CN113503827A - 一种超低温下光纤光栅应变灵敏度的测量装置和方法 - Google Patents

一种超低温下光纤光栅应变灵敏度的测量装置和方法 Download PDF

Info

Publication number
CN113503827A
CN113503827A CN202110642103.8A CN202110642103A CN113503827A CN 113503827 A CN113503827 A CN 113503827A CN 202110642103 A CN202110642103 A CN 202110642103A CN 113503827 A CN113503827 A CN 113503827A
Authority
CN
China
Prior art keywords
fiber grating
temperature
grating
fiber
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110642103.8A
Other languages
English (en)
Other versions
CN113503827B (zh
Inventor
高红春
唐才杰
李保勇
易小龙
蓝天
崔留住
卞贺明
王甫
薛渊泽
梁宏光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijign Institute of Aerospace Control Devices
Original Assignee
Beijign Institute of Aerospace Control Devices
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijign Institute of Aerospace Control Devices filed Critical Beijign Institute of Aerospace Control Devices
Priority to CN202110642103.8A priority Critical patent/CN113503827B/zh
Publication of CN113503827A publication Critical patent/CN113503827A/zh
Application granted granted Critical
Publication of CN113503827B publication Critical patent/CN113503827B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

本发明公开了一种超低温下光纤光栅应变灵敏度的测量装置和方法,包括光纤、光纤光栅、毛细管、石英基底、超低温粘接胶、光纤光栅温度传感器;光纤的一部分刻写有光纤光栅,光纤光栅位于毛细管内部,室温条件下光纤光栅受到预加载拉应力,光纤光栅两端的光纤、毛细管通过超低温粘接胶固定在石英基底上,光纤光栅温度传感器靠近光纤光栅粘贴固定。本发明公开的将预加载拉应力的光纤光栅粘贴于与光纤同材料、热膨胀系数较小的石英基底的测量方法,为光纤光栅提供了稳定的应变输入,克服了传统测量方法中测试工装在超低温下不稳定、材料力学/热学参数不准确等因素对超低温下光纤光栅应变灵敏度测量的影响。

Description

一种超低温下光纤光栅应变灵敏度的测量装置和方法
技术领域
本发明属于光纤传感技术领域,具体涉及一种超低温下光纤光栅应变灵敏度的测量装置和方法。
背景技术
光纤光栅传感器以其体积小、重量轻、抗电磁干扰等优点,成功应用于导弹、火箭、空间飞行器等的结构健康监测,但目前主要工作于常温范围,光纤光栅超低温应变测试技术仍处于研究阶段。火箭低温贮箱、管路等结构的低温应变测试仍采用低温应变片,价格便宜,安装方便;但受温度变化导致的零点漂移和灵敏度漂移以及电磁干扰等因素影响,容易引起较大的测量误差。
光纤光栅应变传感器对温度和应变交叉敏感,可利用一只免应力封装的光纤光栅温度传感器同时测量,补偿光纤光栅应变传感器的零点漂移。应变灵敏度是光纤光栅应变传感器的关键参数,国内外学者对其在超低温下的特性开展了广泛研究。研究结果表明,液氮温度下光纤光栅的应变灵敏度相对室温值变化0.1%~13%。受测试工装在超低温下的稳定性、材料力学/热学参数的准确性等影响,现有的测试方法在超低温条件下难以获得精确的应变输入,从而光纤光栅的低温应变灵敏度没有统一的标准。如何获取超低温条件下光纤光栅的应变输入,是光纤光栅应变灵敏度测量的关键难题。
光纤属于石英材料,在-196℃~+20℃温度范围内,石英的热膨胀系数较低,约为-0.7×10-6/℃~+0.55×10-6/℃,热应变峰峰值≤35με。石英基底与光纤光栅属于同种材料,石英基底对光纤光栅施加的应变小于石英材料本身的热应变峰峰值,相对于较大的预加载应变(约5000με)可以忽略。该方法克服了测试工装在超低温下不稳定、材料力学/热学参数不准确等因素对光纤光栅应变灵敏度测量的影响。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提出了一种超低温下光纤光栅应变灵敏度的测量装置和方法,克服了现有测量方法中光纤光栅在超低温下应变输入不准确的难题。
本发明的技术解决方案是:一种超低温下光纤光栅应变灵敏度的测量装置,包括光纤、光纤光栅、毛细管、石英基底、粘接胶、光纤光栅温度传感器;光纤上部分刻写有光纤光栅,光纤光栅置于毛细管的内部,室温条件下光纤光栅受到预加载的拉应力,光纤光栅两端的光纤、毛细管通过与测量装置使用温度范围适应的粘接胶固定在石英基底上,光纤光栅温度传感器粘贴固定于石英基底。
进一步的,所述毛细管的内径大于光纤光栅的外径且小于等于光纤光栅外径的1.5倍,毛细管内表面和光纤光栅外表面之间为空气。
进一步的,所述毛细管采用弹性模量不低于1GPa的材料。
进一步的,常温条件下光纤光栅受到预加载的拉应力,该拉应力的值利用光纤光栅在室温条件下的应变标定数据测量出。
进一步的,光纤光栅温度传感器与光纤光栅之间的距离不超过5mm。
进一步的,所述的超低温为温度不高于-100℃。
一种超低温下光纤光栅应变灵敏度的测量方法,包括如下步骤:
在所述的测量装置制作过程中,记录室温下光纤光栅温度传感器的初始波长λT0、光纤光栅的初始波长λε0,T0、光纤光栅施加预应变后的波长λε,T0
将所述的测量装置置于待测量的超低温条件T下,待温度稳定后记录光纤光栅的波长λε,T和光纤光栅温度传感器的波长λT
在室温下对光纤光栅进行应变标定,得到室温下应变灵敏度系数Kε,T0
根据上述光纤光栅温度传感器室温下的初始波长λT0、超低温T下的波长λT、光纤光栅室温下的初始波长λε0,T0、光纤光栅施加预应变后的波长λε,T0、光纤光栅超低温T下的波长λε,T以及室温下应变灵敏度系数Kε,T0,确定光纤光栅在超低温T下的应变灵敏度Kε,T
进一步的,光纤光栅在超低温T下的应变灵敏度Kε,T表示为
Figure BDA0003108340780000031
进一步的,通过下述步骤得到所述的测量装置:
a)将光纤光栅插入毛细管,栅区位于毛细管中央位置;
b)利用光纤光栅解调仪记录室温下光纤光栅的初始波长λε0,T0,光纤光栅温度传感器的初始波长λT0
c)将光纤的一端固定于光学平台,另一端固定于微位移平台,调节微位移平台,对光纤光栅施加预应变;
d)利用粘接胶将光纤光栅两端的部分光纤、毛细管粘贴固定于石英基底,粘接胶的厚度恰好覆盖光纤和毛细管;
e)待粘接胶固化完成后,记录施加预应变的光纤光栅的波长λε,T0
f)将光纤的两端从光学平台和微位移平台上取下,将光纤光栅温度传感器靠近光纤光栅粘贴。
本发明与现有技术相比的优点在于:
(1)本发明的一种超低温下光纤光栅应变灵敏度的测量装置和方法,提出了将光纤光栅预加载拉应力,粘贴于与光纤同材料、热膨胀系数较小的石英基底,为光纤光栅提供稳定的应变输入,克服了超低温下现有测试方法测试工装不稳定、材料力学/热学参数不准确性等因素的影响,实现超低温下光纤光栅应变灵敏度的测量。
(2)本发明的一种超低温下光纤光栅应变灵敏度的测量装置和方法,提出了利用光纤光栅温度传感器对光纤光栅的零点漂移进行温度补偿,实现超低温下光纤光栅应变灵敏度的准确测量。
附图说明
图1为本发明的一种超低温下光纤光栅应变灵敏度的测量装置和方法的一种具体实施方式的装置结构示意图。
具体实施方式
下面将结合附图和具体实施例对本发明公开的一种超低温下光纤光栅应变灵敏度的测量装置和方法做进一步详细的说明。
如图1所示,本发明公开的一种超低温下光纤光栅应变灵敏度的测量装置和方法,包括光纤1、光纤光栅2、毛细管3、石英基底4、超低温粘接胶5、光纤光栅温度传感器6;光纤1的一部分刻写了光纤光栅2;光纤光栅2位于毛细管3的内部;光纤光栅2两端的部分光纤、毛细管3通过超低温粘接胶5固定在石英基底4上;光纤光栅温度传感器6靠近光纤光栅2粘贴固定于石英基底4上。
毛细管3采用高弹性模量的材料,如聚酰亚胺管。毛细管3的内径不大于光纤光栅2的外径的1.5倍,如对于外径为125μm的光纤光栅,毛细管3的内径为126μm~187μm即可。毛细管3内表面和光纤光栅2外表面之间为空气,避免光纤光栅2发生啁啾问题。
石英基底4的热膨胀系数小采用和光纤光栅2相同的材料,在室温至超低温条件下热应变相同,减小了基底材料与光纤光栅的热应变差异,稳定了光纤光栅的应变输入。
超低温粘接胶5采用耐低温的环氧胶,如DW-1、DW-3等,具备良好的超低温环境适应性。
一种超低温下光纤光栅应变灵敏度的测量方法,测量理论如下:
光纤光栅2的中心波长λ的相对变化可以表示为
Δλ/λ=KεΔε+KTΔT (1)
其中Δλ为波长变化量,Δε为基底结构施加于光纤光栅的应变,ΔT为环境温度变化,Kε和KT分别为光纤光栅2的应变灵敏度和的温度灵敏度,分别表示为
Figure BDA0003108340780000041
Figure BDA0003108340780000051
其中Δλε和ΔλT分别表示光纤光栅2由于受到应变Δε和温度变化ΔT引起的波长变化量,Pe、αn和αΛ分别表示光纤的弹光系数、热光系数和热膨胀系数,n表示光纤纤芯的有效折射率。光纤光栅2的温度灵敏度KT与波长无关,因此可以用一只不同波长的光纤光栅温度传感器6对光纤光栅2的零点漂移进行温度补偿,以提高光纤光栅应变灵敏度的测量准确度。
在初始温度T0(如室温20℃)、初始应变ε0(如0με)下,光纤光栅2的初始波长为λε0,T0,光纤光栅温度传感器6的初始波长为λT0。对光纤光栅2施加预应变ΔεT0(如5000με)后,光纤光栅2的波长为λε,T0。预置应变ΔεT0表示为
Figure BDA0003108340780000052
其中Kε,T0为室温下光纤光栅2的应变灵敏度,标定方法参考《GB13992-2010-T金属粘贴式电阻应变计》。常温条件下光纤光栅2受到预加载的拉应力,该拉应力的值利用光纤光栅2在室温条件下的应变标定数据测量出。
将粘贴有光纤光栅2和光纤光栅温度传感器6的石英基底4置于超低温(如液氮温度-196℃)条件下,光纤光栅2的波长为λε,T,光纤光栅温度传感器6的波长为λT。在超低温温度T下,光纤光栅2的应变灵敏度Kε,T表示为
Figure BDA0003108340780000053
其中λε0,T表示光纤光栅2在超低温条件下的零点波长,ΔεT表示光纤光栅2在超低温条件下受到的应变,石英基底施加于光纤光栅2的应变固定不变,即ΔεT=ΔεT0
光纤光栅2在超低温下的零点波长λε0,T可由光纤光栅温度传感器的波长得出,
Figure BDA0003108340780000061
因此,光纤光栅2在超低温T下的应变灵敏度KεT表示为
Figure BDA0003108340780000062
综上,光纤光栅2在超低温下的应变灵敏度可以利用本发明所述的装置和方法测量得出。
本发明公开的一种超低温下光纤光栅应变灵敏度的测量方法,具体操作步骤为:
a)在室温下对光纤光栅2进行应变标定,得到应变灵敏度系数Kε,T0
b)将光纤光栅2插入毛细管3,栅区位于毛细管中央位置;
c)记录室温下光纤光栅2的初始波长λε0,T0,光纤光栅温度传感器6的初始波长λT0
d)将光纤1的一端固定于光学平台,另一端固定于高精度微位移平台,调节高精度微位移平台,对光纤光栅2施加预应变;
e)利用超低温粘接胶将光纤光栅2两端的部分光纤、毛细管3粘贴固定于石英基底4,粘接胶的厚度恰好覆盖光纤和毛细管3;
f)待超低温粘接胶固化完成后,记录施加预应变的光纤光栅2的波长λε,T0
g)将光纤1的两端从光学平台和高精度微位移平台上取下,将光纤光栅温度传感器6靠近光纤光栅2粘贴;
h)将粘有光纤光栅2和光纤光栅温度传感器6的石英基底4置于超低温条件下(如装有液氮的隔热桶中),记录超低温下光纤光栅2的波长λε,T和光纤光栅温度传感器6的波长λT
i)利用公式(7)计算出超低温条件下光纤光栅2的应变灵敏度Kε,T
j)重复上述步骤,进行测试验证。
本发明说明书未详细公开部分属于本领域技术人员公知常识。

Claims (9)

1.一种超低温下光纤光栅应变灵敏度的测量装置,其特征在于:包括光纤(1)、光纤光栅(2)、毛细管(3)、石英基底(4)、粘接胶(5)、光纤光栅温度传感器(6);光纤(1)上部分刻写有光纤光栅(2),光纤光栅(2)置于毛细管(3)的内部,室温条件下光纤光栅(2)受到预加载的拉应力,光纤光栅(2)两端的光纤(1)、毛细管(3)通过与测量装置使用温度范围适应的粘接胶(5)固定在石英基底(4)上,光纤光栅温度传感器(6)粘贴固定于石英基底(4)。
2.根据权利要求1所述的测量装置,其特征在于:所述毛细管(3)的内径大于光纤光栅的外径且小于等于光纤光栅(2)外径的1.5倍,毛细管(3)内表面和光纤光栅(2)外表面之间为空气。
3.根据权利要求1所述的测量装置,其特征在于:所述毛细管(3)采用弹性模量不低于1GPa的材料。
4.根据权利要求1所述的测量装置,其特征在于:常温条件下光纤光栅(2)受到预加载的拉应力,该拉应力的值利用光纤光栅(2)在室温条件下的应变标定数据测量出。
5.根据权利要求1所述的测量装置,其特征在于:光纤光栅温度传感器(6)与光纤光栅(2)之间的距离不超过5mm。
6.根据权利要求1所述的测量装置,其特征在于:所述的超低温为温度不高于-100℃。
7.一种超低温下光纤光栅应变灵敏度的测量方法,其特征在于包括如下步骤:
在权利要求1所述的测量装置制作过程中,记录室温下光纤光栅温度传感器的初始波长λT0、光纤光栅的初始波长λε0,T0、光纤光栅施加预应变后的波长λε,T0
将权利要求1所述的测量装置置于待测量的超低温条件T下,待温度稳定后记录光纤光栅的波长λε,T和光纤光栅温度传感器的波长λT
在室温下对光纤光栅进行应变标定,得到室温下应变灵敏度系数Kε,T0
根据上述光纤光栅温度传感器室温下的初始波长λT0、超低温T下的波长λT、光纤光栅室温下的初始波长λε0,T0、光纤光栅施加预应变后的波长λε,T0、光纤光栅超低温T下的波长λε,T以及室温下应变灵敏度系数Kε,T0,确定光纤光栅在超低温T下的应变灵敏度Kε,T
8.根据权利要求7所述的测量方法,其特征在于:光纤光栅在超低温T下的应变灵敏度Kε,T表示为
Figure FDA0003108340770000021
9.根据权利要求7所述的测量方法,其特征在于:通过下述步骤得到所述的测量装置:
a)将光纤光栅(2)插入毛细管(3),栅区位于毛细管(3)中央位置;
b)利用光纤光栅解调仪记录室温下光纤光栅(2)的初始波长λε0,T0,光纤光栅温度传感器(6)的初始波长λT0
c)将光纤(1)的一端固定于光学平台,另一端固定于微位移平台,调节微位移平台,对光纤光栅(2)施加预应变;
d)利用粘接胶(5)将光纤光栅(2)两端的部分光纤、毛细管(3)粘贴固定于石英基底(4),粘接胶(5)的厚度恰好覆盖光纤和毛细管(3);
e)待粘接胶(5)固化完成后,记录施加预应变的光纤光栅(2)的波长λε,T0
f)将光纤(1)的两端从光学平台和微位移平台上取下,将光纤光栅温度传感器靠近光纤光栅粘贴。
CN202110642103.8A 2021-06-09 2021-06-09 一种超低温下光纤光栅应变灵敏度的测量装置和方法 Active CN113503827B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110642103.8A CN113503827B (zh) 2021-06-09 2021-06-09 一种超低温下光纤光栅应变灵敏度的测量装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110642103.8A CN113503827B (zh) 2021-06-09 2021-06-09 一种超低温下光纤光栅应变灵敏度的测量装置和方法

Publications (2)

Publication Number Publication Date
CN113503827A true CN113503827A (zh) 2021-10-15
CN113503827B CN113503827B (zh) 2023-03-07

Family

ID=78009559

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110642103.8A Active CN113503827B (zh) 2021-06-09 2021-06-09 一种超低温下光纤光栅应变灵敏度的测量装置和方法

Country Status (1)

Country Link
CN (1) CN113503827B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983945A (zh) * 2021-12-28 2022-01-28 南京牧镭激光科技有限公司 控制光纤光栅中心波长的传感器制作装置
CN114323093A (zh) * 2021-12-13 2022-04-12 中国航空工业集团公司北京长城计量测试技术研究所 一种石英管结构光纤传感器的胶粘保护方法
CN114322818A (zh) * 2022-03-09 2022-04-12 北京航空航天大学 航天环境模拟器热实验用热沉光纤光栅标定装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116094A (ja) * 2000-10-06 2002-04-19 Furukawa Electric Co Ltd:The 光ファイバ利用歪みセンサ
CN201378085Y (zh) * 2008-11-29 2010-01-06 大连理工大学 一种增敏的光纤光栅温度传感器
CN106546355A (zh) * 2016-11-03 2017-03-29 北京信息科技大学 一种全金属化的耐低温光纤光栅温度传感器及其封装方法
CN106802191A (zh) * 2017-01-19 2017-06-06 长飞光纤光缆股份有限公司 一种嵌入式低温光纤温度传感器及其制备方法
CN209802308U (zh) * 2019-05-15 2019-12-17 宁波市交通建设工程试验检测中心有限公司 一种带温度补偿的贴片式光纤光栅应变传感器
CN112880584A (zh) * 2021-02-09 2021-06-01 北京航天控制仪器研究所 光纤光栅预加载压应力的耐高温应变传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002116094A (ja) * 2000-10-06 2002-04-19 Furukawa Electric Co Ltd:The 光ファイバ利用歪みセンサ
CN201378085Y (zh) * 2008-11-29 2010-01-06 大连理工大学 一种增敏的光纤光栅温度传感器
CN106546355A (zh) * 2016-11-03 2017-03-29 北京信息科技大学 一种全金属化的耐低温光纤光栅温度传感器及其封装方法
CN106802191A (zh) * 2017-01-19 2017-06-06 长飞光纤光缆股份有限公司 一种嵌入式低温光纤温度传感器及其制备方法
CN209802308U (zh) * 2019-05-15 2019-12-17 宁波市交通建设工程试验检测中心有限公司 一种带温度补偿的贴片式光纤光栅应变传感器
CN112880584A (zh) * 2021-02-09 2021-06-01 北京航天控制仪器研究所 光纤光栅预加载压应力的耐高温应变传感器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丁旭东 等: "金属化封装光纤光栅传感器超低温特性研究", 《激光与红外》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323093A (zh) * 2021-12-13 2022-04-12 中国航空工业集团公司北京长城计量测试技术研究所 一种石英管结构光纤传感器的胶粘保护方法
CN114323093B (zh) * 2021-12-13 2023-11-03 中国航空工业集团公司北京长城计量测试技术研究所 一种石英管结构光纤传感器的胶粘保护方法
CN113983945A (zh) * 2021-12-28 2022-01-28 南京牧镭激光科技有限公司 控制光纤光栅中心波长的传感器制作装置
CN114322818A (zh) * 2022-03-09 2022-04-12 北京航空航天大学 航天环境模拟器热实验用热沉光纤光栅标定装置及方法
CN114322818B (zh) * 2022-03-09 2022-06-14 北京航空航天大学 航天环境模拟器热实验用热沉光纤光栅标定装置及方法

Also Published As

Publication number Publication date
CN113503827B (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN113503827B (zh) 一种超低温下光纤光栅应变灵敏度的测量装置和方法
CN110579288B (zh) 一种基于双毛细玻璃管封装光纤传感器
CN111735714B (zh) 一种基于光纤的高温全应力-应变曲线测试方法及装置
CN110231362B (zh) 一种利用纳米力学测试仪测试微小试样热膨胀系数的方法
CN102679900A (zh) 一种对光纤传感器、光纤光栅应变参数的校准的方法
CN105258716B (zh) L形光纤光栅传感器及其应用
CN111609809A (zh) 基于应变增敏结构的光纤高温应变测量传感器
CN112525948B (zh) 利用纳米力学测试仪实现三种玻璃化转变温度测试方法
CN113983945B (zh) 控制光纤光栅中心波长的传感器制作装置
CN103674757B (zh) 碳纤维复合材料湿膨胀系数的测试方法
Zhang et al. Optical fiber thermal anemometer with light source-heated Fabry–Perot interferometer
CN117889898B (zh) 一种用于应变与温度双参量测量的光纤光栅传感器
CN113587839B (zh) 一种变温式应变传感器校准装置与方法
CN114413780A (zh) 一种用于飞机测试的结构热应变测量方法
CN113702172A (zh) 一种树脂固化残余应变测试方法
CN117029712B (zh) 一种温度自补偿光纤光栅应变计及其测量方法
CN109405763A (zh) 一种应用光纤光栅传感器精确测量航天器应变的方法
CN109737999B (zh) 在热力耦合环境下获取结构中的复材筋温度和应变的方法
CN109211302B (zh) 裸fbg应变传感器的标定系统的标定方法
CN111141417A (zh) 一种高灵敏度光纤温度传感器及其制造方法和测温装置
CN103438817A (zh) 实现精确测量金属应力应变的光纤传感器
Chen et al. Strain transfer mechanism of grating ends fiber Bragg grating for structural health monitoring
CN106813592B (zh) 一种利用光纤光栅在超低温下测量材料应变的方法
Qin et al. Development of a High‐Sensitivity and Adjustable FBG Strain Sensor for Structural Monitoring
CN210862557U (zh) 光纤光栅传感器装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant