CN113658941A - 一种hzo/ao/hzo纳米叠层薄膜及其制备方法和应用 - Google Patents

一种hzo/ao/hzo纳米叠层薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN113658941A
CN113658941A CN202110724557.XA CN202110724557A CN113658941A CN 113658941 A CN113658941 A CN 113658941A CN 202110724557 A CN202110724557 A CN 202110724557A CN 113658941 A CN113658941 A CN 113658941A
Authority
CN
China
Prior art keywords
layer
hzo
film
hfo
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110724557.XA
Other languages
English (en)
Inventor
张斗
陈永红
汤林
陈海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202110724557.XA priority Critical patent/CN113658941A/zh
Publication of CN113658941A publication Critical patent/CN113658941A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02189Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/022Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being a laminate, i.e. composed of sublayers, e.g. stacks of alternating high-k metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明公开了一种HZO/AO/HZO纳米叠层薄膜及其制备方法和应用,所述薄膜由HZO顶层、AO中层、HZO底层构成,其中HZO顶层由HfO2膜层与ZrO2膜层交替层叠组成,AO中层为Al2O3膜层,HZO底层由HfO2膜层与ZrO2膜层交替层叠组成。本发明的技术方案使用HfO2层及ZrO2层交替沉积,通过纳米叠层结构引入界面以调控界面能来稳定物相,并有效阻碍“电树”的生长,避免击穿的发生。此外,界面还能减小电子注入深度并抑制局部相分解,从而最终提高疲劳性能。另一方面,引入介质层Al2O3促进180°畴的形成以降低内建电场,削弱电畴的固定取向程度,减小漏电流密度。本发明能够解决具有良好铁电性能的HZO/AO/HZO纳米叠层层薄膜的制备技术难题,可简单、可控地生产高质量的铁电薄膜。

Description

一种HZO/AO/HZO纳米叠层薄膜及其制备方法和应用
技术领域
本发明属于铁电薄膜技术制备领域,具体涉及一种HZO/AO/HZO纳米叠层薄膜及其制备方法和应用。
背景技术
近年来,人们对高性能个人电子设备的需求,推动着下一代低功耗高密度存储技术的步伐。铁电材料展现出的电场诱导极化后的滞后现象,预示着这类材料在下一代存储器中的应用。铁电随机存储器(FeRAM)的发展一直以来集中于钙钛矿材料,这类材料带隙较小,势垒较低,因此,通常需要制备出厚膜以避免在基于钙钛矿的FeRAM中出现大的漏电流,这是在先进技术节点(22nm以下)上实施这些材料的主要障碍。目前已经有大量报道表明在掺杂HfO2薄膜和Hf0.5Zr0.5O2固溶体中观察到铁电性,并且正努力将这些材料开发成基于钙钛矿的FeRAM的可行替代品。然而,掺杂元素的含量难以控制限制了其在商业生产中的使用。与传统的钙钛矿基铁电体相比,基于HfO2和ZrO2的铁电体具有许多优点:1)HfO2和ZrO2具有比钙钛矿型材料更大的带隙(Eg),使较薄的膜能够应用于电容器中;2)由于强结合能的Hf-O和Zr-O键存在,HfO2和ZrO2在退火后更能有效地抵抗退极化;3)HfO2和ZrO2作为高-k材料,被广泛用于先进节点技术中,推动了沉积三维结构的原子层沉积工艺的发展,使这些材料完全与现代半导体集成方案兼容。
调控HfO2和ZrO2中的多晶型结构是目前研究的焦点,以促进在互补金属-氧化物-半导体(CMOS)应用中使用高-k相结构作为电介质。在常温常压下块体结构的HfO2和ZrO2中,最稳定存在的是单斜相(P21/c),四方相(P42/nmc)和立方相
Figure BDA0003137324510000011
仅在高温下变得稳定。目前发现降低薄膜厚度可以提高四方相和立方相在室温下的稳定性,这种现象归因于增加的表面能量效应。HfO2基薄膜的铁电响应是由于非中心对称的正交相(Pca21)所引起的,此外还需要选择合适的工艺条件来使铁电相稳定。自从铁电行为首次报道在HfO2基薄膜中,研究者们已经发现了使铁电正交相稳定的几种方法:氧空位、应力和表面能效应。
目前关于HfO2的研究主要集中于剩余极化强度的提高,主要通过外延生长、调整电极材料等来实现铁电相含量的提高,且为了追求高的剩余极化强度,一般选择10nm左右的最优厚度,这不可避免地容易因漏电流过大而击穿,进而导致器件失效。此外,铁电薄膜内部往往因自发极化而产生内建电场,畴壁的运动在一定程度上受到限制,这导致剩余极化强度的降低,存储窗口减小。
发明内容
针对现有技术的不足,本发明的目的在于提供一种具有良好铁电性能的非掺杂HZO/AO/HZO((HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n)纳米叠层薄膜及其制备方法,本发明从叠层结构设计和介质层插层两个方面对HfO2基铁电薄膜进行性能优化,选择与HfO2晶体结构和性质相似的ZrO2进行叠层,并使用低介电常数的Al2O3插层优化叠层薄膜的铁电性能。本发明的制备方法简单可控。
为了实现上述目的,本发明采用如下技术方案:
本发明一种HZO/AO/HZO纳米叠层薄膜,所述薄膜由HZO顶层、AO中层、HZO底层构成,其中HZO顶层由HfO2膜层与ZrO2膜层交替层叠组成,AO中层为Al2O3膜层,HZO底层由HfO2膜层与ZrO2膜层交替层叠组成;所述HZO顶层中任意一层HfO2膜层的厚度为0.8~1.5nm,所述HZO顶层中任意一层ZrO2膜层的厚度为0.8~1.5nm,所述HZO顶层中,HfO2膜层的层数为2~5层;优选为3~4层,所述Al2O3膜层的厚度为1~2nm,所述HZO底层中任意一层HfO2膜层的厚度为0.8~1.5nm,所述HZO底层中任意一层ZrO2膜层的厚度为0.8~1.5nm,所述HZO底层中,HfO2膜层的层数为2~5层,优选为3~4层。
本发明的技术方案使用HfO2层及ZrO2层交替沉积,通过纳米叠层结构引入界面以调控界面能来稳定物相,并有效阻碍“电树”的生长,避免击穿的发生。此外,界面还能减小电子注入深度并抑制局部相分解,从而最终提高疲劳性能。另一方面,引入介质层Al2O3促进180°畴的形成以降低内建电场,削弱电畴的固定取向程度。非晶形态Al2O3对铁电层的晶体结构没有较大的影响,而且Al2O3对比HfO2及ZrO2来说,其相对介电常数较低和抗击穿场强更高,意味着在相同电场中能够分担大部分电场,降低铁电层中的电场,减小漏电流密度。
在本发明中,需要控制每一层HfO2膜层与ZrO2膜层的厚度在本发明范围内,单层HfO2膜层厚度可低至0.09nm,若选择此厚度,则制备的薄膜即为Hf0.5Zr0.5O2固溶体,并不存在HfO2层与ZrO2层之间的界面,因此界面所带来减小漏电流和提升疲劳性能的优势不复存在,而通过透射电镜发现,HfO2层与ZrO2层在边界处不可避免存在扩散(即掺杂),因此,厚度过薄,由会有扩散带来的影响,而将厚度控制在0.8nm及以上,能够使得扩散导致的过渡层占比相对较小,对铁电极化响应的影响相对来说就非常有限,从而整体上实现非掺杂,这种非掺杂式的叠层薄膜由于引入的界面能够有效阻碍“电树”的生长,并减小电子注入深度,抑制局部相分解,因此在降低漏电流,提升可靠性方面均存在优势。当然单层厚度也不能过大,若过大,则会因为表面能效应及应力夹持作用减弱,导致HfO2层中铁电相含量过低导致铁电性能不佳。
另外,Al2O3膜层的厚度也需要有效控制,若Al2O3层过薄则会充当掺杂元素进入接触的HfO2层,难以起到介质层分隔上下铁电HZO层以促进180°畴的形成的目的。若是过厚,则会使得上下HZO层“去耦合”,铁电响应减弱,导致薄膜剩余极化强度显著下降,如本发明中Al2O3为3nm时即开始出现了剩余极化下降的情况。
优选的方案,所述HZO底层中最上层与最下层均为HfO2膜层,所述HZO顶层中最上层与最下层均为HfO2膜层。
发明人发现,当与AO中层接触的均为HfO2膜层时,对薄膜铁电性能的提升更有利。
优选的方案,所述HZO顶层中,任意相邻相两层HfO2膜层与ZrO2膜层中的HfO2和ZrO2的摩尔比为1:1。
本发明一种HZO/AO/HZO纳米叠层薄膜的制备方法,包括如下步骤:采用原子层沉积技术于衬底表面交替地沉积HfO2膜层、ZrO2膜层获得HZO底层,然后于HZO底层表面沉积Al2O3膜层,然后再于Al2O3膜层的表面交替地沉积HfO2膜层、ZrO2膜层获得HZO顶层,随后退火,即得结晶良好的HZO/AO/HZO纳米叠层薄膜。
优选的方案,所述HZO底层的具体沉积过程为:将ALD腔体抽真空至10hPa以下,然后将ALD腔体升温至250-280℃,优选后为250℃,然后先脉冲一个循环的铪源,控制铪源的流量为120~150sccm,铪源脉冲的时间为1~3s,接着脉冲一个循环的氧化剂,控制氧化剂的流量为150~200sccm,氧化剂脉冲的时间为0.1~0.5s,反应生成HfO2,重复铪源与氧化剂的脉冲,共循环12次,获得第一层HfO2膜层,然后再脉冲一个循环锆源,控制锆源的流量为120~150sccm,锆源脉冲的时间为1~3s,接着脉冲一个循环的氧化剂,控制氧化剂的流量为150~200sccm,氧化剂脉冲的时间为0.1~0.5s,反应生成ZrO2,重复铪源与氧化剂的脉冲,共循环12次,获得第一层ZrO2膜层,然后重复HfO2膜层以及ZrO2膜层的交替沉积,至HfO2膜层为2~5层,优选为3~4层,即得HZO底层。
进一步的优选,所述HZO底层的沉积时,铪源选自四氯化铪、四-(甲乙胺基)铪、四-二甲氨基铪和四-二乙基氨基铪中的任意一种,锆源选自四氯化锆、四-(甲乙胺基)锆、四-二甲氨基锆和四-二乙基氨基锆中的任意一种,氧化剂选自水,臭氧、过氧化氢中的任意一种。
优选的方案,所述Al2O3膜层的具体沉积过程为:将ALD腔体抽真空至10hPa以下,然后将ALD腔体升温至200~250℃,优选后为250℃,然后先脉冲一个循环的铝源,控制铝源脉冲的流量为150~200sccm,脉冲的时间为0.1~0.5s,接着脉冲一个循环的氧化剂,控制氧化剂脉冲的流量为150~200sccm,脉冲的时间为0.1~0.5s,重复脉冲10~30个循环,优选为10个循环。
进一步的优选,所述铝源为三甲基铝,所述氧化剂选自水,臭氧、过氧化氢中的任意一种。
优选的方案,所述HZO顶层的具体沉积过程为:将ALD腔体抽真空至10hPa以下,然后将ALD腔体升温至250-280℃,优选后为250℃,然后先脉冲一个循环的铪源,控制铪源的流量为120~130sccm,铪源脉冲的时间为1.5~1.8s,接着脉冲一个循环的氧化剂,控制氧化剂的流量为130~160sccm,氧化剂脉冲的时间为0.1~0.2s,反应生成HfO2,重复铪源与氧化剂的脉冲,共循环12次,获得第一层HfO2膜层,然后再脉冲一个循环锆源,控制锆源的流量为120~130sccm,锆源脉冲的时间为1.5~1.8s,接着脉冲一个循环的氧化剂,控制氧化剂的流量为130~160sccm,氧化剂脉冲的时间为0.1~0.2s,反应生成ZrO2,重复铪源与氧化剂的脉冲,共循环12次,获得第一层ZrO2膜层,然后重复HfO2膜层以及ZrO2膜层的交替沉积,至HfO2膜层为2~5层,优选为3~4层,即得HZO顶层。
进一步的优选,所述HZO顶层的沉积时,铪源选自四氯化铪、四-(甲乙胺基)铪、四-二甲氨基铪和四-二乙基氨基铪中的任意一种,锆源选自四氯化锆、四-(甲乙胺基)锆、四-二甲氨基锆和四-二乙基氨基锆中的任意一种,氧化剂选自水,臭氧、过氧化氢中的任意一种。
在实际的原子层沉积过程中,完与一次脉冲循环后都需要通入氮气扫出多余气体以及副产物。
优选的方案,所述退火在保护气氛下进行,退火的温度为400~500℃,退火的时间为30~60s。
在实际操作过程中,将将沉积完成的HZO/AO/HZO叠层薄膜置于快速退火炉中于保护气氛中进行,保护气氛优选为N2
本发明还提供一种HZO/AO/HZO纳米叠层薄膜的应用,将所述HZO/AO/HZO纳米叠层薄膜应用于铁电存储器。
在应用过程中,使用经过标准RCA清洗的p型单晶Si片作为基底;利用磁控溅射技术沉积TiN底电极及顶电极;使用原子层沉积技术沉积HZO/AO/HZO纳米叠层薄膜制备成金属-铁电层-金属(MFM)电容器结构。
原理与优势
利用上述制备方法制备出的(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n纳米叠层薄膜的元素分布均匀,退火后具有正交相结构,优化后的结构具有较好的矩形度,且剩余极化强度均≥15μC/cm2,最高可达24μC/cm2,与此相比,等摩尔比掺Zr的HfO2薄膜的剩余极化强度仅为10μC/cm2,未进行Al2O3插层的(HfO2/ZrO2)n薄膜的剩余极化强度仅为5μC/cm2;除此之外,(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n薄膜与电极之间的界面清晰,具有较小的漏电流密度(≤10-4A/cm2)。
本发明的优点如下:
(1)所制备薄膜元素分布均匀,退火后为正交相,剩余极化强度≥15μC/cm2
(2)本发明利用多层薄膜堆叠所形成的界面阻止了电树的生长,提高了击穿电场,有效地降低了漏电流密度(≤10-4A/cm2);
(3)本发明利用Al2O3层调控薄膜的铁电性能,实现了漏电流问题和疲劳问题协同解决。
(4)本发明所述薄膜成分简单、可控,重复性好,能用于工业生产。
(5)本发明所述薄膜抗疲劳性能可达109循环以上
附图说明
图1为本发明(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n纳米叠层薄膜设计示意图;
图2为实施例1-2及对比例1-3所制备的(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n纳米叠层薄膜的GI-XRD图谱,表明薄膜具有正交相、单斜相、四方相等多种晶型;
图3为各实例的极化强度的测试结果图;
图4为实施例1所制备的(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n纳米叠层薄膜电容器的漏电流测试结果图;
图5为实施例1所制备的(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n纳米叠层薄膜的疲劳测试结果,表明其在109次循环后仍能继续工作。
具体实施方式
下面用具体实施例对本发明做进一步详细说明,但本发明不仅局限于以下具体实施例。
在以下实施例中,所用Si衬底先进行如下预处理:
沉积前需利用RCA标准清洗法对单晶Si衬底进行清洗,先利用丙酮和无水乙醇对Si片进行10min的超声清洗,清除Si上附着的有机污染物;利用SC-I(氨水:过氧化氢:水=1:1:5)和SC-II(氯化氢:过氧化氢:水=1:1:5)溶液在80℃下进行超声清洗10min,除去Si片表面的金属离子和颗粒;利用DHF(氟化氢:水=1:40)溶液浸泡Si片30s,以除去Si表面的氧化层SiO2
实施例1
先利用磁控溅射技术在清洗后的Si片表面沉积60nm的TiN层。然后沉积在TiN上沉积(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n薄膜:
(1)将衬底置于反应腔中,置于ALD沉积腔体中,抽真空至10hPa,在各管路中通入N2作为保护气体,设置管路中载气流量为120sccm,沉积腔体温度为250℃,向反应腔体中通入气态四-(甲乙胺基)铪,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的铪前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成HfO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Hf源和水的循环共12次,获得厚度为1nm的HfO2膜层;(2)向反应腔体中通入气态四-(甲乙胺基)锆,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的锆前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成ZrO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Zr源和水的循环共12次,获得厚度为1nm的ZrO2膜层;继续采用上述工艺参数交替沉积获得HfO2膜层与ZrO2膜层,最终沉积HfO2膜层为4层,ZrO2膜层为3层的HZO底层(3)向反应腔体中通入气态三甲基铝,载气流量为150sccm,脉冲时间为0.1s;用高纯N2吹扫,去除多余的铝前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成Al2O3薄膜;用高纯N2吹扫掉多余的水和副产物;重复Al源和水的循环,直至Al2O3膜的厚度为1nm;(4)然后于Al2O3膜的表面,采用重复(1)和(2)过程,继续交替沉积HfO2膜层、ZrO2膜层,最终沉积获得具有单层厚度为1nm的HfO2膜层4层与单层厚度为1nm的ZrO2膜层3层的HZO顶层,即得3HZO-1AO-3HZO薄膜,再盖上掩模版,利用磁控溅射技术在薄膜顶部沉积30nm的TiN层和60nm的Au电极,制备成金属-铁电层-金属(MFM)电容器结构,将该结构置于快速退火炉中于进行450℃退火30s。
薄膜性能测试结果:
图2为3HZO-1AO-3HZO薄膜的GI-XRD图谱,如图所示薄膜为Pca21正交相结构,如图2所示。
通过上述MFM结构,测试薄膜的剩余极化强度和漏电流密度。结果表明,如图3所示,3HZO-1AO-3HZO薄膜的剩余极化强度为24μC/cm2,图4所示薄膜的漏电流密度≤10-4A/cm2,显示出了良好的铁电性能以及很小的漏电流。
图5所示为疲劳测试结果,可见(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n薄膜具有良好的抗疲劳性能,在109次循环后仍具有较大的存储窗口,可以继续工作。
实施例2
先利用磁控溅射技术在清洗后的Si片表面沉积60nm的TiN层。然后沉积在TiN上沉积(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n薄膜:
(1)将衬底置于反应腔中,置于ALD沉积腔体中,抽真空至10hPa,在各管路中通入N2作为保护气体,设置管路中载气流量为120sccm,沉积腔体温度为250℃,向反应腔体中通入气态四-(甲乙胺基)铪,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的铪前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成HfO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Hf源和水的循环共12次,获得厚度为1nm的HfO2膜层;(2)向反应腔体中通入气态四-(甲乙胺基)锆,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的锆前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成ZrO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Zr源和水的循环共12次,获得厚度为1nm的ZrO2膜层;继续采用上述工艺参数交替沉积获得HfO2膜层与ZrO2膜层,最终沉积HfO2膜层为4层,ZrO2膜层为3层的HZO底层(3)向反应腔体中通入气态三甲基铝,载气流量为150sccm,脉冲时间为0.1s;用高纯N2吹扫,去除多余的铝前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成Al2O3薄膜;用高纯N2吹扫掉多余的水和副产物;重复Al源和水的循环,直至Al2O3膜的厚度为2nm;(4)然后于Al2O3膜的表面,采用重复(1)和(2)过程,继续交替沉积HfO2膜层、ZrO2膜层,最终沉积获得具有单层厚度为1nm的HfO2膜层4层与单层厚度为1nm的ZrO2膜层3层的HZO顶层,即得3HZO-2AO-3HZO薄膜,再盖上掩模版,利用磁控溅射技术在薄膜顶部沉积30nm的TiN层和60nm的Au电极,制备成金属-铁电层-金属(MFM)电容器结构,将该结构置于快速退火炉中于进行450℃退火30s。
薄膜性能测试结果:
通过上述MFM结构,测试3HZO-2AO-3HZO薄膜的剩余极化强度和漏电流密度。结果表明,如图3所示,3HZO-2AO-3HZO薄膜的剩余极化强度为20μC/cm2,3HZO-2AO-3HZO薄膜的漏电流较3HZO-1AO-3HZO薄膜更低,其漏电流密度≤10-5A/cm2,显示出了较好的铁电性能以及很小的漏电流。
对比例1
薄膜的沉积过程基本同实施例1,仅是更改HZO中HfO2层和ZrO2层的数目,具体如下:
先利用磁控溅射技术在清洗后的Si片表面沉积60nm的TiN层。然后沉积在TiN上沉积(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n薄膜:
(1)将衬底置于反应腔中,置于ALD沉积腔体中,抽真空至10hPa,在各管路中通入N2作为保护气体,设置管路中载气流量为120sccm,沉积腔体温度为250℃,向反应腔体中通入气态四-(甲乙胺基)铪,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的铪前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成HfO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Hf源和水的循环共12次,获得厚度为1nm的HfO2膜层;(2)向反应腔体中通入气态四-(甲乙胺基)锆,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的锆前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成ZrO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Zr源和水的循环共12次,获得厚度为1nm的ZrO2膜层;继续采用上述工艺参数交替沉积获得HfO2膜层与ZrO2膜层,最终沉积HfO2膜层为6层,ZrO2膜层为5层的HZO底层;(3)向反应腔体中通入气态三甲基铝,载气流量为150sccm,脉冲时间为0.1s;用高纯N2吹扫,去除多余的铝前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成Al2O3薄膜;用高纯N2吹扫掉多余的水和副产物;重复Al源和水的循环,直至Al2O3膜的厚度为1nm;(4)然后于Al2O3膜的表面,采用重复(1)和(2)过程,继续交替沉积HfO2膜层、ZrO2膜层,最终沉积获得具有单层厚度为1nm的HfO2膜层6层与单层厚度为1nm的ZrO2膜层5层的HZO顶层,即得5HZO-1AO-5HZO薄膜,再盖上掩模版,利用磁控溅射技术在薄膜顶部沉积30nm的TiN层和60nm的Au电极,制备成金属-铁电层-金属(MFM)电容器结构,将该结构置于快速退火炉中于进行450℃退火30s。
薄膜性能测试结果:
GI-XRD结果表明5HZO-1AO-5HZO薄膜中较实施例1中的3HZO-1AO-3HZO薄膜有着更高的单斜相(非铁电相)含量;薄膜因较高的单斜相含量及增多的界面数目具有更低的漏电流;其薄膜剩余极化强度仅为9μC/cm2,下降了62.5%。
对比例2
薄膜的沉积过程基本同实施例1,仅是改变Al2O3沉积次数为30次,具体如下:
先利用磁控溅射技术在清洗后的Si片表面沉积60nm的TiN层。然后沉积在TiN上沉积(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n薄膜:
(1)将衬底置于反应腔中,置于ALD沉积腔体中,抽真空至10hPa,在各管路中通入N2作为保护气体,设置管路中载气流量为120sccm,沉积腔体温度为250℃,向反应腔体中通入气态四-(甲乙胺基)铪,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的铪前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成HfO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Hf源和水的循环共12次,获得厚度为1nm的HfO2膜层;(2)向反应腔体中通入气态四-(甲乙胺基)锆,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的锆前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成ZrO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Zr源和水的循环共12次,获得厚度为1nm的ZrO2膜层;继续采用上述工艺参数交替沉积获得HfO2膜层与ZrO2膜层,最终沉积HfO2膜层为4层,ZrO2膜层为3层的HZO底层;(3)向反应腔体中通入气态三甲基铝,载气流量为150sccm,脉冲时间为0.1s;用高纯N2吹扫,去除多余的铝前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成Al2O3薄膜;用高纯N2吹扫掉多余的水和副产物;重复Al源和水的循环,直至Al2O3膜的厚度为3nm;(4)然后于Al2O3膜的表面,采用重复(1)和(2)过程,继续交替沉积HfO2膜层、ZrO2膜层,最终沉积获得具有单层厚度为1nm的HfO2膜层4层与单层厚度为1nm的ZrO2膜层3层的HZO顶层,即得3HZO-3AO-3HZO薄膜,再盖上掩模版,利用磁控溅射技术在薄膜顶部沉积30nm的TiN层和60nm的Au电极,制备成金属-铁电层-金属(MFM)电容器结构,将该结构置于快速退火炉中于进行450℃退火30s。
薄膜性能测试结果:
GI-XRD结果表明3HZO-3AO-3HZO薄膜中较实施例1中的3HZO-1AO-3HZO薄膜,其正交相含量降低;薄膜剩余极化强度仅为15.5μC/cm2,下降了35.4%;3HZO-3AO-3HZO薄膜因为较厚的Al2O3层具有更低的漏电流。
对比例3
薄膜的沉积过程基本同实施例1,仅是改变Al2O3沉积次数为0次,具体如下:
先利用磁控溅射技术在清洗后的Si片表面沉积60nm的TiN层。然后沉积在TiN上沉积(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n薄膜:
(1)将衬底置于反应腔中,置于ALD沉积腔体中,抽真空至10hPa,在各管路中通入N2作为保护气体,设置管路中载气流量为120sccm,沉积腔体温度为250℃,向反应腔体中通入气态四-(甲乙胺基)铪,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的铪前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成HfO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Hf源和水的循环共12次,获得厚度为1nm的HfO2膜层;(2)向反应腔体中通入气态四-(甲乙胺基)锆,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的锆前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成ZrO2薄膜;用高纯N2吹扫掉多余的水和副产物;重复Zr源和水的循环共12次,获得厚度为1nm的ZrO2膜层;继续采用上述工艺参数交替沉积获得HfO2膜层与ZrO2膜层,最终沉积HfO2膜层为4层,ZrO2膜层为3层的HZO底层;(3)不再沉积Al2O3膜层;(4)然后于HZO底层的表面,采用重复(1)和(2)过程,继续交替沉积HfO2膜层、ZrO2膜层,最终沉积获得具有单层厚度为1nm的HfO2膜层4层与单层厚度为1nm的ZrO2膜层3层的HZO顶层,即得3HZO-0AO-3HZO薄膜,再盖上掩模版,利用磁控溅射技术在薄膜顶部沉积30nm的TiN层和60nm的Au电极,制备成金属-铁电层-金属(MFM)电容器结构,将该结构置于快速退火炉中于进行450℃退火30s。
薄膜性能测试结果:
GI-XRD结果表明3HZO-0AO-3HZO薄膜具有单斜相的衍射峰;薄膜剩余极化强度仅为5μC/cm2,相较3HZO-1AO-3HZO薄膜下降了79.2%;3HZO-0AO-3HZO薄膜由于没有介质层Al2O3的存在,漏电流明显提高。
对比例4
薄膜的沉积过程基本同实施例1,仅是改变HfO2层、ZrO2层单层厚度及循环次数变化以保持HZO层厚度一致,具体如下:
先利用磁控溅射技术在清洗后的Si片表面沉积60nm的TiN层。然后沉积在TiN上沉积(HfO2/ZrO2)n/Al2O3/(HfO2/ZrO2)n薄膜:
(1)将衬底置于反应腔中,置于ALD沉积腔体中,抽真空至10hPa,在各管路中通入N2作为保护气体,设置管路中载气流量为120sccm,沉积腔体温度为250℃,向反应腔体中通入气态四-(甲乙胺基)铪,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的铪前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成HfO2薄膜;用高纯N2吹扫掉多余的水和副产物;不再重复Hf源和水的循环,获得厚度为0.09nm的HfO2膜层;(2)向反应腔体中通入气态四-(甲乙胺基)锆,载气流量为120sccm,脉冲时间为1.6s;用高纯N2吹扫,去除多余的锆前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成ZrO2薄膜;用高纯N2吹扫掉多余的水和副产物;不再重复Zr源和水的循环,获得厚度为0.09nm的ZrO2膜层;继续采用上述工艺参数交替沉积获得HfO2膜层与ZrO2膜层,最终沉积HfO2膜层为39层,ZrO2膜层为38层的Hf0.5Zr0.5O2底层;(3)向反应腔体中通入气态三甲基铝,载气流量为150sccm,脉冲时间为0.1s;用高纯N2吹扫,去除多余的铝前驱体;向反应腔体中通入气态水,载气流量为150sccm,脉冲时间为0.1s,利用热反应生成Al2O3薄膜;用高纯N2吹扫掉多余的水和副产物;重复Al源和水的循环,直至Al2O3膜的厚度为3nm;(4)然后于Al2O3膜的表面,采用重复(1)和(2)过程,继续交替沉积HfO2膜层、ZrO2膜层,最终沉积获得具有单层厚度为0.09nm的HfO2膜层39层与单层厚度为0.09nm的ZrO2膜层38层的Hf0.5Zr0.5O2顶层,即得Hf0.5Zr0.5O2/Al2O3/Hf0.5Zr0.5O2薄膜,再盖上掩模版,利用磁控溅射技术在薄膜顶部沉积30nm的TiN层和60nm的Au电极,制备成金属-铁电层-金属(MFM)电容器结构,将该结构置于快速退火炉中于进行450℃退火30s。
薄膜性能测试结果:
漏电流测试结果表明Hf0.5Zr0.5O2/Al2O3/Hf0.5Zr0.5O2薄膜中较实施例1中的3HZO-1AO-3HZO薄膜提高了2~3个数量级;薄膜疲劳测试结果表明其在105次循环后开始出现明显的疲劳效应,在106次循环后存储窗口明显减小,无法继续工作。其剩余极化强度为15μC/cm2

Claims (9)

1.一种HZO/AO/HZO纳米叠层薄膜,其特征在于:所述薄膜由HZO顶层、AO中层、HZO底层构成,其中HZO顶层由HfO2膜层与ZrO2膜层交替层叠组成,AO中层为Al2O3膜层,HZO底层由HfO2膜层与ZrO2膜层交替层叠组成;所述HZO顶层中任意一层HfO2膜层的厚度为0.8~1.5nm,所述HZO顶层中任意一层ZrO2膜层的厚度为0.8~1.5nm,所述HZO顶层中,HfO2膜层的层数为2~5层;所述Al2O3膜层的厚度为1~2nm,所述HZO底层中任意一层HfO2膜层的厚度为0.8~1.5nm,所述HZO底层中任意一层ZrO2膜层的厚度为0.8~1.5nm,所述HZO底层中,HfO2膜层的层数为2~5层。
2.根据权利要求1所述的一种HZO/AO/HZO纳米叠层薄膜,其特征在于:所述HZO底层中最上层与最下层均为HfO2膜层,所述HZO顶层中最上层与最下层均为HfO2膜层。
3.根据权利要求1所述的一种HZO/AO/HZO纳米叠层薄膜,其特征在于:所述HZO顶层中,任意相邻相两层HfO2膜层与ZrO2膜层中的HfO2和ZrO2的摩尔比为1:1。
4.根据权利要求1-3任意一项所述的一种HZO/AO/HZO纳米叠层薄膜的制备方法,其特征在于:包括如下步骤:采用原子层沉积技术于衬底表面交替地沉积HfO2膜层、ZrO2膜层获得HZO底层,然后于HZO底层表面沉积Al2O3膜层,然后再于Al2O3膜层的表面交替地沉积HfO2膜层、ZrO2膜层获得HZO顶层,随后退火,即得HZO/AO/HZO纳米叠层薄膜。
5.根据权利要求4所述的一种HZO/AO/HZO纳米叠层薄膜的制备方法,其特征在于:所述HZO底层的具体沉积过程为:将ALD腔体抽真空至10hPa以下,然后将ALD腔体升温至250-280℃,然后先脉冲一个循环的铪源,控制铪源的流量为120~150sccm,铪源脉冲的时间为1~3s,接着脉冲一个循环的氧化剂,控制氧化剂的流量为150~200sccm,氧化剂脉冲的时间为0.1~0.5s,反应生成HfO2,重复铪源与氧化剂的脉冲,共循环12次,获得第一层HfO2膜层,然后再脉冲一个循环锆源,控制锆源的流量为120~150sccm,锆源脉冲的时间为1~3s,接着脉冲一个循环的氧化剂,控制氧化剂的流量为150~200sccm,氧化剂脉冲的时间为0.1~0.5s,反应生成ZrO2,重复铪源与氧化剂的脉冲,共循环12次,获得第一层ZrO2膜层,然后重复HfO2膜层以及ZrO2膜层的交替沉积,至HfO2膜层为2~5层,即得HZO底层;
所述HZO底层的沉积时,铪源选自四氯化铪、四-(甲乙胺基)铪、四-二甲氨基铪和四-二乙基氨基铪中的任意一种,锆源选自四氯化锆、四-(甲乙胺基)锆、四-二甲氨基锆和四-二乙基氨基锆中的任意一种,氧化剂选自水,臭氧、过氧化氢中的任意一种。
6.根据权利要求4所述的一种HZO/AO/HZO纳米叠层薄膜的制备方法,其特征在于:所述Al2O3膜层的具体沉积过程为:将ALD腔体抽真空至10hPa以下,然后将ALD腔体升温至200~250℃,然后先脉冲一个循环的铝源,控制铝源脉冲的流量为150~200sccm,脉冲的时间为0.1~0.5s,接着脉冲一个循环的氧化剂,控制氧化剂脉冲的流量为150~200sccm,脉冲的时间为0.1~0.5s,重复脉冲10~30个循环,优选为10个循环;
所述铝源为三甲基铝,所述氧化剂选自水,臭氧、过氧化氢中的任意一种。
7.根据权利要求4所述的一种HZO/AO/HZO纳米叠层薄膜的制备方法,其特征在于:所述HZO顶层的具体沉积过程为:将ALD腔体抽真空至10hPa以下,然后将ALD腔体升温至250-280℃,然后先脉冲一个循环的铪源,控制铪源的流量为120~130sccm,铪源脉冲的时间为1.5~1.8s,接着脉冲一个循环的氧化剂,控制氧化剂的流量为130~160sccm,氧化剂脉冲的时间为0.1~0.2s,反应生成HfO2,重复铪源与氧化剂的脉冲,共循环12次,获得第一层HfO2膜层,然后再脉冲一个循环锆源,控制锆源的流量为120~130sccm,锆源脉冲的时间为1.5~1.8s,接着脉冲一个循环的氧化剂,控制氧化剂的流量为130~160sccm,氧化剂脉冲的时间为0.1~0.2s,反应生成ZrO2,重复铪源与氧化剂的脉冲,共循环12次,获得第一层ZrO2膜层,然后重复HfO2膜层以及ZrO2膜层的交替沉积,至HfO2膜层为2~5层,优选为3~4层,即得HZO顶层;
所述HZO顶层的沉积时,铪源选自四氯化铪、四-(甲乙胺基)铪、四-二甲氨基铪和四-二乙基氨基铪中的任意一种,锆源选自四氯化锆、四-(甲乙胺基)锆、四-二甲氨基锆和四-二乙基氨基锆中的任意一种,氧化剂选自水,臭氧、过氧化氢中的任意一种。
8.根据权利要求4所述的一种HZO/AO/HZO纳米叠层薄膜的制备方法,其特征在于:所述退火在保护气氛下进行,退火的温度为400-500℃,退火的时间为30-60s。
9.根据权利要求1-3任意一项所述的根据权利要求4所述的一种HZO/AO/HZO纳米叠层薄膜的应用,其特征在于:将所述HZO/AO/HZO纳米叠层薄膜应用于铁电存储器。
CN202110724557.XA 2021-06-29 2021-06-29 一种hzo/ao/hzo纳米叠层薄膜及其制备方法和应用 Pending CN113658941A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110724557.XA CN113658941A (zh) 2021-06-29 2021-06-29 一种hzo/ao/hzo纳米叠层薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110724557.XA CN113658941A (zh) 2021-06-29 2021-06-29 一种hzo/ao/hzo纳米叠层薄膜及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113658941A true CN113658941A (zh) 2021-11-16

Family

ID=78477142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110724557.XA Pending CN113658941A (zh) 2021-06-29 2021-06-29 一种hzo/ao/hzo纳米叠层薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113658941A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959640A (zh) * 2022-05-13 2022-08-30 浙江大学 一种氧化铪/氧化锆铁电薄膜特性的调控方法和应用
CN114990529A (zh) * 2022-05-23 2022-09-02 湘潭大学 铁电薄膜的制备方法及铁电薄膜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258271A1 (en) * 2007-04-17 2008-10-23 Jong-Cheol Lee Multi-dielectric films for semiconductor devices and methods of fabricating multi-dielectric films
KR101455003B1 (ko) * 2013-07-22 2014-11-03 서울대학교산학협력단 커패시터 소자
CN111312898A (zh) * 2020-03-02 2020-06-19 中南大学 一种HfO2基铁电薄膜材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080258271A1 (en) * 2007-04-17 2008-10-23 Jong-Cheol Lee Multi-dielectric films for semiconductor devices and methods of fabricating multi-dielectric films
KR101455003B1 (ko) * 2013-07-22 2014-11-03 서울대학교산학협력단 커패시터 소자
CN111312898A (zh) * 2020-03-02 2020-06-19 中南大学 一种HfO2基铁电薄膜材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YONGHONG CHEN ET AL: "Thickness-dependent ferroelectric properties of HfO2 /ZrO2 nanolaminates using atomic layer deposition", JOURNAL OF MATERIALS SCIENCE, vol. 56, no. 10, 3 January 2021 (2021-01-03), pages 6064 - 6072, XP037351155, DOI: 10.1007/s10853-020-05680-6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114959640A (zh) * 2022-05-13 2022-08-30 浙江大学 一种氧化铪/氧化锆铁电薄膜特性的调控方法和应用
CN114990529A (zh) * 2022-05-23 2022-09-02 湘潭大学 铁电薄膜的制备方法及铁电薄膜

Similar Documents

Publication Publication Date Title
KR101123433B1 (ko) 고 유전률을 갖는 구조물을 형성하는 방법 및 고 유전률을 갖는 구조물
KR100722989B1 (ko) 캐패시터 및 그 제조 방법
KR100555543B1 (ko) 원자층 증착법에 의한 고유전막 형성 방법 및 그고유전막을 갖는 커패시터의 제조 방법
US6627503B2 (en) Method of forming a multilayer dielectric stack
US7888726B2 (en) Capacitor for semiconductor device
KR100717813B1 (ko) 나노믹스드 유전막을 갖는 캐패시터 및 그의 제조 방법
KR100422565B1 (ko) 반도체 소자의 캐패시터 제조방법
US8092862B2 (en) Method for forming dielectric film and method for forming capacitor in semiconductor device using the same
KR20010059661A (ko) 비휘발성 메모리 소자 및 그 제조방법
CN111668372B (zh) 一种HfO2基铁电电容器及其制备方法和HfO2基铁电存储器
CN113658941A (zh) 一种hzo/ao/hzo纳米叠层薄膜及其制备方法和应用
JP2001237399A (ja) 半導体装置のキャパシターの製造方法
US9153640B2 (en) Process for forming a capacitor structure with rutile titanium oxide dielectric film
KR101116166B1 (ko) 반도체 소자의 커패시터 및 그 제조 방법
KR102246261B1 (ko) 반도체 메모리 소자용 커패시터 및 이의 제조 방법
KR100491417B1 (ko) 씨-축 배향 강유전체 박막에 대한 유기금속 기상증착 및어닐링 처리
KR100716642B1 (ko) 캐패시터의 유전막 및 그의 제조방법
KR20080029716A (ko) 플래시 메모리 소자 및 그 제조 방법
KR20110060749A (ko) 캐패시터 및 그의 제조 방법
KR100744026B1 (ko) 플래시 메모리 소자의 제조방법
KR20050033323A (ko) 하프늄 산화막의 제조방법
KR100882090B1 (ko) 반도체소자의 캐패시터 제조방법
CN114988470B (zh) 一种氧化铪基铁电薄膜、电容结构、晶体管及制备方法
US9202860B2 (en) Method for fabricating capacitor having rutile titanium oxide dielectric film
KR100844956B1 (ko) 지르코늄산화막과 니오븀산화막을 포함하는 유전막을구비한 반도체소자 및 그의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination