CN113663089A - 可电离脂质纳米颗粒组合物、制备方法及应用 - Google Patents

可电离脂质纳米颗粒组合物、制备方法及应用 Download PDF

Info

Publication number
CN113663089A
CN113663089A CN202110713233.6A CN202110713233A CN113663089A CN 113663089 A CN113663089 A CN 113663089A CN 202110713233 A CN202110713233 A CN 202110713233A CN 113663089 A CN113663089 A CN 113663089A
Authority
CN
China
Prior art keywords
peg
lipid nanoparticle
nanoparticle composition
lipid
ionizable lipid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110713233.6A
Other languages
English (en)
Other versions
CN113663089B (zh
Inventor
黄渊余
郭帅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN202110713233.6A priority Critical patent/CN113663089B/zh
Publication of CN113663089A publication Critical patent/CN113663089A/zh
Application granted granted Critical
Publication of CN113663089B publication Critical patent/CN113663089B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/085Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier conjugated systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/101Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals
    • A61K49/103Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being acyclic, e.g. DTPA
    • A61K49/105Organic compounds the carrier being a complex-forming compound able to form MRI-active complexes with paramagnetic metals the complex-forming compound being acyclic, e.g. DTPA the metal complex being Gd-DTPA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1851Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
    • A61K49/1857Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
    • A61K49/186Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1866Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle the nanoparticle having a (super)(para)magnetic core coated or functionalised with a peptide, e.g. protein, polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及脂质纳米颗粒,公开了一种可电离脂质纳米颗粒组合物,包括关键脂质、辅助脂质、胆固醇、PEG脂质、金属螯合物和治疗性药物,所述关键脂质为iBL0104,所述辅助脂质选自DSPC、DPPC、POPC、DOPE和DEPC之一。本发明还公开了一种可电离脂质纳米颗粒组合物的制备方法,以及可电离脂质纳米颗粒组合物在肿瘤诊断和治疗中的应用。

Description

可电离脂质纳米颗粒组合物、制备方法及应用
技术领域
本发明涉及脂质纳米颗粒,具体涉及一种可电离脂质纳米颗粒组合物。本发明还涉及一种可电离脂质纳米颗粒组合物的制作方法及一种可电离脂质纳米颗粒组合物的应用。
背景技术
在过去的十年中,对小干扰RNA(siRNA)作为治疗方式的探索显著增加。目前,已有4种siRNA疗法已获批进行临床应用。siRNA是一种长20到25个核苷酸的双股RNA,在生物学上有许多不同的用途。目前已知siRNA主要参与RNA干扰(RNAi)现象,以带有专一性的方式调节基因的表达。此外,也参与一些与RNAi相关的反应途径,例如抗病毒机制或是染色质结构的改变。
siRNA通常需要进入细胞内部才能够较好地发挥其调节基因表达的作用,这就需要建立一种有效且适用于临床的体内给药系统,以能够介导siRNA有效的入胞和快速的内体逃逸。脂质纳米载体具有制备可控、包封效率高、转运效率高、生物相容性好等优点,在核酸递送和临床研究中得到了广泛应用。Patisiran作为世界上第一个商业化的siRNA治疗药物,它就是通过Dlin-MC3-DMA作为决定性关键脂质的脂质制剂进行递送的。而今,脂质纳米颗粒已经成为siRNA进入细胞内部的主要载体。可电离脂质纳米颗粒是一种在血液中呈中性,而在细胞内酸性环境下电离裂解,释放出所携带的药物的脂质纳米颗粒,有报道称,当可解离的脂质停留在酸性内涵体中时,会带正电荷并与内涵体膜上的阴离子脂质如磷脂酰丝氨酸相互作用,导致核内体膜破裂,有效的核酸逃逸和胞质释放。因而在体内的毒性更低,能够将药物有效地携带到细胞内。
肿瘤是机体在各种致癌因素作用下,局部组织的某一个细胞在基因水平上失去对其生长的正常调控,导致其克隆性异常增生而形成的新生物。肿瘤一般分为良性和恶性两大类。恶性肿瘤生长迅速,易发生早期转移,易复发,预后较差,需要进行早期治疗。因而,肿瘤组织等致病部位的可视化对临床治疗至关重要,这有助于早期诊断、药物跟踪以及疾病进展和转移的观察。磁共振成像(MRI)具有较高的空间分辨率和不受辐射的深度组织穿透能力,能够可视化组织的三维结构,常用于肿瘤等疾病的成像和早期诊断。然而,与正电子发射断层扫描(PET)和光学成像相比,MRI的敏感性较差,导致在区分肿瘤与相邻正常组织时对比度分辨率较弱。通常需要注射金属螯合物作为显影剂,通过金属螯合物在肿瘤组织等致病部位的聚集,使得肿瘤组织等致病部位更好地成像,实现可视化。
目前,临床主要使用顺磁钆离子螯合物,如Gd-DTPA、Gd-DOTA和Gd-HPDO3A来实现肿瘤组织的可视化,这些物质可以通过缩短周围水质子的纵向弛豫时间和横向弛豫时间来增加MRI区域间的对比度。金属离子螯合物也可以通过脂质纳米颗粒携带到肿瘤组织的细胞中,实现肿瘤组织的可视化。现有的脂质纳米颗粒难以同时可靠携带金属螯合物和治疗性药物,在可视化和治疗之间保持平衡,不仅导致诊断效果不理想,也影响了治疗效果。因此,本领域迫切需要一种易于制备、生物相容性好、可实现同时诊断和治疗的纳米颗粒组合物。
发明内容
本发明所要解决的技术问题是提供一种可电离脂质纳米颗粒组合物,能够同时实现诊断和治疗功能,且生物相容性好。
本发明进一步所要解决的技术问题是提供一种可电离脂质纳米颗粒组合物的制备方法,能够方便的制备同时实现诊断和治疗功能的可电离脂质纳米颗粒组合物。
本发明还要解决的技术问题是提供一种可电离脂质纳米颗粒组合物在肿瘤诊断和治疗中的应用。
为了实现上述目的,本发明第一方面提供一种可电离脂质纳米颗粒组合物,包括关键脂质、辅助脂质、胆固醇、PEG脂质、金属螯合物和治疗性药物,所述关键脂质为iBL0104,所述辅助脂质选自为DSPC、DPPC、POPC、DOPE和DEPC之一。
根据本发明的可电离脂质纳米颗粒组合物,所述PEG脂质选自为DSPE-PEG2000、DMG-PEG2000、DPPE-PEG2000和DMA-PEG2000之一。
根据本发明的可电离脂质纳米颗粒组合物,所述金属螯合物选自DTPA-BSA(Gd)、Gd-DTPA和Gd-BOPTA之一。
根据本发明的可电离脂质纳米颗粒组合物,所述治疗性药物为核酸分子,所述核算分子选自siRNA、mRNA、ASO、质粒或者saRNA中的一种或几种。
优选地,本发明的可电离脂质纳米颗粒组合物还包括靶向肽。
进一步优选地,所述PEG脂质和所述靶向肽为同一种物质DSPE-PEG2000-RGD。
本发明第二方面提供了一种本发明第一方面所提供的可电离脂质纳米颗粒组合物的制备方法,包括如下步骤:1)将设定比例的iBL0104、辅助脂质、胆固醇、PEG脂质和金属螯合物按总量0.015-150mg/mL的比例加入无水乙醇中,得到可电离脂质溶液;2)将脂质溶液快速加入1-6倍体积的柠檬酸钠缓冲溶液中,搅拌,得到可电离脂质纳米颗粒溶液;3)将一定量的治疗性药物,加入含有乙醇的柠檬酸钠缓冲液中,溶解后得到0.0025-2.5mg/mL的治疗性药物溶液;4)将可电离脂质纳米颗粒溶液和治疗性药物溶液按0.5-2:1的比例混合,水浴,得到包裹治疗性药物的可电离脂质纳米颗粒溶液;5)使用100kD的透析膜透析,得到本发明的可电离脂质纳米颗粒组合物。
根据本发明的方法,所述PEG脂质为DMG-PEG2000,所述金属螯合物为DTPA-BSA(Gd),所述治疗性药物为siRNA;在步骤1)中,所述iBL0104的比例为20-60%,所述胆固醇的比例为10-50%,所述DTPA-BSA(Gd)的比例为10-50%,所述DSPC的比例为1-20%,所述DMG-PEG2000的比例为0.1-5%。
根据本发明的方法,所述PEG脂质为DSPE-PEG2000-RGD,所述金属螯合物为DTPA-BSA(Gd),所述治疗性药物为siRNA;在步骤1)中,所述iBL0104的比例为20-60%,所述胆固醇的比例为10-50%,所述DTPA-BSA(Gd)的比例为10-50%,所述DSPC的比例为1-20%,所述DSPE-PEG2000-RGD的比例为0.1-5%。
本发明第三方面提供一种本发明第一方面所提供的可电离脂质纳米颗粒组合物在肿瘤诊断和治疗中的应用。
通过上述技术方案,本发明的可电离脂质纳米颗粒组合物,采用iBL0104作为关键脂质,形成脂质纳米颗粒的骨架主体,保证脂质纳米颗粒较好地穿越细胞膜。iBL0104的结构可以表达为:
Figure BDA0003134444260000041
该核心脂质还具有合适的pKa(pKa为5.90),在人体外周环境(血液、组织液)中呈中性,毒性小,生物相容性强,在细胞内的酸性环境(内涵体/溶酶体)中可电离,能够发挥优异的内涵体逃逸效果,有效释放治疗性药物,提高治疗性药物的治疗效果。同时,金属螯合物的使用,能够将金属螯合到纳米颗粒上,并随着纳米颗粒进入细胞中,保证致病部位的MRI敏感性,提供致病部位的可视性。本发明的可电离脂质纳米颗粒组合物,能够有效地穿越细胞膜,提高金属螯合物和治疗性药物在细胞内的含量,能够同时实现理想的造影效果和有效的体内治疗,真正意义上实现成像引导的治疗。本发明的可电离脂质纳米颗粒组合物具有优良的生物相容性和可降解性,无明显毒副作用,具有良好的临床应用前景。本发明的可电离脂质纳米颗粒组合物的制备方法,能够方便地制备本发明的可电离脂质纳米颗粒组合物,设备要求较低,工艺可靠。
附图说明
图1是cRGD肽、DSPE-PEG2000-MAL和DSPE-PEG2000-cRGD结合的MALDI-TOF-MS分析质谱图;
图2是不同剂量Gd制剂对GAP iLNPs的成像效果图;
图3是本发明的可电离脂质纳米颗粒组合物对细胞活性的影响检测结果图;
图4是GAP iLNPs处理后HepG2-Luc细胞中PLK1 mRNA的相对表达量荧光定量检测图;
图5是GARP iLNPs处理后HepG2-Luc细胞中PLK1 mRNA的相对表达量荧光定量检测图;
图6是GAP/siPLK1和GARRP/siPLK1的基因沉默效果图;
图7是蛋白印记法检测的PLK1蛋白水平结果图;
图8是PLK1蛋白水平定量分析结果图;
图9是本发明的可电离脂质纳米颗粒组合物一个实施例的pKa检测结果图;
图10是本发明的可电离脂质纳米颗粒组合物在小鼠体内分布荧光成像图;
图11是本发明的可电离脂质纳米颗粒组合物在小鼠肿瘤组织和主要器官中的分布荧光成像图;
图12是小鼠肝癌模型使用本发明的可电离脂质纳米颗粒组合物后的MRI成像图;
图13是本发明的可电离脂质纳米颗粒组合物对肿瘤组织生长的影响图;
图14是本发明的可电离脂质纳米颗粒组合物对肿瘤组织PLK1 mRNA的表达影响图;
图15是本发明的可电离脂质纳米颗粒组合物对小鼠肝癌模型生存时间影响图;
图16是本发明的可电离脂质纳米颗粒组合物对小鼠肝癌模型体重影响图;
图17是本发明的可电离脂质纳米颗粒组合物对小鼠肝癌模型肝肾功能影响图;
图18是本发明的可电离脂质纳米颗粒组合物对小鼠肝癌模型主要脏器组织病理学影响图。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
以下结合附图对本发明的诺氟沙星磁性分子印迹纳米粒子的制备方法的具体实施方式进行详细说明,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,本发明的保护范围并不局限于下述的具体实施方式。
在本发明的实施例中,所使用的质谱仪为美国Bruker Daltonics生产的型号为MALDI-TOF-MS的质谱仪;磁共振成像仪为德国布鲁克生产,型号为7.0-T的动物磁共振成像仪;荧光实时定量PCR仪为thermo Fisher Scientific生产的型号为qRT-PCR的荧光定量仪;化学发光成像系统为:Bio-Rad,Bossier City,LA;活体成像系统为:Kodak In-VivoImage System FX Pro,Care stream Health,USA;HepG2-Luc细胞购于ATCC细胞库;TRIzol试剂和逆转录试剂盒均采用中国南京的Vazyme;BCA蛋白分析试剂盒由CWBIO生产,批号为CW0014;小鼠抗PLK1单克隆抗体来自美国细胞信号技术公司(1:1000,AB30394);辣根过氧化物酶偶联抗体来自中国ZSJQB有限公司(1:3000);其他试剂均为市售。
以下通过实施例对本发明的可电离脂质纳米颗粒组合物的制备方法、可电离脂质纳米颗粒组合物及其应用进行详细描述。
实施例1
本实施例用于制备无靶向功能的可电离脂质纳米颗粒组合物。
利用iBL0104、胆固醇、DTPA-BSA(Gd)、DSPC、DMG-PEG2000和siRNA(siNC、siPLK1或Cy5-siRNA)制备无靶向肽的具有诊疗功能的脂质纳米颗粒,命名为GAP/siRNA iLNPs。
1)分别按表1所示的比例取iBL0104、胆固醇、DTPA-BSA(Gd)、DSPC和DMG-PEG2000,溶解在无水乙醇中,形成1.5mg/mL的有机相乙醇溶液。
表1:GAP/siRNA iLNPs原料配比表
Figure BDA0003134444260000071
Figure BDA0003134444260000081
2)将有机相高速注入快速注入3倍体积的50mMpH4.0的柠檬酸钠缓冲溶液中,以2000-6000rpm的转速搅拌3分钟,形成GAP iLNPs。
3)将GAP iLNP加入含有25%乙醇的50mM pH4.0的柠檬酸钠缓冲溶液中,搅拌溶解,形成0.025mg/mL的溶液。
4)将GAP iLNP与等量的siRNA混合,在50℃的温度下水浴30分钟。
5)将水浴后的溶液装在100kD的透析膜中,置于1×PBS中透析至少2小时,得到本发明的GAP/siRNA iLNPs。
本实施例制得的GAP/siRNA iLNPs,总脂质与siRNA的质量比约为15:1。
实施例2
本实施例用于制备无靶向功能的可电离脂质纳米颗粒组合物。
1)分别按20:10:45:20:5的比例取iBL0104、胆固醇、DTPA-BSA(Gd)、DPPC和DPPE-PEG2000,溶解在无水乙醇中,形成0.015mg/mL的有机相乙醇溶液。
2)将有机相高速注入快速注入等体积的50mMpH4.0的柠檬酸钠缓冲溶液中,以2000-6000rpm的转速搅拌3分钟,形成GAP iLNPs。
3)将GAP iLNP加入含有25%乙醇的50mM pH4.0的柠檬酸钠缓冲溶液中,搅拌溶解,形成0.0025mg/mL的溶液。
4)将GAP iLNP与mRNA按体积比1:2的混合,在50℃的温度下水浴30分钟。
5)将水浴后的溶液装在100kD的透析膜中,置于1×PBS中透析至少2小时,得到本发明的GAP/mRNA iLNPs。
实施例3
本实施例用于制备无靶向功能的可电离脂质纳米颗粒组合物。
1)分别按50:10:38.9:1:0.1的比例取iBL0104、胆固醇、Gd-DTPA、DOPC和DSPE-PEG2000,溶解在无水乙醇中,形成150mg/mL的有机相乙醇溶液。
2)将有机相高速注入快速注入6倍体积的50mMpH4.0的柠檬酸钠缓冲溶液中,以2000-6000rpm的转速搅拌3分钟,形成GAP iLNPs。
3)将GAP iLNP加入含有25%乙醇的50mM pH4.0的柠檬酸钠缓冲溶液中,搅拌溶解,形成2.5mg/mL的溶液。
4)将GAP iLNP与ASO按体积比2:1的混合,在50℃的温度下水浴30分钟。
5)将水浴后的溶液装在100kD的透析膜中,置于1×PBS中透析至少2小时,得到本发明的GAP/ASO iLNPs。
实施例4
本实施例用于制备无靶向功能的可电离脂质纳米颗粒组合物。
1)分别按50:10:38.9:1:0.1的比例取iBL0104、胆固醇、Gd-BOPTA、DOPC和DMA-PEG2000,溶解在无水乙醇中,形成150mg/mL的有机相乙醇溶液。
2)将有机相高速注入快速注入6倍体积的50mMpH4.0的柠檬酸钠缓冲溶液中,以2000-6000rpm的转速搅拌3分钟,形成GAP iLNPs。
3)将GAP iLNP加入含有25%乙醇的50mM pH4.0的柠檬酸钠缓冲溶液中,搅拌溶解,形成2.5mg/mL的溶液。
4)将GAP iLNP与质粒按体积比2:1的混合,在50℃的温度下水浴30分钟。
5)将水浴后的溶液装在100kD的透析膜中,置于1×PBS中透析至少2小时,得到本发明的GAP/质粒iLNPs。
实施例5
本实施例用于制备具有靶向功能的可电离脂质纳米颗粒组合物。
利用iBL0104、胆固醇、DTPA-BSA(Gd)、DSPC、DSPE-PEG2000-cRGD和siRNA(siNC、siPLK1或Cy5-siRNA)制备具有靶向肽c(GRGDSPKC)的具有诊疗功能的脂质纳米颗粒,命名为GARP/siRNA iLNPs。
1)合成DSPE-PEG2000-cRGD。将cRGD肽和DSPE-PEG2000-MAL按质量比1:5的比例溶于100mM HEPES缓冲液(pH7.0)中,在4℃下搅拌48小时后,装在2kDa的透析袋内,在去离子水中透析24小时。
使用质谱仪对所得到的溶液进行鉴定,结果如图1所示,证明得到了所要合成的DSPE-PEG2000-cRGD。
2)分别按表2所示的比例取iBL0104、胆固醇、DTPA-BSA(Gd)、DSPC和DSPE-PEG2000-cRGD,溶解在无水乙醇中,形成1.5mg/mL的有机相乙醇溶液。
表2:GARP/siRNAiLNPs原料配比表
Figure BDA0003134444260000101
3)将有机相高速注入快速注入3倍体积的50mMpH4.0的柠檬酸钠缓冲溶液中,以2000-6000rpm的转速搅拌3分钟,形成GARP iLNPs。
4)将GARP iLNP加入含有25%乙醇的50mM pH4.0的柠檬酸钠缓冲溶液中,搅拌溶解,形成0.025mg/mL的溶液。
5)GARP iLNP与等量的siRNA混合,在50℃的温度下水浴30分钟。
6)水浴后的溶液所有制剂在1×PBS的透析膜中透析至少2小时,得到本发明的GARP/siRNA iLNPs。
本实施例制得的GARP/siRNA iLNPs,总脂质与siRNA的质量比约为15:1。
实施例6
本实施例用于制备具有靶向功能的可电离脂质纳米颗粒组合物。
1)合成DSPE-PEG2000-cRGD。将cRGD肽和DSPE-PEG2000-MAL按质量比1:5的比例溶于100mM HEPES缓冲液(pH 7.0)中,在4℃下搅拌48小时后,装在2kDa的透析袋内,在去离子水中透析24小时。
2)分别按20:10:45:20:5的比例取iBL0104、胆固醇、DTPA-BSA(Gd)、DOPE和DSPE-PEG2000-cRGD,溶解在无水乙醇中,形成0.015mg/mL的有机相乙醇溶液。
3)将有机相高速注入快速注入等体积的50mMpH4.0的柠檬酸钠缓冲溶液中,以2000-6000rpm的转速搅拌3分钟,形成GARP iLNPs。
4)将GARP iLNP加入含有25%乙醇的50mM pH4.0的柠檬酸钠缓冲溶液中,搅拌溶解,形成0.0025mg/mL的溶液。
5)将GARP iLNP与siRNA按体积比1:2的混合,在50℃的温度下水浴30分钟。
6)将水浴后的溶液装在100kD的透析膜中,置于1×PBS中透析至少2小时,得到本发明的GARP/siRNAiLNPs。
实施例7
本实施例用于制备具有靶向功能的可电离脂质纳米颗粒组合物。
1)合成DSPE-PEG2000-cRGD。将cRGD肽和DSPE-PEG2000-MAL按质量比1:5的比例溶于100mM HEPES缓冲液(pH 7.0)中,在4℃下搅拌48小时后,装在2kDa的透析袋内,在去离子水中透析24小时。
2)分别按50:10:38.9:1:0.1的比例取iBL0104、胆固醇、DTPA-BSA(Gd)、DEPC和DMG-PEG2000,溶解在无水乙醇中,形成150mg/mL的有机相乙醇溶液。
3)将有机相高速注入快速注入6倍体积的50mMpH4.0的柠檬酸钠缓冲溶液中,以2000-6000rpm的转速搅拌3分钟,形成GARP iLNPs。
4)将GARP iLNP加入含有25%乙醇的50mM pH4.0的柠檬酸钠缓冲溶液中,搅拌溶解,形成2.5mg/mL的溶液。
5)将GARP iLNP与saRNA按体积比2:1的混合,在50℃的温度下水浴30分钟。
6)将水浴后的溶液装在100kD的透析膜中,置于1×PBS中透析至少2小时,得到本发明的GARP/saRNAiLNPs。
实验例
(1)体外磁共振成像
为评价GARP iLNPs的对比剂效果,使用动物磁共振成像仪对实施例1所制得的GAP/siRNA iLNPs溶液进行磁共振成像,其中重复时间(TR)=3000ms,回声时间(TE)=40ms。结果如图2所示,随着DTPA-BSA(Gd)含量的增加,GAP iLNPs的T1值减小,MRI造影效果增强。与PBS相比,GAP32、GAP35和GAP60均表现出理想的造影效果。
(2)细胞毒性分析
使用MTT法检测GARP iLNPs对细胞的细胞毒作用。当HepG2-Luc细胞处于对数生长期时,将1万个细胞接种到96孔板中,每孔100μL细胞悬液,孵育24小时。然后以实施例5所制得的GARP35 iLNPs和实施例1所制得的GAP35 iLNPs作为对照组,以未经处理的细胞作为阴性对照。将GARP35 iLNPs和GAP35 iLNPs分别转染含10%胎牛血清的新鲜完整DMEM 24小时。每孔加入95μL新鲜DMEM和5μL MTT(5mg/mL),37°C孵育4小时,待福尔马赞晶体完全溶解后,用酶标仪在540nm处检测吸光度,以650nm为参比波长,计算细胞存活率。具体地,MTT法检测GARP35iLNPs和GAP35 iLNPs对HepG2-Luc细胞的细胞毒作用。如图3所示,即使当siRNA转染浓度达到600nM时,所有脂质纳米颗粒制剂也没有明显的细胞毒性。
(3)荧光实时定量PCR
荧光实时定量PCR(qRT-PCR)检测基因沉默效率。HepG2-Luc细胞接种于6孔板中,细胞密度为2×105个/孔。24小时后,将GARP35/siPLK1脂质纳米颗粒和GAP35/siPLK1脂质纳米颗粒以50nM和150nM的siRNA终浓度转染细胞4小时。总RNA的提取和逆转录用TRIzol试剂和逆转录试剂盒,分别按照标准生产说明进行。以SYBR Green PCR Master Mix为模板,用qRT-PCR系统对cDNA进行定量。以GAPDH(甘油醛3-磷酸脱氢酶)基因作为内参。
利用荧光实时定量PCR仪针对PLK1的siRNA(siPLK1)分析不同脂组分摩尔比的GAP/siRNAiLNPs的基因抑制效率。如图4所示,GAP35/siPLK1iLNP与其他iLNP制剂相比显示出最高的基因沉默活性。此外,如图5所示,与其他GAP/siPLK1 iLNP相比,GARP/siPLK1iLNP显示出更好的基因沉默活性。在核磁共振成像和基因沉默效应方面,GAP35和GARP35iLNPs总体上优于其他纳米颗粒。
(4)蛋白印迹
通过蛋白印迹检测HepG2-Luc细胞PLK1蛋白表达。按照与实时荧光PCR检测相同的方法处理细胞。用含蛋白酶抑制剂(10000×)的1倍被动裂解缓冲液提取全细胞蛋白。用BCA蛋白分析试剂盒测定蛋白质浓度。取60微克蛋白质,经SDS-PAGE分离后转移到硝酸纤维素膜(NC)上进行印迹。用5%牛血清白蛋白(BSA)缓冲液室温封闭1小时,4℃下与小鼠抗PLK1单克隆抗体孵育过夜,与辣根过氧化物酶偶联抗体室温孵育1小时。使用化学发光成像系统记录和分析斑点。
进一步分析GARP35/siPLK1 iLNP和GAP35/siPLK1 iLNPs的基因沉默活性。数据显示,GAP35/siPLK1和GARP35/siPLK1 iLNPS在体外表现出显著的基因沉默效果。GAP35/siPLK1处理的细胞分别在siRNA浓度为50nM和150nM沉默效率达到89.30%和94.49%,GARP35/siPLK1处理的细胞分别在siRNA浓度为50nM和150nM沉默效率达到96.64%和98.74%。如图6所示,Lipo2000转染的siPLK1对PLK1 mRNA表达的抑制率为85.30%。GARP35/siPLK1介导的mRNA表达水平的下调显著高于GAP35/siPLK1介导的下调,这表明cRGD修饰通过RGD/整合素相互作用机制显著增强了纳米颗粒在细胞中的内吞。如图7、图8所示,检测蛋白质表达的蛋白印迹结果有同样的趋势。
(5)PKa测定GARP iLNPs
为表征GARP纳米粒的电离性能,制备了1mL GARP纳米粒(总脂浓度:2μM)和1mL不含DTPA-BSA(Gd)的纳米粒(iLNPW/OGd)(总脂浓度:6μM)。首先,在蒸馏水中制备100mMHEPES缓冲液、100mM MES、100mM乙酸铵、1300mM NaCl和100μM TNS作为原液。然后制备了一系列不同pH条件下的纳米溶液。这些溶液包含10mM HEPES、10mM MES、10mM醋酸铵、130mMNaCl、80μM GARP NPs。随后,将99μL的纳米颗粒溶液和1μL的TNS原液加入96孔黑色不透明板中,在321nm的激发波长和445nm的发射波长下检测荧光值。最后,通过拟合Henderson-Hasselbach方程(GraphPad Prism v.8)计算了GARP NPs的pKa。
用2-(对甲苯基)-6-萘磺酸(TNS)滴定法测定了GARP iLNPs的pKa值。如图9所示,观察到它们的pKa值分别为6.07和5.90。类脂质纳米粒的pKa值必须达到或超过5.5,否则纳米粒在体内几乎不能表现出理想的siRNA转运效率。因此,所制备的GARP iLNPs可能是通过膜失稳机制触发有效的内涵体逃逸。
(6)动物的体内肿瘤靶向性验证
GARP iLNPs体内靶向性蓄积:为评价GARP纳米粒在小鼠体内的靶向性,将HepG2-Luc细胞(5×106细胞)悬浮于1×PBS(100μL)中,皮下注射于体重约20g的雌性BALB/c裸鼠右腋窝,当肿瘤生长至约1000mm3时,随机分为4组,分别注射1×PBS、Naked Cy5-siRNA、GAP35/Cy5-siRNA、GARP35/Cy5-siRNA。经试验小鼠的尾静脉注射siRNA,剂量为1mg/kg。注射后分别于1小时、3小时、6小时、10小时和24小时用活体成像系统检测小鼠Cy5荧光信号。每组动物分别在注射后6小时、10小时和24小时被分别处死,然后观察肿瘤及主要脏器荧光信号。
结果显示,在注射后的不同时间点检测到的Cy5荧光信号在肿瘤和全身的分布如图10所示。在全身成像6小时、10小时、24小时后,分离肿瘤组织和主要器官并进行离体成像,结果如图11所示,Naked Cy5-siRNA组在注射10h时在肿瘤处的荧光信号几乎不可见。然而,在注射GAP35/siRNA和GARP35/siRNA的肿瘤处可检测到荧光信号。在注射后10小时和24小时后,注射GARP35/siRNA的小鼠在肿瘤的荧光强度强于注射GAP35/siRNA的肿瘤,说明GARP35/siRNA iLNPs在小鼠体内的代谢比GAP35/siRNA iLNPs慢。与注射GAP35/siRNA的小鼠相比,注射GARP35/siRNA的小鼠由于cRGD靶向部分可使更多的纳米颗粒被处细胞内吞。总之,在荷瘤小鼠中,加了cRGD靶向修饰的GARP iLNPs比不加cRGD修饰的GAP iLNPs表现出更多的富集。
(7)可离子化脂质制剂在患者来源异种移植(PDX)模型中的抗癌作用
为建立患者来源异种移植(PDX)肿瘤模型,将肝癌患者的肿瘤组织用磷酸盐缓冲液冲洗3次,切成小块,然后移植到小鼠右侧腋窝。所有操作均符合医学伦理和实验动物伦理原则。肿瘤生长至100-200mm3时,将小鼠随机分为6组,分别注射(1)PBS、(2)索拉非尼、(3)GAP35/siPLK1(i.v.)、(4)GARP35/siPLK1(i.v.)、(5)GAP35/siPLK1(i.t.)和(6)GARP35/siPLK1(i.t.)。第3组静脉注射GAP35/siPLK1,第5组瘤内注射GAP35/siPLK1,第4组静脉注射GARP35/siPLK1,第6组瘤内注射GARP35/siPLK1。siRNA剂量为1mg/kg。索拉非尼口服剂量为30mg/kg在给药前和给药后分别进行MRI检查。在这里,第一次给药前和给药后动物被异氟醚麻醉,固定在MRI仪器上进行MRI成像以示踪肿瘤的位置及药物分布。上述每组小鼠分别于给药前、给药后1小时、5小时、10小时、24小时采集T1加权图像。同时在整个治疗过程中记录体重、肿瘤体积和动物存活情况。实验结束时,对肿瘤组织进行分离,同时检测主要脏器及肿瘤的血清生化指标和病理变化。
将六组小鼠分别标识为G1:PBS,G2:Sorafenib,G3:GAP35/siPLK1(i.v.),G4:GARP35/siPLK1(i.v.),G5:GAP35/siPLK1(i.t.),和G6:GARP35/siPLK1(i.t.),“i.v.”和“i.t”分别代表静脉注射和肿瘤内注射。在进行第一次给药前后分别对G3、G4、G5、G6组的小鼠进行MRI成像,结果如图12所示(白色圆圈为肿瘤部位)。对于通过静脉注射的GAP35/siPLK1和GARP35/siPLK1的小鼠,它们在注射后的1小时在肿瘤组织边缘显示出增强的MRI信号。瘤内注射组在注射部位显示增强的MRI信号。随着时间的延长,脂质复合物在肿瘤组织中逐渐蔓延。并且GARP35/siPLK1组的扩散速度快于GAP35/siPLK1组。另外,尾静脉注射组和瘤内注射组GARP35/siRNA在肿瘤部位的聚积水平均高于GAP35/siRNA组。这些结果表明,脂质纳米粒上的cRGD偶联增强了纳米制剂在体内的肿瘤靶向性。并且GAP35/siPLK1和GARP35/siRNA纳米复合物具有理想的MRI肿瘤成像效果。
在肿瘤抑制实验中,每两天给一次药,每天记录肿瘤体积直至实验结束。如图13可以看到,PBS组肿瘤生长迅速,第5天肿瘤平均体积达2000mm3以上。相比之下,无论是尾静脉注射还是瘤内注射,使用GARP35/siPLK1治疗的小鼠肿瘤生长都要慢得多。此外,瘤内注射组的抑瘤效果总体上优于静脉注射组,注射GARP35/siPLK1组小鼠的肿瘤生长速度慢于GAP35/siPLK1组。当PBS组肿瘤平均体积达到约2000mm3时,每组随机选择3只动物处死。对分离的肿瘤用qRT-PCR方法检测PLK1在肿瘤组织中的表达。如图14所示,在接受siPLK1治疗的组别中,PLK1 mRNA的表达均受到抑制。此外,分析不同组别的小鼠生存情况,如图15所示,和PBS组相比,G3,G4,G5和G6组小鼠生存时间显著延长。其中,PBS处理小鼠的中位生存时间为5天,索拉非尼处理小鼠的中位生存时间略有增加,为6天。GAP35/siPLK1(i.v.)和GAP35/siPLK1(i.t.)的中位生存时间均为11天。GARP35/siPLK1 iLNPs(i.v.)和GARP35/PLK1 iLNPs(i.t.)分别将小鼠的中位生存时间延长至13天和14天。
在整个实验治疗期间,持续检测小鼠的体重,如图16所示,小鼠的体重没有明显变化。众所周知,免疫缺陷BALB/c裸鼠脾脏重量明显高于正常小鼠。因此,假设GARP/siPLK1治疗后健康状况有所改善,则可能导致脾脏重量减轻。在实验终点我们对小鼠的血液标本和主要脏器分别进行血清生化分析和组织病理学检查。如图17和图18所示,各组动物肝肾功能的生物标志物均无明显变化,主要脏器也无明显的组织病理学改变。
综上所述,本发明的可电离脂质纳米颗粒组合物,能够高效递送治疗剂,实现药物高效释放。本发明的具有靶向肽的纳米颗粒组合物,能够更多的、靶向性的到达病灶部位并同时实现高效造影效果以及高效治疗效果,并且生物安全性高。本发明的可电离脂质纳米颗粒组合物,掺杂了具有影像的金属螯合物,使得肿瘤组织等病灶能够更好地成像。本发明的纳米颗粒组合物,功能强大,能同步实现影像引导的治疗。本发明的可电离脂质纳米颗粒组合物的制备方法,能够方便的制备同时实现诊断和治疗功能的可电离脂质纳米颗粒组合物。本发明可电离脂质纳米颗粒组合物,能够实现影像引导和肿瘤靶向药物/siRNA的递送,能够应用在肿瘤诊断和治疗中,能够同时发挥诊断和治疗作用,具有较好的临床应用前景。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

1.一种可电离脂质纳米颗粒组合物,其特征在于,包括关键脂质、辅助脂质、胆固醇、PEG脂质、金属螯合物和治疗性药物,所述关键脂质为iBL0104,所述辅助脂质选自DSPC、DPPC、POPC、DOPE和DEPC之一。
2.根据权利要求1所述的可电离脂质纳米颗粒组合物,其特征在于,所述PEG脂质选自DSPE-PEG2000、DMG-PEG2000、DPPE-PEG2000和DMA-PEG2000之一。
3.根据权利要求1所述的可电离脂质纳米颗粒组合物,其特征在于,所述金属螯合物选自DTPA-BSA(Gd)、Gd-DTPA和Gd-BOPTA之一。
4.根据权利要求1所述的可电离脂质纳米颗粒组合物,其特征在于,所述治疗性药物为核酸分子,所述核算分子选自siRNA、mRNA、ASO、质粒或者saRNA中的一种或几种。
5.根据权利要求1-4中任一项所述的可电离脂质纳米颗粒组合物,其特征在于,还包括靶向肽。
6.根据权利要求5所述的可电离脂质纳米颗粒组合物,其特征在于,所述PEG脂质和所述靶向肽为同一种物质DSPE-PEG2000-RGD。
7.一种根据权利要求1-6中任一项所述的可电离脂质纳米颗粒组合物的制备方法,其特征在于,包括如下步骤:
1)将设定比例的iBL0104、辅助脂质、胆固醇、PEG脂质和金属螯合物按总量0.015-150mg/mL的比例加入无水乙醇中,得到可电离脂质溶液;
2)将脂质溶液快速加入1-6倍体积的柠檬酸钠缓冲溶液中,搅拌,得到可电离脂质纳米颗粒溶液;
3)将一定量的治疗性药物,加入含有乙醇的柠檬酸钠缓冲液中,溶解后得到0.0025-2.5mg/mL的治疗性药物溶液;
4)将可电离脂质纳米颗粒溶液和治疗性药物溶液按0.5-2:1的比例混合,水浴,得到包裹治疗性药物的可电离脂质纳米颗粒溶液;
5)使用100kD的透析膜透析,得到本发明的可电离脂质纳米颗粒组合物。
8.根据权利要求7所述的方法,其特征在于,所述PEG脂质为DMG-PEG2000,所述金属螯合物为DTPA-BSA(Gd),所述治疗性药物为siRNA;在步骤1)中,所述iBL0104的比例为20-61%,所述胆固醇的比例为10-60%,所述DTPA-BSA(Gd)的比例为10-60%,所述DSPC的比例为1-20%,所述DMG-PEG2000的比例为0.1-5%。
9.根据权利要求7所述的方法,其特征在于,所述PEG脂质为DSPE-PEG2000-RGD,所述金属螯合物为DTPA-BSA(Gd),所述治疗性药物为siRNA;在步骤1)中,所述iBL0104的比例为20-61%,所述胆固醇的比例为10-60%,所述DTPA-BSA(Gd)的比例为10-60%,所述DSPC的比例为1-20%,所述DSPE-PEG2000-RGD的比例为0.1-5%。
10.一种根据权利要求1-6中任一项所述的可电离脂质纳米颗粒组合物在肿瘤诊断和治疗中的应用。
CN202110713233.6A 2021-06-25 2021-06-25 可电离脂质纳米颗粒组合物、制备方法及应用 Expired - Fee Related CN113663089B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110713233.6A CN113663089B (zh) 2021-06-25 2021-06-25 可电离脂质纳米颗粒组合物、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110713233.6A CN113663089B (zh) 2021-06-25 2021-06-25 可电离脂质纳米颗粒组合物、制备方法及应用

Publications (2)

Publication Number Publication Date
CN113663089A true CN113663089A (zh) 2021-11-19
CN113663089B CN113663089B (zh) 2022-10-28

Family

ID=78538399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110713233.6A Expired - Fee Related CN113663089B (zh) 2021-06-25 2021-06-25 可电离脂质纳米颗粒组合物、制备方法及应用

Country Status (1)

Country Link
CN (1) CN113663089B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540416A (zh) * 2022-02-18 2022-05-27 上海交通大学 一种表达载体、脂质纳米粒、抗肿瘤药物及其制备方法和用途
CN115245572A (zh) * 2022-07-28 2022-10-28 广州医科大学附属第三医院(广州重症孕产妇救治中心、广州柔济医院) 靶向抑制肝细胞pcsk9降低ldlc的仿生纳米颗粒材料及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206626A1 (zh) * 2015-06-26 2016-12-29 苏州瑞博生物技术有限公司 一种siRNA、含有该siRNA的药物组合物和缀合物及它们的应用
CN111053757A (zh) * 2018-10-15 2020-04-24 吉优诺(上海)基因科技有限公司 靶向肝星状细胞的脂质纳米颗粒、其制备方法和用途
CN111467321A (zh) * 2020-03-26 2020-07-31 深圳市新合生物医疗科技有限公司 一种mRNA核酸类药物胞内递送系统、制备方法和应用
CN111971066A (zh) * 2018-01-18 2020-11-20 伊泽阿恩埃免疫疗法股份有限公司 脂质纳米颗粒

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206626A1 (zh) * 2015-06-26 2016-12-29 苏州瑞博生物技术有限公司 一种siRNA、含有该siRNA的药物组合物和缀合物及它们的应用
CN111971066A (zh) * 2018-01-18 2020-11-20 伊泽阿恩埃免疫疗法股份有限公司 脂质纳米颗粒
CN111053757A (zh) * 2018-10-15 2020-04-24 吉优诺(上海)基因科技有限公司 靶向肝星状细胞的脂质纳米颗粒、其制备方法和用途
CN111467321A (zh) * 2020-03-26 2020-07-31 深圳市新合生物医疗科技有限公司 一种mRNA核酸类药物胞内递送系统、制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DANIEL ROSENBLUM等: "CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy", 《SCI. ADV.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114540416A (zh) * 2022-02-18 2022-05-27 上海交通大学 一种表达载体、脂质纳米粒、抗肿瘤药物及其制备方法和用途
CN115245572A (zh) * 2022-07-28 2022-10-28 广州医科大学附属第三医院(广州重症孕产妇救治中心、广州柔济医院) 靶向抑制肝细胞pcsk9降低ldlc的仿生纳米颗粒材料及其应用

Also Published As

Publication number Publication date
CN113663089B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
Guo et al. Membrane‐destabilizing ionizable lipid empowered imaging‐guided siRNA delivery and cancer treatment
Zhao et al. Enhancing anti-tumor efficiency in hepatocellular carcinoma through the autophagy inhibition by miR-375/sorafenib in lipid-coated calcium carbonate nanoparticles
Belhadj et al. Multifunctional targeted liposomal drug delivery for efficient glioblastoma treatment
CN100355454C (zh) 磁热疗用纳米磁粉-抗人肝癌单抗HAb18靶向药物
Son et al. Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo
Lee et al. Modular Polymer-Caged Nanobins as a Theranostic Platform with Enhanced Magnetic Resonance Relaxivity and pH-Responsive Drug-Release
He et al. Design of multifunctional magnetic iron oxide nanoparticles/mitoxantrone-loaded liposomes for both magnetic resonance imaging and targeted cancer therapy
Zhang et al. Multifunctional tumor-targeted PLGA nanoparticles delivering Pt (IV)/siBIRC5 for US/MRI imaging and overcoming ovarian cancer resistance
CN113663089B (zh) 可电离脂质纳米颗粒组合物、制备方法及应用
Li et al. Folic acid modified lipid-bilayer coated mesoporous silica nanoparticles co-loading paclitaxel and tanshinone IIA for the treatment of acute promyelocytic leukemia
US9844656B2 (en) Localization of agents at a target site with a composition and an energy source
CN1772300A (zh) 磁热疗用纳米磁粉-抗cea抗体靶向药物
Wang et al. Dual‐targeting heparin‐based nanoparticles that re‐assemble in blood for glioma therapy through both anti‐proliferation and anti‐angiogenesis
Wei et al. OFF–ON nanodiamond drug platform for targeted cancer imaging and therapy
CN109157662B (zh) 一种人血清白蛋白-阿霉素交联物纳米颗粒及其应用
Yin et al. A biodegradable nanocapsule for through-skull NIR-II fluorescence imaging/magnetic resonance imaging and selectively enhanced radio-chemotherapy for orthotopic glioma
Aoki et al. Thermoactivatable polymer-grafted liposomes for low-invasive image-guided chemotherapy
Poley et al. Nanoparticles accumulate in the female reproductive system during ovulation affecting cancer treatment and fertility
Liu et al. Folate-targeted star-shaped cationic copolymer co-delivering docetaxel and MMP-9 siRNA for nasopharyngeal carcinoma therapy
Shao et al. Tumor-triggered personalized microRNA cocktail therapy for hepatocellular carcinoma
CN104490786A (zh) 一种靶向多功能双载药脂质体的制备方法和应用
Vinh et al. MRI-detectable polymeric micelles incorporating platinum anticancer drugs enhance survival in an advanced hepatocellular carcinoma model
Guo et al. Targeted Magnetic Resonance Imaging/Near‐Infrared Dual‐Modal Imaging and Ferroptosis/Starvation Therapy of Gastric Cancer with Peritoneal Metastasis
Wang et al. Self-assembly of photosensitive and radiotherapeutic peptide for combined photodynamic-radio cancer therapy with intracellular delivery of miRNA-139-5p
Zhang et al. Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221028

CF01 Termination of patent right due to non-payment of annual fee