CN113769791B - 一种醇解催化剂的制备方法 - Google Patents

一种醇解催化剂的制备方法 Download PDF

Info

Publication number
CN113769791B
CN113769791B CN202111191762.0A CN202111191762A CN113769791B CN 113769791 B CN113769791 B CN 113769791B CN 202111191762 A CN202111191762 A CN 202111191762A CN 113769791 B CN113769791 B CN 113769791B
Authority
CN
China
Prior art keywords
reaction
catalyst
tetra
compound
alcoholysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111191762.0A
Other languages
English (en)
Other versions
CN113769791A (zh
Inventor
马广超
徐伟达
林进北
柯荣太
陆钢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Yongyue New Material Co ltd
Original Assignee
Quanzhou Yongyue New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanzhou Yongyue New Material Co ltd filed Critical Quanzhou Yongyue New Material Co ltd
Priority to CN202111191762.0A priority Critical patent/CN113769791B/zh
Publication of CN113769791A publication Critical patent/CN113769791A/zh
Application granted granted Critical
Publication of CN113769791B publication Critical patent/CN113769791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种醇解催化剂的制备方法,包括如下步骤:步骤A,将5,10,15,20‑四(4‑氨基苯)‑21H,23H‑卟啉和醋酸锌在N2气氛下,在N,N二甲基甲酰胺溶剂中进行反应,反应温度50‑100℃,反应时间1‑2小时;步骤B,通过抽滤去掉N,N二甲基甲酰胺溶剂,获得金属锌卟啉化合物;步骤C,将金属锌卟啉化合物与四醛基四苯乙烯,在邻二甲苯和正丁醇混合溶剂下,在PH范围在3‑5下反应,反应温度100‑130℃,反应2‑3小时得到沉淀物;步骤D,将沉淀物洗涤,得到共价有机化合物Zn‑COFs。本发明能降低反应催化剂用量,并且可以多次循环使用。

Description

一种醇解催化剂的制备方法
技术领域
本发明涉及一种醇解催化剂的制备方法。
背景技术
聚对苯二甲酸乙二醇酯(PET)是由对苯二甲酸(PTA)或对苯二甲酸二甲酯(DMT)和乙二醇缩聚而成的饱和高分子化合物,属于结晶性高聚物,广泛地用于饮料瓶等瓶体中。瓶体用完之后可以进行回收处理,并用于制造纤维、片材、非食品包装用瓶和不饱和聚酯树脂。
现有技术中,一种处理方法是采用醇解进行瓶体回收,将PET瓶片、二甘醇、抗氧剂以及催化剂投入反应瓶中,升温进行醇解反应。催化剂一般采用氯化亚锡或者醋酸锌。现有的催化剂用于PET醇解反应,醇解反应的时间相对较长,醇解温度相对较高,并且目前主流的锡类催化剂具有一定的毒性,此外催化剂不易进行回收利用,整体而言,使得PET醇解反应的材料和能耗相对较大。
鉴于此,本案发明人对上述问题进行深入研究,遂有本案产生。
发明内容
本发明的目的在于提供一种能够降低醇解时间、减少催化剂用量醇解催化剂的制备方法。
为了达到上述目的,本发明采用这样的技术方案:
一种醇解催化剂的制备方法,其特征在于,包括如下步骤:
步骤A,将5,10,15,20-四(4-氨基苯)-21H,23H-卟啉和醋酸锌在N2气氛下,在N,N二甲基甲酰胺溶剂中进行反应,反应温度50-100℃,反应时间1-2小时;
步骤B,通过抽滤去掉N,N二甲基甲酰胺溶剂,然后用蒸馏水洗去未反应的醋酸锌,烘干后,获得金属锌卟啉化合物;
步骤C,将金属锌卟啉化合物与四醛基四苯乙烯,在邻二甲苯和正丁醇混合溶剂下,在PH范围在3-5下反应,反应温度100-130℃,反应2-3小时得到沉淀物;
步骤D,将沉淀物洗涤,干燥后,得到共价有机化合物Zn-COFs。
在上述方案中,所述5,10,15,20-四(4-氨基苯)-21H,23H-卟啉和所述醋酸锌的摩尔比为1:1.05-1.2。
在上述方案中,所述金属锌卟啉化合物与所述四醛基四苯乙烯的摩尔比为1:1.1-1.2。
在上述方案中,所述混合溶剂中,所述邻二甲苯和所述正丁醇的体积比为1:1。
采用本发明的技术方案,通过合成金属锌卟啉后与四醛基四苯乙烯通过溶剂热合成多孔有机共价化合物Zn-COFs,锌配位在卟啉环中提升催化效果,并且金属锌负载在高比表面积的多孔材料上,催化活性位点增加,提高催化效果。比直接用醋酸锌效果改善很大,同等条件下,直接用醋酸锌比例1.5‰,温度210℃,反应完全需时间7小时,醇解酸值为9.7,放置24小时发生分层,醇解不充分。本发明的催化剂活性提升,在210℃时表现出优异的催化性能,催化剂比例为0.5‰,缩短反应时间至3小时仍表现出良好的催化性能,并且可以多次循环使用,催化活性并无明显较弱。
附图说明
图1为本发明中有机共价化合物Zn-COFs的XRD粉末衍射图。
图2为本发明中有机共价化合物Zn-COFs多孔晶体结构示意图。
图3为本发明中有机共价化合物Zn-COFs的N2等温吸附脱附曲线。
具体实施方式
为了进一步解释本发明的技术方案,下面结合实施例进行详细阐述。
实施例1
将5,10,15,20-四(4-氨基苯)-21H,23H-卟啉(该化合物的CAS号是:22112-84-1)67.5克,醋酸锌19.21克,N,N二甲基甲酰胺(即DMF)溶剂200ml投入圆底四口反应瓶中,反应温度50℃,反应时间2小时,反应完毕后,通过减压抽滤去掉溶剂DMF,然后用蒸馏水洗去未反应的醋酸锌。烘箱干燥即可,烘箱温度为100℃。将获得的金属锌卟啉化合物ZnII-TAP与四醛基四苯乙烯(该化合物CAS:2170454-48-4)进行胺醛缩合反应,反应摩尔比1:1.1,在混合溶剂(邻二甲苯和正丁醇各100ml),PH值为3.0的酸性(酸性可以稀盐酸或醋酸调节)条件下,通过反应温度100℃,反应时间3小时得到沉淀物,将溶剂过滤掉,用丙酮和蒸馏水洗涤,烘箱干燥,烘箱温度为100℃,通过XRD粉末衍射测试未得到明显的晶态结构信息。
实施例2
将5,10,15,20-四(4-氨基苯)-21H,23H-卟啉67.5克,醋酸锌21.04克,DMF溶剂200ml投入圆底四口反应瓶中,反应温度80℃,反应时间2小时,反应完毕后,通过减压抽滤去掉溶剂DMF,然后用蒸馏水洗去未反应的醋酸锌。烘箱干燥即可,烘箱温度为100℃。将获得的金属锌卟啉化合物ZnII-TAP与四醛基四苯乙烯(TPE)进行胺醛缩合反应,反应摩尔比1:1.1,在混合溶剂(邻二甲苯和正丁醇各100ml),PH值为3.0的酸性条件下,反应温度130℃,反应时间3小时得到沉淀物,将溶剂过滤掉,用丙酮和蒸馏水洗涤,烘箱干燥,烘箱温度为100℃,通过XRD粉末衍射测试未得到明显的晶态结构信息。
实施例3
将5,10,15,20-四(4-氨基苯)-21H,23H-卟啉67.5克,醋酸锌21.96克,DMF溶剂200ml投入圆底四口反应瓶中,反应温度100℃,反应时间2小时,反应完毕后,通过减压抽滤去掉溶剂DMF,然后用蒸馏水洗去未反应的醋酸锌。烘箱干燥即可,烘箱温度为100℃。将获得的金属锌卟啉化合物ZnII-TAP与四醛基四苯乙烯(TPE)进行胺醛缩合反应,反应摩尔比1:1.1,在混合溶剂(邻二甲苯和正丁醇各100ml),PH值为4.5的酸性条件下,反应温度130℃,反应时间3小时得到沉淀物,将溶剂过滤掉,用丙酮和蒸馏水洗涤,烘箱干燥,通过XRD粉末衍射测试得到明显的晶态结构信息,并且进行氮气吸脱附测试,理论计算出其比表面积。图1为Zn-COFs的X-射线粉末衍射图,表明该化合物具有(110)晶面的四方点阵结构,图2为该化合物的多孔晶体结构示意图,图3是该化合物的氮气吸脱附测试曲线,图中可知该化合物每克吸附氮气为390cm3,具有很好的气体吸附性能和多孔结构,理论计算比表面积达到968m2/g。因此,该化合物具有的多孔结构和高的比表面积为其催化性能提供了有利的条件。图1中,横坐标为衍射2θ角/度,图3中,纵坐标表示氮气吸附(单位为立方厘米/克),横坐标表示相对压力((即吸附质压力P与其饱和蒸气压P0之比)。
实施例4
将1000克PET,800克二甘醇,2克抗氧剂三苯酯(也即亚磷酸三苯酯,下同)和催化剂氯化亚锡(催化剂的添加比例为1.5‰,以PET量计)依次投入反应瓶中,逐步升温进行醇解反应,反应温度210℃,反应时间需7小时,反应完毕后测试酸值为5.5mgKOH/g(酸值<6.0mgKOH/g),反应溶液清澈透明,放置24小时不分层。
实施例5
将1000克PET,800克二甘醇,2克抗氧剂三苯酯和催化剂醋酸锌(催化剂的添加比例为1.5‰,以PET量计)依次投入反应瓶中,逐步升温进行醇解反应,反应温度210℃,反应时间需7小时,反应完毕后测试酸值为9.7mgKOH/g,酸值高,放置24小时分层,醇解不充分,需要提高醇解温度至230℃,氧化严重颜色黄。
实施例6
将1000克PET,800克二甘醇,2克抗氧剂三苯酯和本发明的催化剂(采用实施例1中制得的催化剂,下同,催化剂的添加比例为1.5‰,以PET量计)依次投入反应瓶中,逐步升温进行醇解反应,反应温度210℃,反应时间7小时,反应完毕后测试酸值为4.8mgKOH/g,醇解效果好,醇解完毕后可以简单过滤,多次循环使用。
实施例7
将1000克PET,800克二甘醇,2克抗氧剂三苯酯和本发明的催化剂(催化剂的添加比例为1.5‰,以PET量计)依次投入反应瓶中,,逐步升温进行醇解反应,反应温度210℃,反应时间3小时,反应完毕后测试酸值为5.0mgKOH/g,醇解效果好,不分层。
实施例8
将1000克PET,800克二甘醇,2克抗氧剂三苯酯和本发明的催化剂(催化剂的添加比例为0.5‰,以PET量计,)依次投入反应瓶中,逐步升温进行醇解反应,反应温度210℃,反应时间3小时,反应完毕后测试酸值为5.2mgKOH/g,醇解效果好,不分层。同等催化剂用量和使用条件下,本发明的催化剂经过10次循环使用后,反应测试酸值为5.8mgKOH/g,醇解效果无明显减弱。
三种催化剂应用在醇解工艺中,效果对比如下表:
本发明的产品形式并非限于本案实施例,任何人对其进行类似思路的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

Claims (4)

1.一种醇解催化剂的制备方法,其特征在于,包括如下步骤:
步骤A,将5,10,15,20-四(4-氨基苯)-21H,23H-卟啉和醋酸锌在N2气氛下,在N,N二甲基甲酰胺溶剂中进行反应,反应温度50-100℃,反应时间1-2小时;
步骤B,通过抽滤去掉N,N二甲基甲酰胺溶剂,然后用蒸馏水洗去未反应的醋酸锌,烘干后,获得金属锌卟啉化合物;
步骤C,将金属锌卟啉化合物与四醛基四苯乙烯,在邻二甲苯和正丁醇混合溶剂下,在PH范围在3-5下反应,反应温度100-130℃,反应2-3小时得到沉淀物;
步骤D,将沉淀物洗涤,干燥后,得到共价有机化合物Zn-COFs。
2.如权利要求1所述的一种醇解催化剂的制备方法,其特征在于:所述5,10,15,20-四(4-氨基苯)-21H,23H-卟啉和所述醋酸锌的摩尔比为1:1.05-1.2。
3.如权利要求2所述的一种醇解催化剂的制备方法,其特征在于:所述金属锌卟啉化合物与所述四醛基四苯乙烯的摩尔比为1:1.1-1.2。
4.如权利要求3所述的一种醇解催化剂的制备方法,其特征在于:所述混合溶剂中,所述邻二甲苯和所述正丁醇的体积比为1:1。
CN202111191762.0A 2021-10-13 2021-10-13 一种醇解催化剂的制备方法 Active CN113769791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111191762.0A CN113769791B (zh) 2021-10-13 2021-10-13 一种醇解催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111191762.0A CN113769791B (zh) 2021-10-13 2021-10-13 一种醇解催化剂的制备方法

Publications (2)

Publication Number Publication Date
CN113769791A CN113769791A (zh) 2021-12-10
CN113769791B true CN113769791B (zh) 2023-12-12

Family

ID=78871099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111191762.0A Active CN113769791B (zh) 2021-10-13 2021-10-13 一种醇解催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN113769791B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934026A (zh) * 2014-04-30 2014-07-23 浙江大学 一种多孔金属卟啉有机共价聚合材料及其制备方法与用途
CN110294843A (zh) * 2019-06-19 2019-10-01 江南大学 一种共轭三维卟啉基共价有机框架材料的制备方法
CN112521584A (zh) * 2020-11-03 2021-03-19 大连理工大学 一种卟啉类微孔聚合物的制备及其光催化应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103934026A (zh) * 2014-04-30 2014-07-23 浙江大学 一种多孔金属卟啉有机共价聚合材料及其制备方法与用途
CN110294843A (zh) * 2019-06-19 2019-10-01 江南大学 一种共轭三维卟啉基共价有机框架材料的制备方法
CN112521584A (zh) * 2020-11-03 2021-03-19 大连理工大学 一种卟啉类微孔聚合物的制备及其光催化应用

Also Published As

Publication number Publication date
CN113769791A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
CN112111070A (zh) 一种金属配位卟啉基共轭聚合物及其制备方法与在光催化降解有机污染物中的应用
KR101732623B1 (ko) 티타늄 기재 무기-유기 하이브리드 고체 물질, 이의 제조방법 및 이의 용도
Wang et al. Conversion of glucose into 5-hydroxymethylfurfural catalyzed by chromium (III) Schiff base complexes and acidic ionic liquids immobilized on mesoporous silica
CN109482241B (zh) TiO2/MOF-5光催化剂及其制备方法
CN111375370A (zh) 一种Fe-g-C3N4多功能纳米复合材料制备方法
CN103709383A (zh) 钛系聚酯催化剂及其制备方法和应用
CN114773363B (zh) 一种光控荧光变色材料及其制备方法和应用
Valverde-Gonzalez et al. Amino-functionalized zirconium and cerium MOFs: Catalysts for visible light induced aerobic oxidation of benzylic alcohols and microwaves assisted N-Alkylation of amines
CN113828345A (zh) 一种氯化钠辅助合成氮化碳光催化剂的制备方法与应用
CN113769791B (zh) 一种醇解催化剂的制备方法
WO2023202449A1 (zh) 一种固态双金属钛系聚酯催化剂及其制备方法、应用
CN1377732A (zh) 负载型二元羧酸锌催化剂及其制备方法
CN114656648A (zh) 一种金属有机框架材料和金属有机框架复合材料的快速制备方法
CN112794997B (zh) 一种多孔复合催化剂、其制备方法及聚对苯二甲酸己二酸丁二醇酯的制备方法
CN108997591B (zh) 一种可见光响应铪基金属有机骨架材料及其制备方法
EP3274298B1 (en) Method for preparing a catalyst and method for green biodiesel production from unrefined low grade feedstock
CN114591168B (zh) 一种杂原子掺杂氧化锌催化废弃pet乙二醇醇解方法
CN113751075B (zh) 一种高效催化co2还原的m1m2-双齿配体/cof-5双原子催化剂及其制备方法
CN113307831B (zh) 一种钴(ii)香豆素类席夫碱配合物的制备方法及其应用
CN115870000A (zh) 一种卟啉基多孔有机聚合物/硫化铟锌直接Z-scheme光催化剂、制备方法与应用
CN113398912A (zh) 一种用于氨基甲酸甲酯醇解合成碳酸二甲酯的催化剂
CN116478386A (zh) 一种基于2,5-呋喃二甲酸活化的聚酯催化剂及其制备方法与应用
CN111875795B (zh) 一种三维聚卟啉及其制备方法
CN115779883B (zh) 一种草酸烷基酯定向合成碳酸烷基酯的催化剂
CN111393660B (zh) 一种镍金属配位聚合物及其制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant