CN113735549B - Magnesium oxychloride cement-based double-liquid grouting material and preparation method thereof - Google Patents

Magnesium oxychloride cement-based double-liquid grouting material and preparation method thereof Download PDF

Info

Publication number
CN113735549B
CN113735549B CN202111034137.5A CN202111034137A CN113735549B CN 113735549 B CN113735549 B CN 113735549B CN 202111034137 A CN202111034137 A CN 202111034137A CN 113735549 B CN113735549 B CN 113735549B
Authority
CN
China
Prior art keywords
slurry
powder
grouting material
parts
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111034137.5A
Other languages
Chinese (zh)
Other versions
CN113735549A (en
Inventor
金祖权
王雨利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN202111034137.5A priority Critical patent/CN113735549B/en
Publication of CN113735549A publication Critical patent/CN113735549A/en
Application granted granted Critical
Publication of CN113735549B publication Critical patent/CN113735549B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/30Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing magnesium cements or similar cements
    • C04B28/32Magnesium oxychloride cements, e.g. Sorel cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/70Grouts, e.g. injection mixtures for cables for prestressed concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The invention belongs to the technical field of building engineering reinforcement, and particularly relates to a magnesium oxychloride cement-based two-liquid grouting material and a preparation method thereof. The double-liquid grouting material is formed by mixing a slurry A and a slurry B in equal volume, wherein the slurry A is formed by mixing light-burned magnesium oxide powder, a first water reducing agent, hydroxypropyl methyl cellulose and water, and the slurry B is formed by mixing magnesium chloride hexahydrate, monopotassium phosphate, sodium dihydrogen phosphate, a second water reducing agent, hydroxypropyl methyl cellulose and water. The magnesium oxychloride cement-based two-liquid grouting material fully utilizes the early strength characteristic of magnesium oxychloride cement, and achieves the effect of quick setting and hardening through the action of the additive. The double-liquid grouting material can be adjusted and shortened to be within 1min in initial setting time and within 3min in final setting time according to engineering requirements, and the compressive strength can reach 10MPa in 2 h.

Description

Magnesium oxychloride cement-based double-liquid grouting material and preparation method thereof
Technical Field
The invention belongs to the technical field of building engineering reinforcement, and particularly relates to a magnesium oxychloride cement-based two-liquid grouting material and a preparation method thereof.
Background
The grouting in the building engineering can realize the purposes of reinforcing surrounding rocks, blocking water and the like. Grouting materials can be divided into inorganic grouting materials and chemical grouting materials according to the chemical composition of the grouting material; according to the construction mode of the grouting material, the grouting material can be divided into a single-liquid grouting material, a double-liquid grouting material or a three-liquid grouting material. The double-liquid or three-liquid grouting material can fulfill the aims of quick reinforcement, water shutoff and the like on the premise of meeting construction requirements, and is particularly suitable for exposed surrounding rock bodies. At present, most of commonly used two-fluid grouting materials are polyurethane grouting materials, and the polyurethane grouting materials have the characteristics of quick setting and quick hardening, have good cohesiveness, but also have the defects of high cost, expansion when meeting water and the like.
Therefore, there is a need to provide an improved solution to the above-mentioned deficiencies of the prior art.
Disclosure of Invention
The invention aims to provide a magnesium oxychloride cement-based two-liquid grouting material and a preparation method thereof, and aims to solve the problems that the existing inorganic two-liquid grouting material is poor in construction performance, difficult to regulate and control the setting time and the like.
In order to achieve the purpose, the invention provides the following technical scheme:
the magnesium oxychloride cement-based double-liquid grouting material is formed by mixing slurry A and slurry B in equal volume; wherein:
the slurry A consists of powder A and water in a weight ratio of powder A to water =100 to (35-50);
the powder A consists of the following raw materials in parts by weight: 95-98 parts of light-burned magnesia powder, 1-3 parts of a water reducing agent I and 0.5-2 parts of hydroxypropyl methyl cellulose;
the slurry B consists of powder B and water in a weight ratio of powder B to water =100 to (35-50);
the powder B consists of the following raw materials in parts by weight: 60 to 80 parts of magnesium chloride hexahydrate, 10 to 20 parts of monopotassium phosphate, 10 to 20 parts of sodium dihydrogen phosphate, 3 to 5 parts of water reducing agent II and 0.5 to 2 parts of hydroxypropyl methyl cellulose.
In the above-mentioned magnesium oxychloride cement-based two-liquid grouting material, preferably, the light-burned magnesia powder is light-burned magnesia of grade of CBM85 or above in table 1 of YB/T5206-2004 of ferrous metallurgy industry standard.
In the above-mentioned magnesium oxychloride cement-based two-liquid grouting material, preferably, the specific surface area of the light-burned magnesia powder is not less than 400m 2 /kg。
In the above magnesium oxychloride cement-based two-liquid grouting material, preferably, the first water reducing agent and the second water reducing agent are both commercially available naphthalene powder water reducing agents.
In the above magnesium oxychloride cement-based two-liquid grouting material, preferably, the water reducing rates of the first water reducing agent and the second water reducing agent are both not less than 20%.
In the above-mentioned magnesium oxychloride cement-based two-liquid grouting material, preferably, mgCl in the magnesium chloride hexahydrate 2 ·6H 2 The mass content of O is not less than 85%.
In the above magnesium oxychloride cement-based two-fluid grouting material, preferably, the potassium dihydrogen phosphate is a qualified product in table 1 of "fertilizer-grade potassium dihydrogen phosphate" HG/T2321-2016 of the chemical industry standard and above.
In the above-mentioned magnesium oxychloride cement-based two-fluid grouting material, preferably, the sodium dihydrogen phosphate is a product meeting the requirements in table 1 of "by-product sodium dihydrogen phosphate" Q/371426LS 006-2016 of texas long-life chemical limited enterprise standard.
In the above-mentioned magnesium oxychloride cement-based two-pack grouting material, the viscosity of the 2% aqueous solution of hydroxypropylmethylcellulose is preferably 10 to 20 ten thousand mPa · s.
The invention also provides a preparation method of the magnesium oxychloride cement-based two-liquid grouting material, which comprises the following steps:
step one, weighing corresponding raw materials according to the weight parts of the powder A and the powder B, and uniformly mixing to obtain the powder A and the powder B respectively;
step two, uniformly mixing the powder A component and water in proportion to prepare slurry A; uniformly mixing the powder component B and water in proportion to prepare slurry B;
and step three, uniformly mixing the slurry A and the slurry B according to the same volume to obtain the magnesium oxychloride cement-based double-liquid grouting material.
Has the advantages that:
the magnesium oxychloride cement-based two-liquid grouting material fully utilizes the early strength characteristic of magnesium oxychloride cement, and achieves the effect of quick setting and hardening through the action of the additive. Meanwhile, the single-liquid storage time of the double-liquid grouting material is not less than 6h, the slurry fluidity is good, the slurry fluidity can reach 300mm, the initial setting time of the double-liquid grouting material can be adjusted and shortened to be within 1min, the final setting time can be adjusted and shortened to be within 3min according to engineering requirements, and the 2h compressive strength can reach 10MPa. Moreover, the preparation method of the magnesium oxychloride cement-based two-liquid grouting material is simple and easy to implement, has low requirements on production equipment and personnel, has a short production period, does not generate three wastes in the whole process, and does not influence the environment.
Detailed Description
The technical solutions in the embodiments of the present invention will be described clearly and completely below, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all embodiments. All other embodiments, which can be derived from the embodiments of the present invention by a person skilled in the art, are within the scope of the present invention.
In order to further improve the system of the grouting material, the invention researches and develops the magnesium oxychloride cement-based two-liquid grouting material so as to achieve the aims of meeting the construction requirement, realizing quick reinforcement or water plugging and the like.
The magnesium oxychloride cement-based two-liquid grouting material is formed by mixing slurry A and slurry B in equal volume; wherein, the A slurry consists of A powder and water according to the weight ratio of A powder to water =100 to (35-50) (such as 100: 35, 100: 40, 100: 45 or 100: 50), and the B slurry consists of B powder and water according to the weight ratio of B powder to water =100 to (35-50) (such as 100: 35, 100: 40, 100: 45 or 100: 50);
the powder A consists of the following raw materials in parts by weight: 95 to 98 parts (such as 95 parts, 96 parts, 97 parts or 98 parts) of light-burned magnesia powder, 1 to 3 parts (such as 1 part, 1.5 parts, 2 parts, 2.5 parts or 3 parts) of water reducing agent, 0.5 to 2 parts (such as 0.5 part, 1 part, 1.5 parts or 2 parts) of hydroxypropyl methyl cellulose;
the powder B consists of the following raw materials in parts by weight: 60 to 80 parts (for example, 60 parts, 65 parts, 70 parts, 75 parts or 80 parts) of magnesium chloride hexahydrate, 10 to 20 parts (for example, 10 parts, 12 parts, 14 parts, 16 parts or 20 parts) of potassium dihydrogen phosphate, 10 to 20 parts (for example, 10 parts, 12 parts, 14 parts, 16 parts or 20 parts) of sodium dihydrogen phosphate, 3 to 5 parts (for example, 3 parts, 3.5 parts, 4 parts, 4.5 parts or 5 parts) of a water reducing agent, and 0.5 to 2 parts (for example, 0.5 part, 1 part, 1.5 parts or 2 parts) of hydroxypropylmethylcellulose.
It can be understood that the first water reducing agent and the second water reducing agent can be the same or different, and the invention does not need to be specially required. In the following examples, both water reducing agents are the same and therefore are not distinguished and are referred to as "water reducing agents".
In the magnesium oxychloride cement-based two-liquid grouting material, the main chemical component of the light-burned magnesia powder is MgO, and the light-burned magnesia powder is mixed with MgCl in a magnesium chloride aqueous solution 2 (provided by magnesium chloride hexahydrate) and H 2 O reaction to produce 5Mg (OH) 2 ·MgCl 2 ·8H 2 O and 3Mg (OH) 2 ·MgCl 2 ·8H 2 O crystal phase, thereby forming a relatively dense and hard hardened body; the potassium dihydrogen phosphate and the sodium dihydrogen phosphate have the function of accelerating the hardening of the magnesium oxychloride cement, namely shortening the setting time of the magnesium oxide powder and the magnesium chloride aqueous solution, and can improve the water resistance of the magnesium oxychloride cement; the water reducing agent can improve the fluidity of the slurry; the hydroxypropyl methyl cellulose can adjust the viscosity of the slurry, and avoids the segregation phenomenon when the fluidity is high.
The light-burned magnesia powder is light-burned magnesia which meets the grade of CBM85 and above (namely the grades are CBM85 to CBM 96) in the ferrous metallurgy industry standard YB/T5206-2004 table 1, and the specific surface area of the light-burned magnesia powder isNot less than 400m 2 /kg。
The water reducing agent is a commercial naphthalene powder water reducing agent, and the water reducing rate is not less than 20%.
The hydroxypropylmethylcellulose is commercially available white powdery hydroxypropylmethylcellulose and has a viscosity of 10 to 20 ten thousand mPas (viscosity of a 2% aqueous solution by mass, for example, 10 to 12, 14, 16 or 20 ten thousand mPas).
Magnesium chloride hexahydrate as carnallite (KMgCl) 3 ·6H 2 O) and a by-product of KCl extraction, and MgCl 2 ·6H 2 The mass content of O is not less than 85%.
The monopotassium phosphate is monopotassium phosphate which meets the standard of chemical industry, namely fertilizer-grade monopotassium phosphate HG/T2321-2016, and is qualified and above in the grade shown in the table 1.
The sodium dihydrogen phosphate is a product meeting the requirements in the table 1 of the 'byproduct sodium dihydrogen phosphate' Q/371426LS 006-2016 of the industry Standard of Longsheng chemical Co., ltd.
The preparation method of the magnesium oxychloride cement-based two-liquid grouting material comprises the following steps:
firstly, weighing corresponding raw materials according to the weight parts of the powder A and the powder B, and uniformly mixing to respectively prepare the powder A and the powder B;
step two, uniformly mixing the powder A component and water according to the weight ratio of the powder A to the water =100 to (35-50) to prepare slurry A; uniformly mixing the powder B component and water according to the weight ratio of the powder B to the water = 100: 35-50 to prepare slurry B;
and step three, uniformly mixing the slurry A and the slurry B according to the same volume to obtain the magnesium oxychloride cement-based double-liquid grouting material.
Example 1
The magnesium oxychloride cement-based two-liquid grouting material of the embodiment is formed by mixing slurry A and slurry B according to a volume ratio of 1:1, wherein: the slurry A is prepared by mixing 970g of light-burned magnesia powder, 20g of water reducing agent, 10g of hydroxypropyl methyl cellulose and 380g of water, and the slurry B is prepared by mixing 660g of magnesium chloride hexahydrate, 150g of potassium dihydrogen phosphate, 150g of sodium dihydrogen phosphate, 30g of water reducing agent, 10g of hydroxypropyl methyl cellulose and 380g of water.
The preparation method of the magnesium oxychloride cement-based two-liquid grouting material comprises the following steps:
step one, weighing light-burned magnesium oxide, a water reducing agent and hydroxypropyl methyl cellulose according to the weight, and uniformly mixing to obtain powder A;
step two, weighing magnesium chloride hexahydrate, monopotassium phosphate, sodium dihydrogen phosphate, a water reducing agent and hydroxypropyl methyl cellulose according to the weight, and uniformly mixing to obtain powder B;
step three, mixing and stirring 1000g of powder A and 380g of water uniformly to obtain slurry A;
step four, mixing and stirring 1000g of the powder B and 380g of water uniformly to obtain slurry B;
and step five, uniformly mixing the slurry A and the slurry B according to the volume ratio of 1:1 to obtain the magnesium oxychloride cement-based two-liquid grouting material, and grouting by using a two-liquid grouting pump.
The sampling detection is as follows: the single-liquid storage time of the slurry A and the slurry B is respectively 6 hours 55min and 8 hours 30min, and the single-liquid fluidity of the slurry A and the slurry B is respectively 325mm and 335mm; the initial setting time of the mixed slurry is 55s, the final setting time is 2min19s, and the compressive strength of 2h is 11.2MPa.
The tests refer to the national standard GB8076-2008 'concrete admixture' to respectively test the single-liquid storage time, the single-liquid fluidity, the initial setting time and the final setting time of the double-liquid grouting material and the compressive strength. The detection methods in other examples and comparative examples are the same as those in this example, and are not described again.
Example 2
The magnesium oxychloride cement-based two-liquid grouting material is prepared by mixing slurry A and slurry B according to the volume ratio of 1:1, wherein: the slurry A is prepared by mixing 980g of light-burned magnesia powder, 15g of water reducing agent, 5g of hydroxypropyl methyl cellulose and 450g of water, and the slurry B is prepared by mixing 700g of magnesium chloride hexahydrate, 150g of potassium dihydrogen phosphate, 120g of sodium dihydrogen phosphate, 20g of water reducing agent, 10g of hydroxypropyl methyl cellulose and 450g of water.
The preparation method of the magnesium oxychloride cement-based two-liquid grouting material comprises the following steps:
step one, weighing light-burned magnesium oxide, a water reducing agent and hydroxypropyl methyl cellulose according to the weight, and uniformly mixing to obtain powder A;
weighing magnesium chloride hexahydrate, monopotassium phosphate, sodium dihydrogen phosphate, a water reducing agent and hydroxypropyl methyl cellulose according to the weight, and uniformly mixing to obtain powder B;
step three, mixing 1000g of powder A and 450g of water, and stirring uniformly to obtain slurry A;
step four, mixing 1000g of the powder B and 450g of water, and stirring uniformly to obtain slurry B;
and step five, uniformly mixing the slurry A and the slurry B according to the volume ratio of 1:1 to obtain the magnesium oxychloride cement-based two-liquid grouting material, and grouting by using a two-liquid grouting pump.
The sampling detection is as follows: the single-liquid storage time of the slurry A and the slurry B is respectively 7 hours and 30min and 9 hours and 50min, and the single-liquid fluidity of the slurry A and the slurry B is respectively 335mm and 345mm; the initial setting time of the mixed slurry is 1min15s, the final setting time is 2min50s, and the compressive strength of 2h is 10.8MPa.
Example 3
The difference between the magnesium oxychloride cement-based two-fluid grouting material of the embodiment and the embodiment 1 is that: the water addition amount for preparing slurry A and slurry B is different, and other parameters are the same as those in example 1, and are not described again. The water addition amount for the slurry a and the slurry B during the preparation (the water addition amount for the two slurries in each experiment is the same) and the performance test results of the finally prepared slurry a, slurry B and the two-fluid grouting material are shown in table 1 below.
TABLE 1 Effect of Water addition on Dual fluid grouting Material Performance
Figure BDA0003246432410000061
As can be seen from the data of Table 1 in combination with example 1, the storage time of slurry A and slurry B is gradually prolonged along with the increase of the water addition amount; the fluidity of the slurry A and the slurry B is gradually increased; the initial setting time and the final setting time of the double-liquid grouting material are gradually prolonged; the compressive strength of the double-liquid grouting material 2h is gradually reduced. When the water adding amount is small, the slurry is too thick and cannot meet the pumping construction requirement; when the water adding amount is large, the slurry can generate segregation phenomenon, thereby also influencing the construction. Therefore, it is recommended to set the amount of water to be added within a range of 350 to 500 g.
Example 4
The difference between the magnesium oxychloride cement-based two-fluid grouting material of the embodiment and the embodiment 1 is that: the addition amount of the light-burned magnesia powder is different when the slurry A is prepared, and other parameters are the same as those in the example 1, and are not described again. The addition amount of the light-burned magnesia powder during the preparation of the slurry A and the performance test results of the finally prepared slurry A, slurry B and two-fluid grouting material are shown in the following table 2.
TABLE 2 influence of the amount of light-burned MgO powdered material added on the Properties of the two-fluid grouting Material
Figure BDA0003246432410000071
As can be seen from table 2 in conjunction with the data of example 1, the storage time of slurry a is gradually shortened and the fluidity of slurry a is gradually decreased as the amount of the light-burned magnesia powder is increased, wherein the slurry tends to segregate when the amount of the light-burned magnesia powder is small, and the slurry is viscous when the amount thereof is large, thereby affecting the construction both when it is small and when it is large. The initial setting time and the final setting time of the double-liquid grouting material are both shortened and then prolonged, and correspondingly, the compressive strength of the double-liquid grouting material for 2h is also increased and then reduced. In view of the properties, it is recommended to limit the amount of the light-burned magnesium oxide powder to 950 to 980 g.
Example 5
The magnesium oxychloride cement-based two-fluid grouting material of the embodiment is different from the magnesium oxychloride cement-based two-fluid grouting material of the embodiment 1 in that: the addition amount of magnesium chloride hexahydrate in the preparation of slurry B is different, and other parameters are the same as those in example 1, and are not described again. The addition amount of magnesium chloride hexahydrate during preparation of slurry B and the performance test results of the finally prepared slurry A, slurry B and two-liquid grouting material are shown in the following table 3.
TABLE 3 influence of the amount of magnesium chloride hexahydrate on the Properties of the biliquid grouting materials
Figure BDA0003246432410000081
As can be seen from the data in Table 3 in combination with example 1, the storage time of the slurry B is gradually prolonged and the fluidity of the slurry B is gradually increased with the increase of the amount of magnesium oxychloride; the initial setting time and the final setting time of the double-liquid grouting material are both shortened and prolonged; the compressive strength of 2h is increased and then reduced. Wherein, the amount of the magnesium chloride is between 600 and 800g, and all properties of the double-liquid grouting material are better, so the amount of the magnesium chloride hexahydrate is suggested to be between 600 and 800 g.
Comparative example 1
The two-fluid grouting material of the comparative example is different from the grouting material of example 1 in that: a component was removed from slurry a and slurry B, and other parameters were the same as in example 1, and are not described again. The performance test results of a certain component on the finally prepared slurry A, slurry B and two-liquid grouting material are shown in the following table 4.
TABLE 4 Effect of certain Components on the Performance of two-fluid grouting materials
Figure BDA0003246432410000091
Note: since the slurry A contains no phosphate, the two rows of phosphate correspond to no change, and are indicated by "-".
As can be seen from the data in table 4 in combination with example 1, after a certain component is removed, the performance of the two-fluid grouting material is affected to different degrees, wherein potassium dihydrogen phosphate and sodium dihydrogen phosphate are removed, and the initial setting time and the final setting time of the two-fluid grouting material are mainly affected; after the water reducing agent is removed, the fluidity of the slurry is obviously reduced, so that the construction is influenced; after the hydroxypropyl methyl cellulose is removed, the cohesiveness of the slurry is poor, and the segregation and delamination phenomena are easy to occur.
Comparative example 2
The two-fluid grouting material of the comparative example is different from the grouting material of example 1 in that: all the phosphates in the powder B are monopotassium phosphate or all the phosphates are sodium dihydrogen phosphate, and the total addition amount and other parameters of the phosphates are the same as those in the embodiment 1, and are not described again. The effect of changes in the phosphate species on the properties of the finally prepared slurry a, slurry B, two-fluid grouting materials is shown in table 5 below.
TABLE 5 Effect of changes in phosphate type in B slurries on the Performance of biliquid grouting materials
Figure BDA0003246432410000092
As can be seen from the data in Table 5 in combination with example 1, the single blend of potassium dihydrogen phosphate and sodium dihydrogen phosphate has less influence on the storage time and fluidity of the B slurry than the blend, but the initial setting time and final setting time of the two-fluid grouting material are prolonged and the 2h compressive strength is reduced compared with the single blend. That is, the blend of potassium dihydrogen phosphate and sodium dihydrogen phosphate is more advantageous in setting time and 2h compressive strength than the blend alone, and therefore, the blend is recommended.
The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention, and various modifications and changes may be made by those skilled in the art. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.

Claims (8)

1. The magnesium oxychloride cement-based double-liquid grouting material is characterized in that the double-liquid grouting material is formed by mixing slurry A and slurry B in equal volume; wherein:
the slurry A consists of powder A and water in a weight ratio of powder A to water =100 to (38-50);
the powder A consists of the following raw materials in parts by weight: 95-98 parts of light-burned magnesia powder, 1-3 parts of a water reducing agent I and 0.5-2 parts of hydroxypropyl methyl cellulose;
the slurry B consists of powder B and water in a weight ratio of powder B to water =100 to (38-50);
the powder B consists of the following raw materials in parts by weight: 60-80 parts of magnesium chloride hexahydrate, 10-20 parts of potassium dihydrogen phosphate, 10-20 parts of sodium dihydrogen phosphate, 3-5 parts of a water reducing agent II and 0.5-2 parts of hydroxypropyl methyl cellulose;
the light-burned magnesia powder is light-burned magnesia which meets the grade of CBM85 and above in YB/T5206-2004 table 1 of ferrous metallurgy industry standard light-burned magnesia;
the specific surface area of the light-burned magnesia powder is not less than 400m 2 /kg。
2. The magnesium oxychloride cement-based biliquid grouting material of claim 1, wherein the first water reducing agent and the second water reducing agent are both commercially available naphthalene powder water reducing agents.
3. The magnesium oxychloride cement-based biliquid grouting material of claim 2, wherein the water reducing rates of the first water reducing agent and the second water reducing agent are not less than 20%.
4. The magnesium oxychloride cement-based biliquid grouting material of claim 1, wherein the MgCl in the magnesium chloride hexahydrate 2 ·6H 2 The mass content of O is not less than 85%.
5. The magnesium oxychloride cement-based biliquid grouting material of claim 1, wherein the potassium dihydrogen phosphate is a potassium dihydrogen phosphate which meets the standards of chemical industry "fertilizer-grade potassium dihydrogen phosphate" HG/T2321-2016 and is qualified in Table 1 and above.
6. The magnesium oxychloride cement-based biliquid grouting material of claim 1, wherein the sodium dihydrogen phosphate is a product meeting requirements in table 1 of "by-product sodium dihydrogen phosphate" Q/371426LS 006-2016 of texas long contained chemical industry ltd.
7. The magnesium oxychloride cement-based two-fluid grouting material of claim 1, wherein the viscosity of the 2% aqueous solution of hydroxypropyl methylcellulose is from 10 to 20 ten thousand mPa-s.
8. The preparation method of the magnesium oxychloride cement-based biliquid grouting material according to any one of claims 1 to 7, characterized by comprising the steps of:
step one, weighing corresponding raw materials according to the weight parts of the powder A and the powder B, and uniformly mixing to obtain the powder A and the powder B respectively;
step two, uniformly mixing the powder component A and water in proportion to prepare slurry A; uniformly mixing the powder component B and water in proportion to prepare slurry B;
and step three, uniformly mixing the slurry A and the slurry B according to the same volume to obtain the magnesium oxychloride cement-based double-liquid grouting material.
CN202111034137.5A 2021-09-03 2021-09-03 Magnesium oxychloride cement-based double-liquid grouting material and preparation method thereof Active CN113735549B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111034137.5A CN113735549B (en) 2021-09-03 2021-09-03 Magnesium oxychloride cement-based double-liquid grouting material and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111034137.5A CN113735549B (en) 2021-09-03 2021-09-03 Magnesium oxychloride cement-based double-liquid grouting material and preparation method thereof

Publications (2)

Publication Number Publication Date
CN113735549A CN113735549A (en) 2021-12-03
CN113735549B true CN113735549B (en) 2023-02-03

Family

ID=78735580

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111034137.5A Active CN113735549B (en) 2021-09-03 2021-09-03 Magnesium oxychloride cement-based double-liquid grouting material and preparation method thereof

Country Status (1)

Country Link
CN (1) CN113735549B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117776659A (en) * 2023-11-27 2024-03-29 山东大学 Green plugging material for karst water and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928711A (en) * 2019-04-19 2019-06-25 辽宁科大中驰镁建材科技有限公司 The magnesia high-strength slip casting material for repairing of one kind and preparation method and application
CN112174634A (en) * 2020-10-19 2021-01-05 常州工学院 Magnesium phosphate cement-based double-liquid grouting material and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109928711A (en) * 2019-04-19 2019-06-25 辽宁科大中驰镁建材科技有限公司 The magnesia high-strength slip casting material for repairing of one kind and preparation method and application
CN112174634A (en) * 2020-10-19 2021-01-05 常州工学院 Magnesium phosphate cement-based double-liquid grouting material and preparation method thereof

Also Published As

Publication number Publication date
CN113735549A (en) 2021-12-03

Similar Documents

Publication Publication Date Title
CN104310918B (en) For the cement-base composite material and its production and use of 3D printing technique
CN105174886B (en) A kind of limestone aquifer slip casting transformation material that is applicable to extra long distance pumping
CN103449762B (en) Early-strength micro-expanding synchronous grouting material prepared from shield tailings and preparation method of synchronous grouting material
CN107698226A (en) A kind of cement-silicate injecting paste material
CN110781587B (en) Multi-objective optimization method for anti-segregation waste rock filling slurry by using low-quality solid waste
CN113735549B (en) Magnesium oxychloride cement-based double-liquid grouting material and preparation method thereof
CN108585592A (en) A kind of Concrete synergist and preparation method thereof
CN115180913B (en) Expansion type full tailing filling material for mine goaf roof filling
CN107324713B (en) A kind of self-compaction concrete filled steel tube and preparation method thereof
CN112047708B (en) Sprayed concrete and construction method thereof
CN113968714A (en) Aluminate cement-based spraying mortar and preparation method thereof
CN104446296A (en) Filling material prepared from all industrial solid wastes and preparation method of filling material
CN109020419A (en) A kind of tunnel inverted arch ultra-fine inorganic grout material and preparation method thereof
CN108046653B (en) External admixture for shield single-liquid synchronous grouting
CN114573278B (en) Shield grouting material and preparation method thereof
CN110818371B (en) Inorganic reinforcing material for overspeed mine and preparation method thereof
WO2024152438A1 (en) Anti-seepage accelerator and preparation method therefor
CN113754366A (en) Anti-knock and anti-impact grouting material and preparation method thereof
CN103539416A (en) Special novel shear-resistant mortar for synchronous grouting and preparation method thereof
CN115073117B (en) Mining low-temperature ultra-high crystal water rapid-hardening filling support material and preparation method thereof
CN111423142A (en) Cement slurry additive for foundation treatment
CN102745951B (en) Method for quickly preparing formula of shield backfill grouting slurry
CN107759126B (en) Water reducing agent for sprayed concrete and preparation method thereof
JP3461635B2 (en) Injection method
CN113816701A (en) Aluminate and portland cement based double-liquid grouting material and preparation method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant