CN113643317B - Coronary artery segmentation method based on deep geometric evolution model - Google Patents
Coronary artery segmentation method based on deep geometric evolution model Download PDFInfo
- Publication number
- CN113643317B CN113643317B CN202111206833.XA CN202111206833A CN113643317B CN 113643317 B CN113643317 B CN 113643317B CN 202111206833 A CN202111206833 A CN 202111206833A CN 113643317 B CN113643317 B CN 113643317B
- Authority
- CN
- China
- Prior art keywords
- segmentation
- module
- coronary artery
- distance change
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000011218 segmentation Effects 0.000 title claims abstract description 150
- 210000004351 coronary vessel Anatomy 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000008859 change Effects 0.000 claims abstract description 88
- 238000012549 training Methods 0.000 claims abstract description 16
- 101000666730 Homo sapiens T-complex protein 1 subunit alpha Proteins 0.000 claims abstract 19
- 102100038410 T-complex protein 1 subunit alpha Human genes 0.000 claims abstract 19
- 230000006870 function Effects 0.000 claims description 20
- 238000010606 normalization Methods 0.000 claims description 15
- 238000011156 evaluation Methods 0.000 claims description 14
- 238000011176 pooling Methods 0.000 claims description 7
- 230000004913 activation Effects 0.000 claims description 6
- 230000003190 augmentative effect Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 6
- 238000010586 diagram Methods 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 3
- 238000013434 data augmentation Methods 0.000 claims description 3
- 238000007781 pre-processing Methods 0.000 claims description 3
- 238000002372 labelling Methods 0.000 claims description 2
- 238000005070 sampling Methods 0.000 claims 2
- 238000003709 image segmentation Methods 0.000 abstract description 5
- 238000013135 deep learning Methods 0.000 abstract description 2
- 230000009466 transformation Effects 0.000 description 7
- 210000004204 blood vessel Anatomy 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 208000024172 Cardiovascular disease Diseases 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 238000003745 diagnosis Methods 0.000 description 4
- 238000013527 convolutional neural network Methods 0.000 description 3
- 208000029078 coronary artery disease Diseases 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 210000001367 artery Anatomy 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 238000010968 computed tomography angiography Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000968 medical method and process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/155—Segmentation; Edge detection involving morphological operators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10081—Computed x-ray tomography [CT]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20036—Morphological image processing
- G06T2207/20041—Distance transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30101—Blood vessel; Artery; Vein; Vascular
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
本发明公开了基于深度几何演化模型的冠状动脉分割方法,涉及深度学习图像分割领域,包括获取数据集、数据预处理、利用编码模块、构建的深度几何演化分割模型进行训练和评判、利用上述步骤进行新的CCTA图像训练等步骤,得到两个结果,预分割结果进行骨架提取,距离变化结果求冠状动脉的半径,通过骨架和半径构建球模型得到演化后的冠状动脉与预分割结果求并集得到最终分割结果;步骤六、新数据预测;本发明将CCTA数据冠状动脉几何结构,利用骨架和半径来重构冠状动脉,像素以及空间结构之间的关系,提高冠状动脉分割有效性,准确给医生提供评判依据。
The invention discloses a coronary artery segmentation method based on a deep geometric evolution model, and relates to the field of deep learning image segmentation. Carry out new CCTA image training and other steps, and obtain two results. The pre-segmentation results are used to extract the skeleton, and the distance change results are used to calculate the radius of the coronary artery. The spherical model is constructed by the skeleton and the radius to obtain the evolved coronary artery and the pre-segmentation result. Obtain the final segmentation result; step 6, new data prediction; the present invention reconstructs the relationship between the coronary artery, the pixel and the spatial structure by using the skeleton and the radius of the coronary artery geometric structure of the CCTA data, improving the effectiveness of the coronary artery segmentation, and accurately giving the coronary artery segmentation. The doctor provides the basis for judgment.
Description
技术领域technical field
本发明涉及深度学习的图像分割领域,具体是指基于深度几何演化模型的冠状动脉分割方法。The invention relates to the field of image segmentation of deep learning, in particular to a coronary artery segmentation method based on a deep geometric evolution model.
背景技术Background technique
心血管疾病是造成人类死亡的主要疾病之一;《世界卫生报告》指出全球每年因心血管相关疾病引发的疾病及其并发症的死亡率已经超过了癌症死亡率之和;研究表明,心血管疾病大多数是由于冠状动脉病变引起的;尽早地发现冠心病,对临床医生制定合理的治疗方案有着重要的意义;冠状计算机断层血管造影(Coronary computed tomographyangiongraphy, CCTA)是临床诊断心血管疾病的常用手段,也是心血管疾病诊断的金标准;通过机器学习方法快速、准确、半自动从CCTA图像中分割冠状动脉是一个非常有意义的辅助医疗方式,这对于冠心病的早期发现起关键性作用,将会有效地为医生提供可靠的诊断依据。Cardiovascular disease is one of the main diseases that cause human death; the "World Health Report" pointed out that the global annual mortality rate of cardiovascular-related diseases and its complications has exceeded the sum of cancer mortality; studies have shown that cardiovascular disease Most of the diseases are caused by coronary artery disease; early detection of coronary heart disease is of great significance for clinicians to formulate reasonable treatment plans; coronary computed tomography angiography (CCTA) is a commonly used clinical diagnosis of cardiovascular disease. It is also the gold standard for the diagnosis of cardiovascular disease; rapid, accurate and semi-automatic segmentation of coronary arteries from CCTA images by machine learning methods is a very meaningful auxiliary medical method, which plays a key role in the early detection of coronary heart disease. It will effectively provide doctors with a reliable basis for diagnosis.
由于CCTA图像本身的特殊性以及复杂性,例如:(1)冠状动脉结构复杂,存在很分支的小细管,(2)冠状动脉灰度不均匀,跟周围组织的对比度低,血管末梢部分的边界模糊,(3)冠状动脉中含有各种复杂病变;针对CCTA图像的分割算法近几年已成为研究的热点;而基于神经网络的方法是将分割问题转化为一个分类的问题,Nekovei采用BP神经网络对血管进行分割训练;近几年卷积神经网络(Convolutional Neural Network,CNN)在图像分割网络中取得不错的效果,其中U-net网络是目前在二维医学图像分割领域中应用最广泛的一种网络结构,是由Ronneberger在FCN的基础上提出的,该网络结构的特点是网络呈现“U”型,其上采样层和下采样层数量相等;Nasr-Esfahani等将造影图像分为血管和背景区域,并送入CNN网路,将全局信息和局部信息结合起来,注入了canny边缘检测器来进行训练,从而获得不错的结果;而Jo提出一种选择性特征映射的方法,用来分割心血管图像的左前降主干;Jun等为了克服U-Net在编码和解码块之间只有一组级联层的限制,引用了T-Net一种全新的网络,在编码时加入池化层和上采用层,使得预测的掩模更为精准。Due to the particularity and complexity of the CCTA image itself, for example: (1) the coronary structure is complex, there are very branched small tubes, (2) the grayscale of the coronary artery is uneven, the contrast with the surrounding tissue is low, and the peripheral part of the blood vessel The boundary is blurred, (3) the coronary arteries contain various complex lesions; the segmentation algorithm for CCTA images has become a research hotspot in recent years; while the neural network-based method is to transform the segmentation problem into a classification problem, Nekovei uses BP The neural network performs segmentation training on blood vessels; in recent years, the Convolutional Neural Network (CNN) has achieved good results in the image segmentation network, of which the U-net network is currently the most widely used in the field of two-dimensional medical image segmentation. A network structure is proposed by Ronneberger on the basis of FCN. The network structure is characterized in that the network presents a "U" shape, and the number of upsampling layers and downsampling layers is equal; Nasr-Esfahani et al. The blood vessels and background areas are sent into the CNN network, which combines the global information and local information, and injects the canny edge detector for training, so as to obtain good results; and Jo proposes a method of selective feature mapping, using To segment the left front descending backbone of cardiovascular images; in order to overcome the limitation that U-Net has only one set of cascaded layers between the encoding and decoding blocks, Jun et al. quoted a new network of T-Net, adding pooling during encoding. Layers and upper layers are used to make the predicted masks more accurate.
现有的CCTA分割方法基于传统的医学图像分割方法,这些方法分割不仅设计起来十分繁琐,而且分割的有效性也难以保证;基于神经网络的方法,可以使用神经网络自动地从CCTA影像中学习冠状动脉的本质特征,这些方法中例如Unet或Unet++没有综合考虑到CCTA数据的全文信息,忽略了像素与像素之间的关联,没有综合考虑血管的几何信息,且对CCTA数据的一些小血管的分类不佳。Existing CCTA segmentation methods are based on traditional medical image segmentation methods, which are not only very cumbersome to design, but also difficult to guarantee the effectiveness of segmentation; neural network-based methods can automatically learn coronary arteries from CCTA images using neural networks. The essential characteristics of arteries, such as Unet or Unet++, do not comprehensively consider the full-text information of CCTA data, ignore the correlation between pixels, do not comprehensively consider the geometric information of blood vessels, and classify some small blood vessels in CCTA data. not good.
发明内容SUMMARY OF THE INVENTION
基于以上问题,本发明提供了基于深度几何演化模型的冠状动脉分割方法,该方法能将充分考虑CCTA数据的空间一致性,充分考虑冠状动脉的几何结构,构建多目标分割模型,利用骨架和半径来重构冠状动脉,充分考虑像素以及空间结构之间的关系,从而提高冠状动脉分割的有效性。Based on the above problems, the present invention provides a coronary artery segmentation method based on a deep geometric evolution model, which can fully consider the spatial consistency of CCTA data, fully consider the geometric structure of coronary arteries, build a multi-object segmentation model, and use the skeleton and radius. To reconstruct coronary arteries, fully consider the relationship between pixels and spatial structures, so as to improve the effectiveness of coronary artery segmentation.
为解决以上技术问题,本发明采用的技术方案如下:For solving the above technical problems, the technical scheme adopted in the present invention is as follows:
基于深度几何演化模型的冠状动脉分割方法,包括如下步骤:Coronary artery segmentation method based on deep geometric evolution model, including the following steps:
步骤一、获取数据集;Step 1. Obtain the dataset;
步骤二、数据预处理;Step 2, data preprocessing;
步骤三、构建几何演化分割模型;Step 3. Build a geometric evolution segmentation model;
深度几何演化分割模型包括编码模块、预分割模块、距离变化模块,步骤二中预处理后的数据输入深度几何演化分割模型后,输出距离变化结果、预分割结果; 预分割模型提取骨架,距离变化模块求出骨架对应点的半径;编码模块由四个编码块构成,每一个编码块为空洞卷积、批量归一化层、最大池化层构成;预分割模块四个分割块构成,每一个分割块由空洞卷积、批量归一化层、上采样层构成;距离变化模块四个距离变化块构成,每一个距离变化块由空洞卷积、批量归一化层、上采样层构成,且得到输出结果后要与输入图像计算距离变化后进行对比,距离变化模块(Distance transform,简称DT)用于计算图像中每一个非零点离自己最近零点的距离;其中编码模块与预分割模块和距离变化模块的每一个对应块都通过跳跃连接来连接,从而获得更多的高频信息。为了获得更好的距离变化结果,本发明利用预分割模块的每一个分割块的信息计算特征映射图的位置注意力模块后作为距离变化模块的辅助信息,从而获得距离变化模块的特征信息更丰富,利用距离变化模块演化分割时,将获得更好的分割结果。The deep geometric evolution segmentation model includes an encoding module, a pre-segmentation module, and a distance change module. After the pre-processed data in step 2 is input into the deep geometric evolution segmentation model, the distance change results and pre-segmentation results are output; the pre-segmentation model extracts the skeleton, and the distance changes The module calculates the radius of the corresponding point of the skeleton; the coding module is composed of four coding blocks, each of which is composed of atrous convolution, batch normalization layer, and maximum pooling layer; the pre-segmentation module is composed of four segmentation blocks, each of which The segmentation block is composed of hole convolution, batch normalization layer, and upsampling layer; the distance change module is composed of four distance change blocks, and each distance change block is composed of hole convolution, batch normalization layer, and upsampling layer, and After the output result is obtained, it should be compared with the input image after calculating the distance change. The distance transform module (Distance transform, DT for short) is used to calculate the distance between each non-zero point in the image and its nearest zero point; the encoding module and the pre-segmentation module and the distance Each corresponding block of the change module is connected by skip connections, so that more high-frequency information is obtained. In order to obtain a better distance change result, the present invention uses the information of each segment of the pre-segmentation module to calculate the position attention module of the feature map as auxiliary information of the distance change module, so as to obtain richer feature information of the distance change module , better segmentation results will be obtained when the segmentation is evolved using the distance variation module.
步骤四、对构建的多目标分割模型进行CCTA图像进行训练及评判;对预分割模块采用dice损失函数,对距离变化模块采用交叉熵损失函数;步骤四、对构建的多目标分割模型进行训练及评判;对预分割模块采用dice损失函数,对距离变化模块采用交叉熵损失函数;利用联合损失函数来训练多目标模型,其中预分割模块使用基于dice系数的激活函数,DT是一个介于0和1之间的数值,网络的目标是最大化dice系数,定义公式(3)如下:The fourth step is to train and judge the CCTA image of the constructed multi-target segmentation model; the dice loss function is used for the pre-segmentation module, and the cross-entropy loss function is used for the distance change module; the fourth step is to train and evaluate the constructed multi-target segmentation model. Judgment; use the dice loss function for the pre-segmentation module, and use the cross-entropy loss function for the distance change module; use the joint loss function to train the multi-objective model, where the pre-segmentation module uses the activation function based on the dice coefficient, DT is a range between 0 and The value between 1, the goal of the network is to maximize the dice coefficient, the definition formula (3) is as follows:
(3) (3)
其中,表示预测结果,表示标注图;in, represents the prediction result, Represents an annotation diagram;
另外一个距离变化模块使用的是交叉熵损失函数,该函数(4)定义如下:Another distance change module uses the cross-entropy loss function, which is defined as follows:
(4) (4)
其中,表示距离变化离散后的类别数量,表示CCTA数据上像素i等于距离变化离散后k的概率,如果像素i的真实类别等于k则取1,否则取0; 为CCTA数据上像素i属于距离变化离散后k的预测概率。in, represents the number of categories after the distance change is discrete, Represents the probability that the pixel i on the CCTA data is equal to k after the distance change is discrete, if the true category of the pixel i is equal to k , it takes 1, otherwise it takes 0; is the predicted probability that the pixel i on the CCTA data belongs to k after the distance change is discrete.
最后深度几何演化分割模型的联合损失(6)为:The joint loss (6) of the final deep geometric evolutionary segmentation model is:
(6) (6)
步骤五、几何演化;Step 5. Geometric evolution;
将训练及评判后的CCTA图像得到距离变化结果DT、预分割结果,对预分割模块的结果通过骨架提取模块进行骨架提取,对距离变化结果通过距离变化模块求冠状动脉的半径,在对骨架上提取每一个点坐标,用对应冠状动脉的半径和点坐标通过球模型演化得到演化后的冠状动脉,演化后的冠状动脉与骨架提取的其它分割结果通过并集模块求并集得到最终的分割结果。The distance change results DT and pre-segmentation results are obtained from the CCTA images after training and evaluation. The results of the pre-segmentation module are extracted by the skeleton extraction module, and the distance change results are obtained through the distance change module to find the radius of the coronary arteries. , extract the coordinates of each point on the pair of skeletons , with the radius of the corresponding coronary artery and point coordinates The evolved coronary artery is obtained through the evolution of the spherical model, and the final segmentation result is obtained by the union of the evolved coronary artery and other segmentation results extracted from the skeleton.
步骤六、新数据预测;Step 6. New data prediction;
新的CCTA数据经过编码模块、预分割模块、距离变化模块后将得到两个结果(预分割结果、距离变化结果),其中,是像素是否是冠状动脉的概率;是像素属于类的概率。对于一个像素,它的半径可以计算为,它的骨架可以利用skimage的skeletonize计算得到。对于骨架上的每一个点,利用半径和坐标构建球模型演化得到冠脉,计算公式(1)如下:After the new CCTA data passes through the encoding module, the pre-segmentation module and the distance change module, two results (pre-segmentation result and distance change result) will be obtained, among which, is the pixel the probability of whether it is a coronary artery; is the pixel belong class probability. for one pixel , its radius can be calculated as , its skeleton It can be calculated using the skeletonize of skimage. for every point on the skeleton , using the radius and coordinates to construct the spherical model evolution to obtain the coronary artery, the calculation formula (1) is as follows:
(1) (1)
最后冠状动脉的分割结果可以由演化后的冠状动脉和骨架提取的其它分割结果求并集而得,计算公式(2)如下:Segmentation results of the last coronary artery It can be obtained by the union of other segmentation results extracted from the evolved coronary artery and skeleton, and the calculation formula (2) is as follows:
(2) (2)
进一步,所述步骤一中,数据集包括CCTA数据和标签数据,标签数据需要对于每一例CCTA数据均利用3DSlicer软件手动打标签。Further, in the first step, the data set includes CCTA data and label data, and the label data needs to be manually labeled with 3DSlicer software for each case of CCTA data.
进一步,所述步骤二具体包括如下:Further, the step 2 specifically includes the following:
对原始的CCTA数据进行读取,获取CCTA数据的窗宽和窗位,所述窗宽表示显示图像时所选用的CT值范围,所述窗位表示图像灰阶的中心位置,然后将窗宽设置为1000,将窗位设置为200,最后将CCTA数据进行归一化处理。The original CCTA data is read to obtain the window width and window level of the CCTA data, the window width represents the selected CT value range when displaying the image, the window level represents the center position of the image grayscale, and then the window width Set it to 1000, set the window level to 200, and finally normalize the CCTA data.
进一步,所述步骤三中,编码模块采用ReLU作为激活函数,预分割模块、距离变化模块的上采样层采用双线性插值。Further, in the third step, the encoding module adopts ReLU as the activation function, and the upsampling layer of the pre-segmentation module and the distance change module adopts bilinear interpolation.
进一步,所述多目标分割模型的具体构建过程如下:Further, the specific construction process of the multi-target segmentation model is as follows:
步骤1:将CCTA数据通过分块操作分割为多个子块,且每一个子块有对应大小的标签,送入编码模块。Step 1: Divide the CCTA data into a plurality of sub-blocks through a block operation, and each sub-block has a corresponding size label, which is sent to the encoding module.
步骤2:在编码模块中对数据进行空洞卷积、批量归一化、最大池化操作,从而获得最大感受野。Step 2: Perform atrous convolution, batch normalization, and maximum pooling operations on the data in the encoding module to obtain the maximum receptive field.
步骤3:将编码模块中获取到的特征分别送入预分割模块和距离变化模块,这两个模块均采用双线性插值的方法对每个点进行插值,然后进行卷积、批量归一化层操作来完成上采样,其中,距离变化模块最后输出结果后要与输入图像计算距离变化后进行对比,距离变化(Distance transform,简称DT)。DT用于计算图像中每一个非零点距离离自己最近的零点的距离,对于CCTA图像标签的距离变化DT可以由每一个像素点由公式(5)计算如下:Step 3: The features obtained in the encoding module are sent to the pre-segmentation module and the distance change module respectively. Both modules use bilinear interpolation to interpolate each point, and then perform convolution and batch normalization. Layer operation to complete the upsampling, in which the distance change module finally outputs the result and compares it with the input image after calculating the distance change, distance transform (DT). DT is used to calculate the distance from each non-zero point in the image to the nearest zero point. For CCTA image labels The distance change DT can be determined by each pixel It is calculated by formula (5) as follows:
(5) (5)
其中,是距离变化DT,是像素点和的欧式距离,表示该像素点在冠状动脉上。本发明通过将DT用one-hot编码的方式离散化到类,离散后的DT由回归问题转为离散问题。in, is the distance change DT, is the pixel and the Euclidean distance, Indicates that the pixel is on the coronary artery. The present invention discretizes DT to class, the discrete DT is converted from a regression problem to a discrete problem.
步骤4:将编码模块中的四个编码块与预分割模块中的四个分割块、距离变化模块的四个对距离变化块的每一个对应块都通过跨层连接结构来对应连接,从而获得更多的高频信息。Step 4: Connect the four encoding blocks in the encoding module, the four segmentation blocks in the pre-segmentation module, and the four pairs of distance changing blocks in the distance changing module to each corresponding block through a cross-layer connection structure, so as to obtain: More high frequency information.
步骤5:将预分割模块的每一个分割块的信息计算特征映射图的位置注意力模块后作为距离变化模块对于的距离变换块的辅助信息。Step 5: The information of each segmented block of the pre-segmentation module is used to calculate the position attention module of the feature map as auxiliary information for the distance transformation block of the distance transformation module.
进一步,所述步骤四具体包括如下步骤:Further, the step 4 specifically includes the following steps:
步骤41、数据增广;Step 41, data augmentation;
步骤42、网络训练;Step 42, network training;
步骤43、模型评价。Step 43, model evaluation.
进一步,所述步骤41中,采用旋转、裁剪、加噪声的方法对CCTA数据进行增广操作。Further, in the step 41, the CCTA data is augmented by methods of rotation, cropping and adding noise.
进一步,所述步骤42中,将增广后的CCTA数据通过分块操作分割为多个子块,并分批次送入分割模型中,网络设置学习率为0.001,学习率每经过20个学习迭代之后衰减十倍,卷积权值使用高斯分布初始化,一次训练批次设置为4,学习迭代次数为200,网络训练采用BP反向传播算法来计算梯度并更新权值,网络学习针对每个批次更新一次参数,每一次迭代学习之后,预分割模块判断分割的评价结果,距离变换模块判断距离变化的评价结果,如果当前误差小于上一个迭代的误差,就保存当前多目标分割模型,然后继续训练,直到达到最大迭代次数。Further, in the step 42, the augmented CCTA data is divided into a plurality of sub-blocks through a block operation, and sent to the segmentation model in batches, the network sets the learning rate to 0.001, and the learning rate is every 20 learning iterations. After decaying ten times, the convolution weights are initialized with a Gaussian distribution, a training batch is set to 4, and the number of learning iterations is 200. The network training uses the BP backpropagation algorithm to calculate the gradient and update the weights. The network learning is for each batch. The parameters are updated every time. After each iterative learning, the pre-segmentation module judges the evaluation result of the segmentation, and the distance transformation module judges the evaluation result of the distance change. If the current error is less than the error of the previous iteration, the current multi-object segmentation model is saved, and then continue Train until the maximum number of iterations is reached.
进一步,所述步骤43中,利用联合损失进行衡量,比较输出的CCTA数据与真实CCTA数据标注部分的重叠部分,保存评价指标最优的多目标分割模型。Further, in the step 43, the joint loss is used for measurement, the overlapped part of the output CCTA data and the marked part of the real CCTA data is compared, and the multi-object segmentation model with the optimal evaluation index is saved.
进一步,所述步骤五具体包括如下步骤:Further, the step 5 specifically includes the following steps:
步骤51、把新的CCTA数据送入步骤四预训练好的模型进行测试,新的CCTA数据经过编码模块、预分割模块、距离变化模块后将得到两个结果(分割结果、距离变化结果)。Step 51: Send the new CCTA data to the pre-trained model in step 4 for testing. The new CCTA data will obtain two results (segmentation result and distance change result) after passing through the encoding module, the pre-segmentation module and the distance change module.
步骤52、对预分割模块的结果进行骨架提取。Step 52: Perform skeleton extraction on the result of the pre-segmentation module.
步骤53、对距离变化的结果求argmax可以求得冠状动脉的半径。Step 53: The radius of the coronary artery can be obtained by calculating argmax from the result of the distance change.
步骤54、对骨架上的每一个点,用对应的半径和点坐标构建球模型演化得到演化后的冠状动脉。Step 54: For each point on the skeleton, use the corresponding radius and point coordinates to construct a spherical model for evolution to obtain an evolved coronary artery.
步骤55、对演化后的冠状动脉和预分割模块结果求并集得到最后的冠状动脉分割结果。Step 55 , obtain a final coronary artery segmentation result by summing the evolved coronary artery and the result of the pre-segmentation module.
与现有技术相比,本发明的有益效果是:Compared with the prior art, the beneficial effects of the present invention are:
1.本发明通过综合分析CCTA影响管状动脉特征,将冠状动脉视为管状结构,可以用骨架和半径进行演化得到,而半径可以通过距离变换求得,因此构建深度几何演化分割模型,从而得到更为精准的分割结果。1. The present invention considers the coronary artery as a tubular structure by comprehensively analyzing the characteristics of the tubular arteries affected by CCTA, which can be obtained by evolution with a skeleton and a radius, and the radius can be obtained by distance transformation, so a deep geometric evolution segmentation model is constructed, thereby obtaining a more accurate segmentation model. for accurate segmentation results.
2.本发明利用预分割模块的每一个分割块的信息计算特征映射图的位置注意力后作为距离变化模块对应块的辅助信息,从而获得更准确的距离变化结果,进而提高分割的准确率。2. The present invention uses the information of each segmented block of the pre-segmentation module to calculate the location attention of the feature map as auxiliary information of the corresponding block of the distance variation module, thereby obtaining a more accurate distance variation result, thereby improving the accuracy of segmentation.
3.本发明从三维数据分割直接入手,可以相对较好的保证了CCTA三维数据前后的关联性,采用了对应的评价指标,使得分割的结果更为准确,为后续的医生诊断提供了更好的依据。3. The present invention directly starts from the segmentation of three-dimensional data, which can relatively well ensure the correlation before and after the three-dimensional data of CCTA, and adopts the corresponding evaluation index, so that the result of the segmentation is more accurate, and it provides a better diagnosis for subsequent doctors. basis.
4.对于已经完成训练的模型,可以快速通过冠状动脉演化分割,实现批量CCTA的数据分割,可以实现无人值守批量操作,且速度快速,节省了冠脉标注的人力物力,为医生辅助诊断提供更强有力的依据。4. For the model that has been trained, it can quickly segment the coronary artery evolution to realize the data segmentation of batch CCTA, which can realize unattended batch operation, and the speed is fast, saving the manpower and material resources of coronary artery labeling, and providing doctors with auxiliary diagnosis. stronger basis.
附图说明Description of drawings
图1为本实施构建的深度几何演化分割模型的流程图;Fig. 1 is the flow chart of the deep geometric evolution segmentation model constructed for this implementation;
图2为本实施构建的深度几何演化分割模型的框架图。FIG. 2 is a frame diagram of a deep geometric evolution segmentation model constructed for this implementation.
具体实施方式Detailed ways
下面结合附图对本发明作进一步的说明,本发明的实施方式包括但不限于下列实施例。The present invention will be further described below with reference to the accompanying drawings. Embodiments of the present invention include but are not limited to the following examples.
如图1所示的基于深度几何演化模型的冠状动脉分割方法,包括如下步骤:As shown in Figure 1, the coronary artery segmentation method based on the deep geometric evolution model includes the following steps:
步骤一、获取数据集;Step 1. Obtain the dataset;
步骤二、数据预处理;Step 2, data preprocessing;
步骤三、构建深度几何演化分割模型;Step 3: Build a deep geometric evolution segmentation model;
深度几何演化分割模型包括编码模块、预分割模块、距离变化模块,步骤二中预处理后的数据输入深度几何演化分割模型后,输出距离变化结果、预分割结果; 预分割模型提取骨架,距离变化模块求出骨架对应点的半径;编码模块由四个编码块构成,每一个编码块为空洞卷积、批量归一化层、最大池化层构成;预分割模块四个分割块构成,每一个分割块由空洞卷积、批量归一化层、上采样层构成;距离变化模块四个距离变化块构成,每一个距离变化块由空洞卷积、批量归一化层、上采样层构成,且得到输出结果后要与输入图像计算距离变化后进行对比,距离变化模块(Distance transform,简称DT)用于计算图像中每一个非零点离自己最近零点的距离;其中编码模块与预分割模块和距离变化模块的每一个对应块都通过跳跃连接来连接,从而获得更多的高频信息。为了获得更好的距离变化结果,本发明利用预分割模块的每一个分割块的信息计算特征映射图的位置注意力模块后作为距离变化模块的辅助信息,从而获得距离变化模块的特征信息更丰富,利用距离变化模块演化分割时,将获得更好的分割结果。The deep geometric evolution segmentation model includes an encoding module, a pre-segmentation module, and a distance change module. After the pre-processed data in step 2 is input into the deep geometric evolution segmentation model, the distance change results and pre-segmentation results are output; the pre-segmentation model extracts the skeleton, and the distance changes The module calculates the radius of the corresponding point of the skeleton; the coding module is composed of four coding blocks, each of which is composed of atrous convolution, batch normalization layer, and maximum pooling layer; the pre-segmentation module is composed of four segmentation blocks, each of which The segmentation block is composed of hole convolution, batch normalization layer, and upsampling layer; the distance change module is composed of four distance change blocks, and each distance change block is composed of hole convolution, batch normalization layer, and upsampling layer, and After the output result is obtained, it should be compared with the input image after calculating the distance change. The distance transform module (Distance transform, DT for short) is used to calculate the distance between each non-zero point in the image and its nearest zero point; the encoding module and the pre-segmentation module and the distance Each corresponding block of the change module is connected by skip connections, so that more high-frequency information is obtained. In order to obtain a better distance change result, the present invention uses the information of each segment of the pre-segmentation module to calculate the position attention module of the feature map as auxiliary information of the distance change module, so as to obtain richer feature information of the distance change module , better segmentation results will be obtained when the segmentation is evolved using the distance variation module.
本发明通过将DT用one-hot编码的方式离散化到k类,离散后的DT由回归问题转为离散问题。The present invention discretizes the DT into k classes by one-hot coding, and the discretized DT is transformed from a regression problem to a discrete problem.
步骤四、对构建的多目标分割模型进行训练及评判;对预分割模块采用dice损失函数,对距离变化模块采用交叉熵损失函数;利用联合损失函数来训练多目标模型,其中预分割模块使用基于dice系数的激活函数,DT是一个介于0和1之间的数值,网络的目标是最大化dice系数,定义公式(3)如下:Step 4: Train and judge the constructed multi-target segmentation model; use the dice loss function for the pre-segmentation module, and use the cross-entropy loss function for the distance change module; use the joint loss function to train the multi-target model, where the pre-segmentation module uses the The activation function of the dice coefficient, DT is a value between 0 and 1, the goal of the network is to maximize the dice coefficient, and formula (3) is defined as follows:
(3) (3)
其中,表示预测结果,表示标注图;in, represents the prediction result, Represents an annotation diagram;
另外一个距离变化模块使用的是交叉熵损失函数,该函数定义如下(4):Another distance change module uses the cross-entropy loss function, which is defined as follows (4):
(4) (4)
其中,表示距离变化离散后的类别数量,表示CCTA数据上像素i等于距离变化离散后k的概率,如果像素i的真实类别等于k则取1,否则取0; 为CCTA数据上像素i属于距离变化离散后k的预测概率。in, represents the number of categories after the distance change is discrete, Represents the probability that the pixel i on the CCTA data is equal to k after the distance change is discrete, if the true category of the pixel i is equal to k , it takes 1, otherwise it takes 0; is the predicted probability that the pixel i on the CCTA data belongs to k after the distance change is discrete.
最后深度几何演化分割模型的联合损失(6)为:The joint loss (6) of the final deep geometric evolutionary segmentation model is:
(6) (6)
步骤五、几何演化;将训练及评判后的CCTA图像得到距离变化结果DT、预分割结果,对预分割模块的结果通过骨架提取模块进行骨架提取,对距离变化结果通过距离变化模块求冠状动脉的半径,在对骨架上提取每一个点坐标,用对应冠状动脉的半径和点坐标通过球模型演化得到演化后的冠状动脉,演化后的冠状动脉与骨架提取的其它分割结果通过并集模块求并集得到最终的分割结果;Step 5: Geometric evolution; obtain the distance change result DT and the pre-segmentation result from the CCTA images after training and evaluation, perform the skeleton extraction on the result of the pre-segmentation module through the skeleton extraction module, and obtain the coronary artery size for the distance change result through the distance change module. radius , extract the coordinates of each point on the pair of skeletons , with the radius of the corresponding coronary artery and point coordinates The evolved coronary artery is obtained through the evolution of the spherical model, and the final segmentation result is obtained by the union of the evolved coronary artery and other segmentation results extracted from the skeleton;
步骤六、新数据预测;Step 6. New data prediction;
新的CCTA数据经过编码模块、预分割模块、距离变化模块后将得到两个结果(预分割结果、距离变化结果),其中,是像素是否是冠状动脉的概率;是像素属于类的概率。对于一个像素,它的半径可以计算为,它的骨架可以利用skimage的skeletonize计算得到。对于骨架上的每一个点,利用半径和坐标构建球模型演化得到冠脉,计算公式(1)如下:After the new CCTA data passes through the encoding module, the pre-segmentation module and the distance change module, two results (pre-segmentation result and distance change result) will be obtained, among which, is the pixel the probability of whether it is a coronary artery; is the pixel belong class probability. for one pixel , its radius can be calculated as , its skeleton It can be calculated using the skeletonize of skimage. for every point on the skeleton , using the radius and coordinates to construct the spherical model evolution to obtain the coronary artery, the calculation formula (1) is as follows:
(1) (1)
最后冠状动脉的分割结果可以由演化后的冠状动脉和骨架提取的其它分割结果求并集而得,计算公式(2)如下:Segmentation results of the last coronary artery It can be obtained from the union of other segmentation results extracted from the evolved coronary artery and the skeleton, and the calculation formula (2) is as follows:
(2) (2)
进一步,所述步骤一中,数据集包括CCTA数据和标签,标签数据需要对于每一例CCTA数据均需要利用3D Slicer软件手动打标签。Further, in the first step, the data set includes CCTA data and labels, and the label data needs to be manually labeled with 3D Slicer software for each case of CCTA data.
进一步,所述步骤二具体包括如下:Further, the step 2 specifically includes the following:
对原始的CCTA数据进行读取,获取CCTA数据的窗宽和窗位,所述窗宽表示显示图像时所选用的CT值范围,所述窗位表示图像灰阶的中心位置,然后将窗宽设置为1000,将窗位设置为200,最后将CCTA数据进行归一化处理。The original CCTA data is read to obtain the window width and window level of the CCTA data, the window width represents the selected CT value range when displaying the image, the window level represents the center position of the image grayscale, and then the window width Set it to 1000, set the window level to 200, and finally normalize the CCTA data.
进一步,所述步骤三中,编码模块采用ReLU作为激活函数,预分割模块、距离变化模块的上采样层采用双线性插值。Further, in the third step, the encoding module adopts ReLU as the activation function, and the upsampling layer of the pre-segmentation module and the distance change module adopts bilinear interpolation.
进一步,所述多目标分割模型的具体构建过程如下:Further, the specific construction process of the multi-target segmentation model is as follows:
步骤1:将CCTA数据通过分块操作分割为多个子块,且每一个子块有对应大小的标签,送入编码模块。Step 1: Divide the CCTA data into a plurality of sub-blocks through a block operation, and each sub-block has a corresponding size label, which is sent to the encoding module.
步骤2:在下编码模块中对数据进行空洞卷积、批量归一化、最大池化操作,从而获得最大感受野。Step 2: Perform atrous convolution, batch normalization, and maximum pooling operations on the data in the lower encoding module to obtain the maximum receptive field.
步骤3:将编码模块中获取到的特征分别送入预分割模块和距离变化模块,这两个模块均采用双线性插值的方法对每个点进行插值,然后进行卷积、批量归一化层操作来完成上采样。其中,距离变化模块最后输出结果后要与输入图像计算距离变化后进行对比,距离变化(Distance transform,简称DT)。DT用于计算图像中每一个非零点距离离自己最近的零点的距离,对于CCTA图像标签的距离变化DT可以由每一个像素点由公式(5)计算如下:Step 3: The features obtained in the encoding module are sent to the pre-segmentation module and the distance change module respectively. Both modules use bilinear interpolation to interpolate each point, and then perform convolution and batch normalization. layer operations to complete the upsampling. Among them, the final output result of the distance change module should be compared with the input image after calculating the distance change, the distance change (Distance transform, referred to as DT). DT is used to calculate the distance from each non-zero point in the image to the nearest zero point. For CCTA image labels The distance change DT can be determined by each pixel It is calculated by formula (5) as follows:
(5) (5)
其中是距离变化DT,是像素点和的欧式距离,表示该像素点在冠状动脉上。本发明通过将DT用one-hot编码的方式离散化到类,离散后的DT由回归问题转为离散问题。in is the distance change DT, is the pixel and the Euclidean distance, Indicates that the pixel is on the coronary artery. The present invention discretizes DT to class, the discrete DT is converted from a regression problem to a discrete problem.
步骤4:将编码模块中的四个编码块与预分割模块中的四个分割块、距离变化模块的四个对距离变化块的每一个对应块都通过跨层连接结构来对应连接,从而获得更多的高频信息。Step 4: Connect the four encoding blocks in the encoding module, the four segmentation blocks in the pre-segmentation module, and the four pairs of distance changing blocks in the distance changing module to each corresponding block through a cross-layer connection structure, so as to obtain: More high frequency information.
步骤5:将预分割模块的每一个分割块的信息计算特征映射图的位置注意力后作为距离变化模块对于的距离变换块的辅助信息。Step 5: The information of each segmented block of the pre-segmentation module is used to calculate the location attention of the feature map as auxiliary information of the distance transformation block for the distance transformation module.
进一步,所述步骤四具体包括如下步骤:Further, the step 4 specifically includes the following steps:
步骤41、数据增广;Step 41, data augmentation;
步骤42、网络训练;Step 42, network training;
步骤43、模型评价。Step 43, model evaluation.
进一步,所述步骤41中,采用旋转、裁剪、加噪声的方法对CCTA数据进行增广操作。Further, in the step 41, the CCTA data is augmented by methods of rotation, cropping and adding noise.
进一步,所述步骤42中,将增广后的CCTA数据通过分块操作分割为多个子块,并分批次送入分割模型中,网络设置学习率为0.001,学习率每经过20个学习迭代之后衰减十倍,卷积权值使用高斯分布初始化,一次训练批次设置为4,学习迭代次数为200,网络训练采用BP反向传播算法来计算梯度并更新权值,网络学习针对每个批次更新一次参数,每一次迭代学习之后,预分割模块判断分割的评价结果,距离变换模块判断距离变化的评价结果,如果当前误差小于上一个迭代的误差,就保存当前多目标分割模型,然后继续训练,直到达到最大迭代次数。Further, in the step 42, the augmented CCTA data is divided into a plurality of sub-blocks through a block operation, and sent to the segmentation model in batches, the network sets the learning rate to 0.001, and the learning rate is every 20 learning iterations. After decaying ten times, the convolution weights are initialized with a Gaussian distribution, a training batch is set to 4, and the number of learning iterations is 200. The network training uses the BP backpropagation algorithm to calculate the gradient and update the weights. The network learning is for each batch. The parameters are updated every time. After each iterative learning, the pre-segmentation module judges the evaluation result of the segmentation, and the distance transformation module judges the evaluation result of the distance change. If the current error is less than the error of the previous iteration, the current multi-object segmentation model is saved, and then continue Train until the maximum number of iterations is reached.
进一步,所述步骤43中,利用联合损失进行衡量,比较输出的CCTA数据与真实CCTA数据标注部分的重叠部分,保存评价指标最优的多目标分割模型。Further, in the step 43, the joint loss is used for measurement, the overlapped part of the output CCTA data and the marked part of the real CCTA data is compared, and the multi-object segmentation model with the optimal evaluation index is saved.
进一步,所述步骤五具体包括如下步骤:Further, the step 5 specifically includes the following steps:
步骤51、把新的CCTA数据送入步骤四预训练好的模型进行测试,新的CCTA数据经过编码模块、预分割模块、距离变化模块后将得到两个结果(分割结果、距离变化结果)。Step 51: Send the new CCTA data to the pre-trained model in step 4 for testing. The new CCTA data will obtain two results (segmentation result and distance change result) after passing through the encoding module, the pre-segmentation module and the distance change module.
步骤52、对预分割模块的结果进行骨架提取。Step 52: Perform skeleton extraction on the result of the pre-segmentation module.
步骤53、对距离变化的结果求argmax可以求得冠状动脉的半径。Step 53: The radius of the coronary artery can be obtained by calculating argmax from the result of the distance change.
步骤54、对骨架上的每一个点,用对应的半径和点坐标构建球模型演化得到演化后的冠状动脉。Step 54: For each point on the skeleton, use the corresponding radius and point coordinates to construct a spherical model for evolution to obtain an evolved coronary artery.
如上即为本发明的实施例。上述实施例以及实施例中的具体参数仅是为了清楚表述发明人的发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。The above is an embodiment of the present invention. The above examples and the specific parameters in the examples are only to clearly describe the inventor's invention verification process, not to limit the scope of the patent protection of the present invention. The scope of the patent protection of the present invention is still based on the claims. Equivalent structural changes made in the contents of the description and drawings of the present invention shall be included within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111206833.XA CN113643317B (en) | 2021-10-18 | 2021-10-18 | Coronary artery segmentation method based on deep geometric evolution model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111206833.XA CN113643317B (en) | 2021-10-18 | 2021-10-18 | Coronary artery segmentation method based on deep geometric evolution model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113643317A CN113643317A (en) | 2021-11-12 |
CN113643317B true CN113643317B (en) | 2022-01-04 |
Family
ID=78427187
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111206833.XA Active CN113643317B (en) | 2021-10-18 | 2021-10-18 | Coronary artery segmentation method based on deep geometric evolution model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113643317B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110428432A (en) * | 2019-08-08 | 2019-11-08 | 梅礼晔 | The deep neural network algorithm of colon body of gland Image Automatic Segmentation |
CN111916183A (en) * | 2019-05-10 | 2020-11-10 | 北京航空航天大学 | Dynamic cardiovascular system modeling method, device, equipment and storage medium |
CN112102352A (en) * | 2020-10-15 | 2020-12-18 | 北京唯迈医疗设备有限公司 | Coronary motion tracking method and device for DSA image sequence |
CN112150476A (en) * | 2019-06-27 | 2020-12-29 | 上海交通大学 | Coronary artery sequence vessel segmentation method based on spatiotemporal discriminative feature learning |
CN112258514A (en) * | 2020-11-20 | 2021-01-22 | 福州大学 | A segmentation method of pulmonary blood vessels in CT images |
CN112489047A (en) * | 2021-02-05 | 2021-03-12 | 四川大学 | Deep learning-based pelvic bone and arterial vessel multi-level segmentation method thereof |
CN112700490A (en) * | 2021-01-08 | 2021-04-23 | 杭州深睿博联科技有限公司 | Coronary artery central line generation method and device based on maximum radius search |
CN113034507A (en) * | 2021-05-26 | 2021-06-25 | 四川大学 | CCTA image-based coronary artery three-dimensional segmentation method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110257505A1 (en) * | 2010-04-20 | 2011-10-20 | Suri Jasjit S | Atheromatic?: imaging based symptomatic classification and cardiovascular stroke index estimation |
-
2021
- 2021-10-18 CN CN202111206833.XA patent/CN113643317B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111916183A (en) * | 2019-05-10 | 2020-11-10 | 北京航空航天大学 | Dynamic cardiovascular system modeling method, device, equipment and storage medium |
CN112150476A (en) * | 2019-06-27 | 2020-12-29 | 上海交通大学 | Coronary artery sequence vessel segmentation method based on spatiotemporal discriminative feature learning |
CN110428432A (en) * | 2019-08-08 | 2019-11-08 | 梅礼晔 | The deep neural network algorithm of colon body of gland Image Automatic Segmentation |
CN112102352A (en) * | 2020-10-15 | 2020-12-18 | 北京唯迈医疗设备有限公司 | Coronary motion tracking method and device for DSA image sequence |
CN112258514A (en) * | 2020-11-20 | 2021-01-22 | 福州大学 | A segmentation method of pulmonary blood vessels in CT images |
CN112700490A (en) * | 2021-01-08 | 2021-04-23 | 杭州深睿博联科技有限公司 | Coronary artery central line generation method and device based on maximum radius search |
CN112489047A (en) * | 2021-02-05 | 2021-03-12 | 四川大学 | Deep learning-based pelvic bone and arterial vessel multi-level segmentation method thereof |
CN113034507A (en) * | 2021-05-26 | 2021-06-25 | 四川大学 | CCTA image-based coronary artery three-dimensional segmentation method |
Non-Patent Citations (4)
Title |
---|
《Automated coronary artery segmentation in Coronary Computed Tomography Angiography (CCTA) using deep learning neural networks》;Yang Lei等;《PROCEEDINGS OF SPIE》;20200302;第11318卷(第2020期);第1-6页 * |
《Detection of 3D Arterial Centerline Extraction in Spiral CT Coronary Angiography》;Wenjuan Cai等;《Computer Vision for Human Health and Medical Application》;20210823;第1-16页 * |
《jRPLS-Net: pulmonary lobe segmentation based on 3D fully convolutional networks and multi-task learning》;Jinxin Liu等;《International Journal of Computer Assisted Radiology and Surgery》;20210630;第16卷(第6期);第895-904页 * |
《基于CTPA的肺动脉分割及急性肺栓塞危险度评价方法研究》;高唱;《中国优秀硕士学位论文全文数据库 医药卫生科技辑》;20210215(第02期);第E063-118页 * |
Also Published As
Publication number | Publication date |
---|---|
CN113643317A (en) | 2021-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220309674A1 (en) | Medical image segmentation method based on u-net | |
CN109584254B (en) | Heart left ventricle segmentation method based on deep full convolution neural network | |
CN112241766B (en) | Liver CT image multi-lesion classification method based on sample generation and transfer learning | |
CN111709953B (en) | Output method and device in lung lobe segment segmentation of CT (computed tomography) image | |
WO2023221954A1 (en) | Pancreatic tumor image segmentation method and system based on reinforcement learning and attention | |
CN108268870A (en) | Multi-scale feature fusion ultrasonoscopy semantic segmentation method based on confrontation study | |
Ye et al. | Medical image diagnosis of prostate tumor based on PSP-Net+ VGG16 deep learning network | |
CN110717907A (en) | Intelligent hand tumor detection method based on deep learning | |
CN110782427B (en) | Magnetic resonance brain tumor automatic segmentation method based on separable cavity convolution | |
CN101425186A (en) | Liver subsection method based on CT image and system thereof | |
CN113034507A (en) | CCTA image-based coronary artery three-dimensional segmentation method | |
CN117078692B (en) | Medical ultrasonic image segmentation method and system based on self-adaptive feature fusion | |
CN110619635A (en) | Hepatocellular carcinoma magnetic resonance image segmentation system and method based on deep learning | |
CN115512110A (en) | Medical image tumor segmentation method related to cross-modal attention mechanism | |
Chen et al. | MBANet: Multi-branch aware network for kidney ultrasound images segmentation | |
CN111260705A (en) | A multi-task registration method for prostate MR images based on deep convolutional neural network | |
Fang et al. | Multi-input Unet model based on the integrated block and the aggregation connection for MRI brain tumor segmentation | |
CN116309385B (en) | Abdominal fat and muscle tissue measurement method and system based on weakly supervised learning | |
Feng et al. | Multi-stage fully convolutional network for precise prostate segmentation in ultrasound images | |
Dong et al. | A novel end‐to‐end deep learning solution for coronary artery segmentation from CCTA | |
CN115471512A (en) | Medical image segmentation method based on self-supervision contrast learning | |
Zhu et al. | CotepRes-Net: An efficient U-Net based deep learning method of liver segmentation from Computed Tomography images | |
CN113223704B (en) | Auxiliary diagnosis method for computed tomography aortic aneurysm based on deep learning | |
CN113643317B (en) | Coronary artery segmentation method based on deep geometric evolution model | |
CN118212411A (en) | A pulmonary embolism segmentation method based on deep learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |