CN113608547B - 一种滑翔制导炸弹基于风补偿的机载火控方法及系统 - Google Patents

一种滑翔制导炸弹基于风补偿的机载火控方法及系统 Download PDF

Info

Publication number
CN113608547B
CN113608547B CN202110819210.3A CN202110819210A CN113608547B CN 113608547 B CN113608547 B CN 113608547B CN 202110819210 A CN202110819210 A CN 202110819210A CN 113608547 B CN113608547 B CN 113608547B
Authority
CN
China
Prior art keywords
wind
height
range
projectile
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110819210.3A
Other languages
English (en)
Other versions
CN113608547A (zh
Inventor
王明光
魏丽霞
李广
宗焕强
李世海
崔俊根
胡海燕
刘华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Aerospace Feiteng Equipment Technology Co ltd
Original Assignee
Beijing Aerospace Feiteng Equipment Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Aerospace Feiteng Equipment Technology Co ltd filed Critical Beijing Aerospace Feiteng Equipment Technology Co ltd
Priority to CN202110819210.3A priority Critical patent/CN113608547B/zh
Publication of CN113608547A publication Critical patent/CN113608547A/zh
Application granted granted Critical
Publication of CN113608547B publication Critical patent/CN113608547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/107Simultaneous control of position or course in three dimensions specially adapted for missiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

本发明涉及一种滑翔制导炸弹基于风补偿的机载火控方法。由于通常情况空中风很大,滑翔制导炸弹在顺风和逆风情况下其真实射程相差很大。滑翔制导炸弹受约束于成本或结构安装等因素一般不配备大气测量系统,在飞行过程中无法利用空速信息,故在设计火控系统时,需要约束投弹条件,即约束风速大小,增加了投弹不便性,错失战机,另外计算火控窗口时需考虑到在逆风情况下投放窗口较小的问题,不能发挥滑翔制导炸弹射程远的优点。本发明针对以上问题,提出了一种基于风补偿的机载火控方法,即利用投放前的机载空速和地速信息估算空中风分布情况,进而对无风情况下的基准射程进行修正,很大程度上拓宽火控投弹窗口,极大方便了飞行员进行投弹操作。

Description

一种滑翔制导炸弹基于风补偿的机载火控方法及系统
技术领域
本发明涉及一种滑翔制导炸弹基于风补偿的机载火控方法及系统,属于机载投放无动力滑翔制导炸弹的机载火控设计。
背景技术
滑翔制导炸弹是基于现有航空炸弹进行低成本制导化改造而成的一种无动力制导航空武器,通常情况下高空风很大,滑翔制导炸弹由于无动力,其射程在很大程度上受空中风的影响,例如某一款滑翔制导炸弹,其顺风50m/s条件下的射程可达120km,而逆风50m/s条件下的射程仅为60km。滑翔制导炸弹受约束于成本或结构安装等因素一般不配备大气测量系统,在飞行过程中无法利用空速信息,故在设计火控系统时,需要约束投弹条件,即约束风速大小,增加了投弹不便性和风险,例如以逆风50m/s条件下的最大射程投弹,当实际逆风超过50m/s时,滑翔制导炸弹会因真实射程低于解算的射程而攻击失败。另外计算火控窗口时需考虑逆风情况,故投放窗口较小,不能发挥滑翔制导炸弹射程远的优点。
发明内容
本发明的技术解决问题:克服现有技术的不足,结合风随高度变化的特性以及滑翔弹道特性提出了一种滑翔制导炸弹基于风补偿的机载火控方法,即利用投放前的机载空速和地速信息估算高空风分布情况,进而对无风情况下的基准射程进行修正,可有效地挖掘滑翔制导炸弹的优点,很大程度上拓宽火控投弹窗口,极大方便了飞行员进行投弹操作。
本发明采用的技术解决方案:
在载机火控窗口的设计中,空中风对滑翔制导炸弹的射程具有很大的影响,结合空中风模型以及滑翔制导炸弹的弹道特性提出了一种基于风补偿的机载火控算法,即利用投放前的机载空速和地速信息估算空中风分布情况,进而对无风情况下的基准射程进行修正,很大程度上拓宽火控投弹窗口,极大方便了飞行员进行投弹操作。
本发明包括如下步骤:
一种滑翔制导炸弹基于风补偿的机载火控方法,步骤如下:
(1)设计基准射程表,基准射程表中包括某一投弹高度下的不同空速和目标高度时的最大射程和最小射程;
(2)根据基准射程表中的载机飞行高度、飞行空速以及目标高度信息三元插值确定投弹窗口;
(3)基于实时的载机飞行空速与地速信息,计算载机飞行高度处的风大小及方向,结合空中风分布模型,计算投弹后不同高度的风大小与方向;
(4)考虑空中实际风与空中风分布模型之间的差异,对步骤(3)计算得到的载机飞行高度处的风大小、投弹后不同高度的风大小进行限幅和修正处理;
(5)基于步骤(4)得到的投弹后不同高度的风大小与方向,进行弹道仿真,得出在空中风分布模型下风大小与方向对射程增量的影响规律,并结合载机飞行高度处的风大小与方向,计算该投放条件下的射程修正量,即射程增量;
(6)将射程增量补偿到步骤(2)确定的投弹窗口中,得到风补偿后的投弹窗口,从而实现滑翔制导炸弹基于风补偿的机载火控。
进一步的,设计基准射程表通过如下方式实现:基于不同投弹高度、空速以及目标信息,结合标准大气模型、滑翔制导炸弹的气动特性、结构质量特性、拉偏条件以及制导控制系统,通过弹道仿真确定无风条件下的基准射程表。
进一步的,基准射程表的形式如下:
某一投弹高度下的基准射程表
Figure BDA0003171401360000031
进一步的,所述根据基准射程表中的载机飞行高度、飞行空速以及目标高度信息三元插值确定投弹窗口,具体为:
(2.1)设投弹高度为hm,载机飞行空速为vm,目标高度为ht,现有射程表f1(hm1,vm1,ht1)以及f2(hm2,vm2,ht2),其中hm1和hm2、vm1和vm2以及ht1和ht2分别为不同的投弹高度、空速以及目标高度,且hm1≤hm≤hm2,vm1≤vm≤vm2,ht1≤ht≤ht2
(2.2)查表f1(hm1,vm1,ht1)得到飞行空速为vm1和vm2,目标高度为ht1和ht2下的四组基准射程
Figure BDA0003171401360000032
和/>
Figure BDA0003171401360000033
(2.3)基于
Figure BDA0003171401360000034
和/>
Figure BDA0003171401360000035
插值得到在投弹高度为hm1、载机飞行空速为vm、目标高度为ht1和ht2下的基准射程/>
Figure BDA0003171401360000036
和/>
Figure BDA0003171401360000037
Figure BDA0003171401360000038
Figure BDA0003171401360000039
(2.4)基于
Figure BDA00031714013600000310
和/>
Figure BDA00031714013600000311
插值得到投弹高度为hm1、载机飞行空速为vm、目标高度为ht下的基准射程/>
Figure BDA00031714013600000312
Figure BDA00031714013600000313
(2.5)同理可得投弹高度为hm2、载机飞行空速为vm、目标高度为ht情况下的基准射程
Figure BDA00031714013600000314
(2.6)基于
Figure BDA0003171401360000041
和/>
Figure BDA0003171401360000042
插值得到投弹高度为hm、载机飞行空速为vm、目标高度为ht下的基准射程f0,即投弹窗口:
Figure BDA0003171401360000043
进一步的,射程增量的具体计算步骤为:
某地风速为vwind,根据基准射程表,经三元插值计算后,得到在投弹高度为hm、载机飞行空速为vm、目标高度为ht的条件下的基准射程f0;经弹道仿真得出,在某满足条件的目标高度范围内,每增加v0m/s的顺风或逆风,射程远界变化量为Δf0;则该条件下射程增量计算如下:
Figure BDA0003171401360000044
则修正后的射程f=f0+Δf。
进一步的,所述步骤(4)考虑空中实际风与空中风分布模型之间的差异,对计算得到的载机飞行高度处的风大小、投弹后不同高度的风大小进行限幅和修正处理,具体为:
空中实际风与空中风分布模型之间存在差异,为保证足够的射程,通常对计算得到的风大小进行限幅和修正处理,使射程增量尽可能小,尽量避免因实际射程低于补偿得到的射程远界而导致的投弹失败的风险。
给定阈值vwmax,对载机飞行高度处和投弹后不同高度处的风大小进行限幅处理:
Figure BDA0003171401360000045
给定系数β≤1,对风大小进行修正处理:
vwind=βvwind
进一步的,本发明还提出一种滑翔制导炸弹基于风补偿的机载火控系统,包括:
基准射程表设计模块,基准射程表中包括某一投弹高度下的不同空速和目标高度时的最大射程和最小射程;
三元插值模块:根据基准射程表中的载机飞行高度、飞行空速以及目标高度信息三元插值确定投弹窗口;
风计算模块:基于实时的载机飞行空速与地速信息,计算载机飞行高度处的风大小及方向,结合空中风分布模型,计算投弹后不同高度的风大小与方向;
限幅修正模块:考虑空中实际风与空中风分布模型之间的差异,对计算得到的载机飞行高度处的风大小、投弹后不同高度的风大小进行限幅和修正处理;
射程增量计算模块:基于限幅修正后投弹后不同高度的风大小与方向,进行弹道仿真,得出在空中风分布模型下风大小与方向对射程增量的影响规律,并结合载机飞行高度处的风大小与方向,计算该投放条件下的射程修正量,即射程增量;
风补偿模块:将射程增量补偿到投弹窗口中,得到风补偿后的投弹窗口,从而实现滑翔制导炸弹基于风补偿的机载火控。
本发明与现有技术相比具有的有益效果是:
(1)将估计的风大小和方向引入至滑翔制导炸弹的机载火控算法中,结合空中风分布模型以及滑翔制导炸弹的弹道特性,在很大程度上拓宽火控投弹窗口,极大方便了飞行员进行投弹操作,降低了投弹后由于实际射程低于火控解算窗口最大射程而导致攻击失败的风险。
(2)利用投放前的机载空速和地速信息估算高空风分布情况,进而对无风情况下的基准射程进行修正,可有效地挖掘滑翔制导炸弹的优点,很大程度上拓宽火控投弹窗口,极大方便了飞行员进行投弹操作。
(3)所设计火控算法计算简单,无需额外增加弹上硬件,易于工程应用。
附图说明
图1为火控窗口计算示意图;
图2为地球上某四地95%概率下的风场大小。
具体实施方式
滑翔制导炸弹在顺风和逆风情况下其真实射程相差很大,由于受约束于成本或结构安装等因素一般不配备大气测量系统,在飞行过程中无法利用空速信息,为了避免投弹后由于逆风过大而导致真实射程低于投弹窗口最大射程而攻击失败,需约束投弹条件,即约束风速大小,增加了投弹不便性,错失战机,另外计算火控窗口时需考虑逆风情况,严重限制了顺风或无风条件下的射程,不能发挥滑翔制导炸弹射程远的优点。
本发明针对现有技术存在的问题,结合风随高度变化的特性以及滑翔弹道特性提出了一种滑翔制导炸弹射基于风补偿的机载火控方法,即利用投放前的机载空速和地速信息估算高空风分布情况,进而对无风情况下的基准射程进行修正,可有效地挖掘滑翔制导炸弹的优点,很大程度上拓宽火控投弹窗口,极大方便了飞行员进行投弹操作。
如图1所示,本发明机载火控方法包括如下步骤:
步骤1、设计基准射程表,基准射程表中包括某一投弹高度下的不同空速和目标高度时的最大射程和最小射程;
设计基准射程表通过如下方式实现:基于不同投弹高度、空速以及目标信息,结合标准大气模型、滑翔制导炸弹的气动特性、结构质量特性、拉偏条件以及制导控制系统,通过弹道仿真确定无风条件下的基准射程表。
基准射程表的形式如下:
某一投弹高度下的基准射程表
Figure BDA0003171401360000061
Figure BDA0003171401360000071
步骤2、通常情况下飞行员按空速操纵载机飞行;根据基准射程表中的载机飞行高度、飞行空速以及目标高度信息三元插值确定投弹窗口;
三元插值确定投弹窗口具体为:
(2.1)设投弹高度为hm,载机飞行空速为vm,目标高度为ht,现有射程表f1(hm1,vm1,ht1)以及f2(hm2,vm2,ht2),其中hm1和hm2、vm1和vm2以及ht1和ht2分别为不同的投弹高度、空速以及目标高度,且hm1≤hm≤hm2,vm1≤vm≤vm2,ht1≤ht≤ht2
(2.2)查表f1(hm1,vm1,ht1)得到飞行空速为vm1和vm2,目标高度为ht1和ht2下的四组基准射程
Figure BDA0003171401360000072
和/>
Figure BDA0003171401360000073
(2.3)基于
Figure BDA0003171401360000074
和/>
Figure BDA0003171401360000075
插值得到在投弹高度为hm1、载机飞行空速为vm、目标高度为ht1和ht2下的基准射程/>
Figure BDA0003171401360000076
和/>
Figure BDA0003171401360000077
Figure BDA0003171401360000078
Figure BDA0003171401360000079
(2.4)基于
Figure BDA00031714013600000710
和/>
Figure BDA00031714013600000711
插值得到投弹高度为hm1、载机飞行空速为vm、目标高度为ht下的基准射程/>
Figure BDA00031714013600000712
Figure BDA00031714013600000713
(2.5)同理可得投弹高度为hm2、载机飞行空速为vm、目标高度为ht情况下的基准射程
Figure BDA00031714013600000714
(2.6)基于
Figure BDA00031714013600000715
和/>
Figure BDA00031714013600000716
插值得到投弹高度为hm、载机飞行空速为vm、目标高度为ht下的基准射程f0,即投弹窗口:
Figure BDA00031714013600000717
步骤3、基于实时的载机飞行空速与地速信息,计算载机飞行高度处的风大小及方向,结合空中风分布模型,计算投弹后不同高度的风大小与方向;
步骤4、考虑空中实际风与空中风分布模型之间的差异,对步骤(3)计算得到的载机飞行高度处的风大小、投弹后不同高度的风大小进行限幅和修正处理;
具体为:
空中实际风与空中风分布模型之间存在差异,为保证足够的射程,通常对计算得到的风大小进行限幅和修正处理,使射程增量尽可能小,尽量避免因实际射程低于补偿得到的射程远界而导致的投弹失败的风险。
给定阈值vwmax,对载机飞行高度处和投弹后不同高度处的风大小进行限幅处理:
Figure BDA0003171401360000081
给定系数β≤1,对风大小进行修正处理:
vwind=βvwind
步骤5、基于步骤4得到的投弹后不同高度的风大小与方向,进行弹道仿真,得出在空中风分布模型下风大小与方向对射程增量的影响规律,并结合载机飞行高度处的风大小与方向,计算该投放条件下的射程修正量,即射程增量;
射程增量的具体计算步骤为:
某地风速为vwind,根据基准射程表,经三元插值计算后,得到在投弹高度为hm、载机飞行空速为vm、目标高度为ht的条件下的基准射程f0;经弹道仿真得出,在某满足条件的目标高度范围内,每增加v0m/s的顺风或逆风,射程远界变化量为Δf0;则该条件下射程增量计算如下:
Figure BDA0003171401360000082
则修正后的射程f=f0+Δf。
步骤6、将射程增量补偿到步骤2确定的投弹窗口中,得到风补偿后的投弹窗口,从而实现滑翔制导炸弹基于风补偿的机载火控。
本发明机载火控算法适用于没有装配大气测量系统的滑翔制导炸弹的火控射程解算;基于风补偿的机载火控算法,可有效地挖掘滑翔制导炸弹的优点,很大程度上拓宽火控投弹窗口,极大方便了飞行员进行投弹操作;在火控窗口解算过程中,基于空中风分布模型与载机实时预测的风大小和方向对滑翔制导炸弹在随后飞行高度处的风大小及方向进行估计;
本发明基于无风条件下的基准射程表三元插值得到实时无风条件的投弹窗口,基于风分布模型和投放前估计的风大小与方向等信息计算得到射程增量,进而得到风补偿后的投弹窗口。
大量的射程仿真表明,对于某种型号的滑翔制导炸弹,当存在空中风时,射程近界可保持不变。在目标高度满足[0,h]m的情况下,每增加1m/s的顺风,射程远界增加fs1m;每增加1m/s的逆风,射程远界减小fs2m。完成风大小和方向的计算后,可根据上述方案,在无风射程表的基础上对射程进行修正。
实施例
以投弹高度为10000m为例,在无风状态下,阻力拉偏10%,升力拉偏5%,离轴角7°,落地速度区间为[200m/s 306m/s],高低角终端约束-30°,方位角终端约束-10°,考虑到存在其它气动拉偏和约束的情况,将射程的远边界减去5km作为余量,确定的基准射表如表1所示。
表1 投弹高度为10000m的射程表
Figure BDA0003171401360000091
经射程仿真总结出,在目标高度满足[0,3000]m的情况下,每增加1m/s的顺风,射程远界增加350m;每增加1m/s的逆风,射程远界减小500m。参考地球不同地方95%概率下的风场大小如图2所示,火控系统仿真使用某地1的95%概率下的风场,当高度为10000m时,风速为78m/s。以表1所示的基准射表为基础,当投弹高度为10000m时,假设目标高度0m,速度0.8mach,顺风为0.641倍,按本发明计算可得,射程增量计算为78×0.641×350,约为17.5km,故最终射程为108km。

Claims (10)

1.一种滑翔制导炸弹基于风补偿的机载火控方法,其特征在于步骤如下:
(1)设计基准射程表,基准射程表中包括某一投弹高度下的不同空速和目标高度时的最大射程和最小射程;
(2)根据基准射程表中的载机飞行高度、飞行空速以及目标高度信息三元插值确定投弹窗口;
(3)基于实时的载机飞行空速与地速信息,计算载机飞行高度处的风大小及方向,结合空中风分布模型,计算投弹后不同高度的风大小与方向;
(4)考虑空中实际风与空中风分布模型之间的差异,对步骤(3)计算得到的载机飞行高度处的风大小、投弹后不同高度的风大小进行限幅和修正处理;
(5)基于步骤(4)得到的投弹后不同高度的风大小与方向,进行弹道仿真,得出在空中风分布模型下风大小与方向对射程增量的影响规律,并结合载机飞行高度处的风大小与方向,计算投放条件下的射程修正量,即射程增量;
(6)将射程增量补偿到步骤(2)确定的投弹窗口中,得到风补偿后的投弹窗口,从而实现滑翔制导炸弹基于风补偿的机载火控。
2.根据权利要求1所述的一种滑翔制导炸弹基于风补偿的机载火控方法,其特征在于:设计基准射程表通过如下方式实现:基于不同投弹高度、空速以及目标信息,结合标准大气模型、滑翔制导炸弹的气动特性、结构质量特性、拉偏条件以及制导控制系统,通过弹道仿真确定无风条件下的基准射程表。
3.根据权利要求2所述的一种滑翔制导炸弹基于风补偿的机载火控方法,其特征在于:基准射程表的形式如下:
某一投弹高度下的基准射程表
Figure QLYQS_1
4.根据权利要求1所述的一种滑翔制导炸弹基于风补偿的机载火控方法,其特征在于:所述根据基准射程表中的载机飞行高度、飞行空速以及目标高度信息三元插值确定投弹窗口,具体为:
(1)设投弹高度为hm,载机飞行空速为vm,目标高度为ht,现有射程表f1(hm1,vm1,ht1)以及f2(hm2,vm2,ht2),其中hm1和hm2、vm1和vm2以及ht1和ht2分别为不同的投弹高度、空速以及目标高度,且hm1≤hm≤hm2,vm1≤vm≤vm2,ht1≤ht≤ht2
(2)查表f1(hm1,vm1,ht1)得到飞行空速为vm1和vm2,目标高度为ht1和ht2下的四组基准射程
Figure QLYQS_2
和/>
Figure QLYQS_3
(3)基于
Figure QLYQS_4
和/>
Figure QLYQS_5
插值得到在投弹高度为hm1、载机飞行空速为vm、目标高度为ht1和ht2下的基准射程/>
Figure QLYQS_6
和/>
Figure QLYQS_7
Figure QLYQS_8
Figure QLYQS_9
(4)基于
Figure QLYQS_10
和/>
Figure QLYQS_11
插值得到投弹高度为hm1、载机飞行空速为vm、目标高度为ht下的基准射程/>
Figure QLYQS_12
Figure QLYQS_13
(5)同理可得投弹高度为hm2、载机飞行空速为vm、目标高度为ht情况下的基准射程
Figure QLYQS_14
(6)基于
Figure QLYQS_15
和/>
Figure QLYQS_16
插值得到投弹高度为hm、载机飞行空速为vm、目标高度为ht下的基准射程f0,即投弹窗口:
Figure QLYQS_17
5.根据权利要求1所述的一种滑翔制导炸弹基于风补偿的机载火控方法,其特征在于:射程增量的具体计算步骤为:
某地风速为vwind,根据基准射程表,经三元插值计算后,得到在投弹高度为hm、载机飞行空速为vm、目标高度为ht的条件下的基准射程f0;经弹道仿真得出,在某满足条件的目标高度范围内,每增加v0m/s的顺风或逆风,射程远界变化量为Δf0;则该条件下射程增量计算如下:
Figure QLYQS_18
则修正后的射程f=f0+Δf。
6.根据权利要求1所述的一种滑翔制导炸弹基于风补偿的机载火控方法,其特征在于:所述步骤(4)考虑空中实际风与空中风分布模型之间的差异,对计算得到的载机飞行高度处的风大小、投弹后不同高度的风大小进行限幅和修正处理,具体为:
给定阈值vwmax,对载机飞行高度处和投弹后不同高度处的风大小进行限幅处理:
Figure QLYQS_19
给定系数β≤1,对风大小进行修正处理:
vwind=βvwind
7.一种根据权利要求1所述的滑翔制导炸弹基于风补偿的机载火控方法实现的滑翔制导炸弹基于风补偿的机载火控系统,其特征在于包括:
基准射程表设计模块,基准射程表中包括某一投弹高度下的不同空速和目标高度时的最大射程和最小射程;
三元插值模块:根据基准射程表中的载机飞行高度、飞行空速以及目标高度信息三元插值确定投弹窗口;
风计算模块:基于实时的载机飞行空速与地速信息,计算载机飞行高度处的风大小及方向,结合空中风分布模型,计算投弹后不同高度的风大小与方向;
限幅修正模块:考虑空中实际风与空中风分布模型之间的差异,对计算得到的载机飞行高度处的风大小、投弹后不同高度的风大小进行限幅和修正处理;
射程增量计算模块:基于限幅修正后投弹后不同高度的风大小与方向,进行弹道仿真,得出在空中风分布模型下风大小与方向对射程增量的影响规律,并结合载机飞行高度处的风大小与方向,计算该投放条件下的射程修正量,即射程增量;
风补偿模块:将射程增量补偿到投弹窗口中,得到风补偿后的投弹窗口,从而实现滑翔制导炸弹基于风补偿的机载火控。
8.根据权利要求7所述的滑翔制导炸弹基于风补偿的机载火控系统,其特征在于:设计基准射程表通过如下方式实现:基于不同投弹高度、空速以及目标信息,结合标准大气模型、滑翔制导炸弹的气动特性、结构质量特性、拉偏条件以及制导控制系统,通过弹道仿真确定无风条件下的基准射程表。
9.根据权利要求8所述的滑翔制导炸弹基于风补偿的机载火控系统,其特征在于:所述根据基准射程表中的载机飞行高度、飞行空速以及目标高度信息三元插值确定投弹窗口,具体为:
(1)设投弹高度为hm,载机飞行空速为vm,目标高度为ht,现有射程表f1(hm1,vm1,ht1)以及f2(hm2,vm2,ht2),其中hm1和hm2、vm1和vm2以及ht1和ht2分别为不同的投弹高度、空速以及目标高度,且hm1≤hm≤hm2,vm1≤vm≤vm2,ht1≤ht≤ht2
(2)查表f1(hm1,vm1,ht1)得到飞行空速为vm1和vm2,目标高度为ht1和ht2下的四组基准射程
Figure QLYQS_20
和/>
Figure QLYQS_21
(3)基于
Figure QLYQS_22
和/>
Figure QLYQS_23
插值得到在投弹高度为hm1、载机飞行空速为vm、目标高度为ht1和ht2下的基准射程/>
Figure QLYQS_24
和/>
Figure QLYQS_25
Figure QLYQS_26
Figure QLYQS_27
(4)基于
Figure QLYQS_28
和/>
Figure QLYQS_29
插值得到投弹高度为hm1、载机飞行空速为vm、目标高度为ht下的基准射程/>
Figure QLYQS_30
Figure QLYQS_31
(5)同理可得投弹高度为hm2、载机飞行空速为vm、目标高度为ht情况下的基准射程
Figure QLYQS_32
(6)基于
Figure QLYQS_33
和/>
Figure QLYQS_34
插值得到投弹高度为hm、载机飞行空速为vm、目标高度为ht下的基准射程f0,即投弹窗口:
Figure QLYQS_35
10.根据权利要求9所述的滑翔制导炸弹基于风补偿的机载火控系统,其特征在于:给定阈值vwmax,对载机飞行高度处和投弹后不同高度处的风大小进行限幅处理:
Figure QLYQS_36
给定系数β≤1,对风大小进行修正处理:
vwind=βvwind
射程增量的具体计算步骤为:
根据基准射程表,经三元插值计算后,得到在投弹高度为hm、载机飞行空速为vm、目标高度为ht的条件下的基准射程f0;经弹道仿真得出,在某满足条件的目标高度范围内,每增加v0m/s的顺风或逆风,射程远界变化量为Δf0;则该条件下射程增量计算如下:
Figure QLYQS_37
则修正后的射程f=f0+Δf。
CN202110819210.3A 2021-07-20 2021-07-20 一种滑翔制导炸弹基于风补偿的机载火控方法及系统 Active CN113608547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110819210.3A CN113608547B (zh) 2021-07-20 2021-07-20 一种滑翔制导炸弹基于风补偿的机载火控方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110819210.3A CN113608547B (zh) 2021-07-20 2021-07-20 一种滑翔制导炸弹基于风补偿的机载火控方法及系统

Publications (2)

Publication Number Publication Date
CN113608547A CN113608547A (zh) 2021-11-05
CN113608547B true CN113608547B (zh) 2023-06-30

Family

ID=78338041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110819210.3A Active CN113608547B (zh) 2021-07-20 2021-07-20 一种滑翔制导炸弹基于风补偿的机载火控方法及系统

Country Status (1)

Country Link
CN (1) CN113608547B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115268484A (zh) * 2022-06-01 2022-11-01 北京航天飞腾装备技术有限责任公司 一种基于移位匹配的载机平台多约束火控方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103631153A (zh) * 2013-12-02 2014-03-12 南京理工大学 可视化双模制导航空时敏炸弹半实物仿真系统及方法
CN103822538A (zh) * 2014-02-28 2014-05-28 中国航天时代电子公司 一种精确制导炸弹无交联投放方法
RU2676775C1 (ru) * 2018-03-01 2019-01-11 Акционерное общество "Научно-производственное предприятие "Дельта" Способ управления планирующей авиабомбой
CN112706925A (zh) * 2021-01-17 2021-04-27 成远矿业开发股份有限公司 一种无人机精准投弹方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103631153A (zh) * 2013-12-02 2014-03-12 南京理工大学 可视化双模制导航空时敏炸弹半实物仿真系统及方法
CN103822538A (zh) * 2014-02-28 2014-05-28 中国航天时代电子公司 一种精确制导炸弹无交联投放方法
RU2676775C1 (ru) * 2018-03-01 2019-01-11 Акционерное общество "Научно-производственное предприятие "Дельта" Способ управления планирующей авиабомбой
CN112706925A (zh) * 2021-01-17 2021-04-27 成远矿业开发股份有限公司 一种无人机精准投弹方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
制导滑翔炸弹上仰投放射程影响分析;赵虎;;科学技术与工程(第23期);全文 *
基于虚拟靶试技术的激光制导炸弹投弹框仿真;汪凌霄;周德云;江爱伟;周南明;;火力与指挥控制(第03期);全文 *
空速投放的机载飞行器初始地速和姿态确定方法;梁卓;刘娟;潘彦鹏;陈旭东;周国峰;;导弹与航天运载技术(第02期);全文 *
风场中无动力滑翔弹可攻击区研究;黄国强;南英;陈芳;武虎子;;飞行力学(第04期);全文 *

Also Published As

Publication number Publication date
CN113608547A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN103983143B (zh) 包含速度过程约束和多终端约束的空地导弹投放下滑段制导方法
CN111336871B (zh) 一种基于迂回式飞行的垂直攻击制导方法
CN109612676B (zh) 基于飞行试验数据的气动参数反算方法
CN111306998A (zh) 一种参数摄动自适应的制导火箭弹垂直攻击制导方法
CN107844128B (zh) 一种基于复合比例导引的高超声速飞行器巡航段制导方法
CN107798208A (zh) 对空目标导弹破片飞散最大毁伤算法
CN110425943B (zh) 面向变质心飞行器的工程化再入制导方法
CN113608547B (zh) 一种滑翔制导炸弹基于风补偿的机载火控方法及系统
CN111580547A (zh) 一种高超声速飞行器编队控制方法
CN108073742B (zh) 基于改进粒子滤波算法的拦截导弹末段飞行状态估计方法
CN114065399A (zh) 一种考虑复杂气象条件下的无人飞行器飞行性能计算方法
CN115079565B (zh) 变系数的带落角约束制导方法、装置和飞行器
CN114065398A (zh) 一种大展弦比柔性飞行器飞行性能计算方法
CN111221350A (zh) 吸气式高超声速飞行器巡航导弹的弹道设计方法及系统
CN112731964B (zh) 一种低速无人机炸弹投放扇面角条件的攻击区域离线规划方法
CN110262558B (zh) 一种无人机定点着陆的控制方法
CN112034879B (zh) 一种基于高度-射程比的标准轨迹跟踪制导方法
CN116331510A (zh) 基于固体火箭发动机助推飞行器的速度约束分离方法
CN110674567A (zh) 一种基于外测加速度的箭上动力情况判决方法
CN106643298B (zh) 一种基于预置命中点的大气层内反导拦截器中制导方法
Irwin et al. Investigations into the aerodynamic properties of a battle damaged wing
CN113138604B (zh) 一种反低小慢目标的无人机拦截方法
CN113739635B (zh) 一种实现导弹大扇面角发射的制导方法
CN113486524B (zh) 一种基于满足载荷投放点多约束条件下的分离窗口设计方法
CN112286059B (zh) 一种具有攻击角和视场角约束的二阶前置角重塑制导方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant