基纸/粉煤灰耐磨陶瓷贴片的制备方法

Also Published As

Publication number Publication date
CN113773110B (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN107082628B (zh) 一种基于分子筛膜合成残液的多孔陶瓷支撑体制备方法
CN108529984B (zh) 一种表面改性碳纤维增强高阻抗高抗拉强度水泥基3d打印基材及其制备方法
CN106866021B (zh) 纳米改性超稳定泡沫及其在超轻密度水泥基多孔材料中的应用
CN103601524A (zh) 纤维增强粉煤灰基地聚物泡沫材料及其制备方法
CN108341647A (zh) 一种加气混凝土砌块及其制备方法
CN106633652A (zh) 一种双连续相氧化铝/环氧树脂复合材料的制备方法
CN112062515B (zh) 一种利用碳化硅制备的高强地聚合物闭孔发泡材料及其制备方法
CN105645904A (zh) 一种利用锂渣和镍渣制备的免蒸压加气混凝土及其制备方法
CN102910936A (zh) 环保型地聚物基泡沫材料
CN112723801B (zh) 一种水泥混凝土路面快速修补材料及其制备方法
CN113773110B (zh) 一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法
CN111807810A (zh) 一种纳米线/硅铝气凝胶复合材料的制备方法
CN104529429A (zh) 一种高温原位生成的石墨烯/榴石纳米复相陶瓷材料及其制备方法
CN111153676A (zh) 一种轻质碳纳米管强化的铝硅酸盐聚合物泡沫材料及其制备方法
CN105541370A (zh) 多孔碳化硅陶瓷材料的制备方法
CN105016773B (zh) 反应烧结及微氧化处理制备多孔碳化硅陶瓷的方法
CN110256063B (zh) 一种莫来石/白榴石多孔陶瓷复合材料的制备方法
CN115448659B (zh) 一种基于早期碳化和早期干湿循环耦合作用的固废不锈钢渣再生混凝土及其制备方法
CN110002863B (zh) 一种钇铝石榴石多孔陶瓷的制备方法
CN112250367A (zh) 一种高抗渗地聚合物及其制备方法
CN115259823B (zh) 一种轻质高强低导热系数加气混凝土及其制备方法
CN108929072B (zh) 一种从铁尾矿制备氧化铁及纳米复合隔热保温材料的方法
CN113716908B (zh) 一种改性硫酸钙晶须增强的地聚合物与其制备方法
CN115448690A (zh) 一种纤维增强耐高温防热辐射复合气凝胶及其制备工艺
CN109320287B (zh) 高温强度优热导率低的多孔γ-(Y1-xHox)2Si2O7的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant