CN113461425A - 一种高导热高强度氮化物陶瓷基板的制作方法 - Google Patents

一种高导热高强度氮化物陶瓷基板的制作方法 Download PDF

Info

Publication number
CN113461425A
CN113461425A CN202110858855.8A CN202110858855A CN113461425A CN 113461425 A CN113461425 A CN 113461425A CN 202110858855 A CN202110858855 A CN 202110858855A CN 113461425 A CN113461425 A CN 113461425A
Authority
CN
China
Prior art keywords
silicon nitride
ceramic substrate
nitride ceramic
mass ratio
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110858855.8A
Other languages
English (en)
Inventor
林伟毅
陈智
刘卫平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Zhenjing New Material Technology Co ltd
Original Assignee
Fujian Zhenjing New Material Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Zhenjing New Material Technology Co ltd filed Critical Fujian Zhenjing New Material Technology Co ltd
Priority to CN202110858855.8A priority Critical patent/CN113461425A/zh
Publication of CN113461425A publication Critical patent/CN113461425A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种高导热高强度氮化物陶瓷基板的制作方法,S1、将氮化硅粉、烧结助剂、巴基管、磷酸三乙酯和溶剂,用球磨方式进行第一次混合。该高导热高强度氮化物陶瓷基板的制作方法,通过纤维拔出、桥联和裂纹偏转机制,在微裂纹尖端巴基管对裂纹张开产生阻力,由于巴基管的高弹性,在拉伸时会分散一部分的能量,使得裂纹无法继续扩展,由此提高了氮化硅陶瓷基板的韧性,同时巴基管进入氮化硅陶瓷材料孔隙中,使得材料致密性提高,同时碳纳米管的引入,导致了陶瓷复合材料导热性能的变化,这是因为烧结温度提高促进了烧结体内相转变过程,净化晶粒,降低晶格缺陷,提高了热导率。

Description

一种高导热高强度氮化物陶瓷基板的制作方法
技术领域
本发明涉及氮化物陶瓷基板生产技术领域,具体为一种高导热高强度氮化物陶瓷基板的制作方法。
背景技术
功率电子器件在电力存储,电力输送,电动汽车,电力机车等众多工业领域得到越来越广泛的应用。随着功率电子器件本身不断的大功率化和高集成化,芯片在工作过程中将会产生大量的热。如果这些热量不能及时有效地发散出去,功率电子器件的工作性能将会受到影响,严重的话,功率电子器件本身会被破损,这就要求担负绝缘和散热功能的陶瓷基板封装材料必须具备卓越的机械性能和导热性能。
目前,功率电子器件的陶瓷基板封装材料主要有三种:氧化铝,氮化铝,氮化硅,对于新一代的大功率化和高集成化的功率电子器件来说,氧化铝因为机械强度和热导率都不高而不能胜任;氮化铝尽管热导率很高,但其机械性能不够高,因此也不能胜任,而氮化硅基板承载电流能力更强、整体散热性能更好、热阻更低、耐温度冲击能力更强,较为符合使用需要。
但氧化硅陶瓷基板具有良好性能的同时,其也具有陶瓷的共性,即脆性,所以想要在更多的领域应用氮化硅陶瓷基板就需要增强氮化硅陶瓷的韧性。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种高导热高强度氮化物陶瓷基板的制作方法,解决了现有的高导热高强度氮化物陶瓷基板的制作方法抛光效果不好,抛光后的机电设备没有防腐防锈性能,抛光过程繁杂的问题。
(二)技术方案
基于背景技术存在的技术问题,本发明提出一种高导热高强度氮化物陶瓷基板的制作方法,包括如下步骤:
S1、将氮化硅粉、烧结助剂、巴基管、磷酸三乙酯和溶剂,用球磨方式进行第一次混合;
所述烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5-1:3;
烧结助剂和氮化硅粉的质量比为1:10-1:40;
S2、将第一次混合之后浆料烘干后,再次进行研磨过筛,然后加入浓度为5%的聚乙烯醇溶液和聚乙二醇,用球磨方式进行研磨混合,得到浆料;
S3、将浆料置于自封设备中进行陈腐,陈腐时间为24h;
S4、将陈腐后的浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S5、将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S6、将薄片状素坯置于排胶炉中进行排胶处理;
S7、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;
高温烧结需在真空条件下进行:
1)0℃-200℃为低温升温阶段,此时的升温速率为1℃-3℃/min;
2)200℃-1300℃的升温速率为5℃/min;
3)加热至1300℃-1500℃时,保温1-5h;
4)在10MPa的氮气压力下,加热至1900℃,保温5-20h;
5)1900℃-500℃为降温阶段,降温速度为5℃/min;
6)500℃-0℃为自然冷却阶段。
优选的,所述巴基管和氮化硅粉的质量比为1:50-1:200。
优选的,所述聚乙烯醇溶液和氮化硅粉的质量比为1:10,所述聚乙二醇和氮化硅粉的质量比为1:5-1:20,磷酸三乙酯和氮化硅粉的质量比为1:20-1:150。
优选的,所述排胶处理为在真空条件下,在400-600℃的温度下,保温1-10h。
优选的,所述溶剂为无水乙醇和丁酮的混合溶液,无水乙醇和丁酮的质量比为1:1;溶剂与氮化硅粉的质量比为1:1-1:4。
优选的,所述第一次球磨和第二次球磨的时间均为12h。
(三)有益效果
本发明提供了一种高导热高强度氮化物陶瓷基板的制作方法。具备以下有益效果:通过纤维拔出、桥联和裂纹偏转机制,在微裂纹尖端巴基管对裂纹张开产生阻力,由于巴基管的高弹性,在拉伸时会分散一部分的能量,使得裂纹无法继续扩展,由此提高了氮化硅陶瓷基板的韧性,同时巴基管进入氮化硅陶瓷材料孔隙中,使得材料致密性提高,同时碳纳米管的引入,导致了陶瓷复合材料导热性能的变化,陶瓷复合材料热导率随着烧结温度的升高而增加,随着碳纳米管加入量的增加而降低,这是因为烧结温度提高促进了烧结体内相转变过程,净化晶粒,降低晶格缺陷,提高了热导率。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供四种技术方案:一种高导热高强度氮化物陶瓷基板的制作方法,具体包括以下实施例:
实施例1
S1、将氮化硅粉、烧结助剂、磷酸三乙酯和溶剂,用球磨方式进行第一次混合;
烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5-1:3;
烧结助剂和氮化硅粉的质量比为1:10-1:40;
S2、将第一次混合之后浆料烘干后,再次进行研磨过筛,然后加入浓度为5%的聚乙烯醇溶液和聚乙二醇,用球磨方式进行研磨混合,得到浆料;
S3、将浆料置于自封设备中进行陈腐,陈腐时间为24h;
S4、将陈腐后的浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S5、将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S6、将薄片状素坯置于排胶炉中进行排胶处理;
S7、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;
高温烧结需在真空条件下进行:
1)0℃-200℃为低温升温阶段,此时的升温速率为1℃-3℃/min;
2)200℃-1300℃的升温速率为5℃/min;
3)加热至1300℃-1500℃时,保温1-5h;
4)在10MPa的氮气压力下,加热至1900℃,保温5-20h;
5)1900℃-500℃为降温阶段,降温速度为5℃/min;
6)500℃-0℃为自然冷却阶段。
对本实施例制备出的氮化硅陶瓷基板的性能进行评价,其断裂韧性为5.52MPa*m1/2,热导率为62W/(MK)。
实施例2
S1、将氮化硅粉、烧结助剂、巴基管、磷酸三乙酯和溶剂,用球磨方式进行第一次混合;
烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5-1:3;
烧结助剂和氮化硅粉的质量比为1:10-1:40;
S2、将第一次混合之后浆料烘干后,再次进行研磨过筛,然后加入浓度为5%的聚乙烯醇溶液和聚乙二醇,用球磨方式进行研磨混合,得到浆料;
S3、将浆料置于自封设备中进行陈腐,陈腐时间为24h;
S4、将陈腐后的浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S5、将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S6、将薄片状素坯置于排胶炉中进行排胶处理;
S7、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;
高温烧结需在真空条件下进行:
1)0℃-200℃为低温升温阶段,此时的升温速率为1℃-3℃/min;
2)200℃-1300℃的升温速率为5℃/min;
3)加热至1300℃-1500℃时,保温1-5h;
4)在10MPa的氮气压力下,加热至1900℃,保温5-20h;
5)1900℃-500℃为降温阶段,降温速度为5℃/min;
6)500℃-0℃为自然冷却阶段。
对本实施例制备出的氮化硅陶瓷基板的性能进行评价,相比于实施例1,实施例2通过引入巴基管作为增强材料,利用纤维拔出、桥联和裂纹偏转机制,使氮化硅陶瓷材料断裂韧性达到8.91MPa*m1/2,比纯氮化硅陶瓷提高161.3%,同时净化晶粒,降低晶格缺陷,从而使其热导率从62W/(MK)提高到80W/(MK)。
实施例3
S1、将氮化硅粉、烧结助剂、巴基管、磷酸三乙酯和溶剂,用球磨方式进行第一次混合,巴基管的添加量低于1%;
烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5-1:3;
烧结助剂和氮化硅粉的质量比为1:10-1:40;
S2、将第一次混合之后浆料烘干后,再次进行研磨过筛,然后加入浓度为5%的聚乙烯醇溶液和聚乙二醇,用球磨方式进行研磨混合,得到浆料;
S3、将浆料置于自封设备中进行陈腐,陈腐时间为24h;
S4、将陈腐后的浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S5、将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S6、将薄片状素坯置于排胶炉中进行排胶处理;
S7、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;
高温烧结需在真空条件下进行:
1)0℃-200℃为低温升温阶段,此时的升温速率为1℃-3℃/min;
2)200℃-1300℃的升温速率为5℃/min;
3)加热至1300℃-1500℃时,保温1-5h;
4)在10MPa的氮气压力下,加热至1900℃,保温5-20h;
5)1900℃-500℃为降温阶段,降温速度为5℃/min;
6)500℃-0℃为自然冷却阶段。
对本实施例制备出的氮化硅陶瓷基板的性能进行评价,上述添加量的巴基管使得氮化硅材料的致密度和纤维增强效果同时增加,整体硬度有所增加,断裂韧性达到8.1MPa*m1/2,热导率为74W/(MK),达到预期韧性、热导率增强效果。
实施例4
S1、将氮化硅粉、烧结助剂、巴基管、磷酸三乙酯和溶剂,用球磨方式进行第一次混合,巴基管的添加量接近2%;
烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5-1:3;
烧结助剂和氮化硅粉的质量比为1:10-1:40;
S2、将第一次混合之后浆料烘干后,再次进行研磨过筛,然后加入浓度为5%的聚乙烯醇溶液和聚乙二醇,用球磨方式进行研磨混合,得到浆料;
S3、将浆料置于自封设备中进行陈腐,陈腐时间为24h;
S4、将陈腐后的浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S5、将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S6、将薄片状素坯置于排胶炉中进行排胶处理;
S7、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;
高温烧结需在真空条件下进行:
1)0℃-200℃为低温升温阶段,此时的升温速率为1℃-3℃/min;
2)200℃-1300℃的升温速率为5℃/min;
3)加热至1300℃-1500℃时,保温1-5h;
4)在10MPa的氮气压力下,加热至1900℃,保温5-20h;
5)1900℃-500℃为降温阶段,降温速度为5℃/min;
6)500℃-0℃为自然冷却阶段。
对本实施例制备出的氮化硅陶瓷基板的性能进行评价,上述添加量的巴基管使得氮化硅材料的致密度下降超过纤维增强的效果,碳纳米管粘连现象严重,降低了纤维的长径比,隔断了氮化硅基体的连续性,使材料的硬度显著降低,断裂韧性下降至6.4MPa*m1/2,热导率下降为63W/(MK),整体材料韧性、热导率反而变差。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种高导热高强度氮化物陶瓷基板的制作方法,其特征在于,包括如下步骤:
S1、将氮化硅粉、烧结助剂、巴基管、磷酸三乙酯和溶剂,用球磨方式进行第一次混合;
所述烧结助剂为稀土氧化物和氧化镁的混合物,稀土氧化物和氧化镁的质量比为1:0.5-1:3;
烧结助剂和氮化硅粉的质量比为1:10-1:40;
S2、将第一次混合之后浆料烘干后,再次进行研磨过筛,然后加入浓度为5%的聚乙烯醇溶液和聚乙二醇,用球磨方式进行研磨混合,得到浆料;
S3、将浆料置于自封设备中进行陈腐,陈腐时间为24h;
S4、将陈腐后的浆料倒入容器,置于真空脱泡机中进行脱泡处理;
S5、将脱泡处理后的浆料用流延成型的方法制备出薄片状素坯;
S6、将薄片状素坯置于排胶炉中进行排胶处理;
S7、将排胶后的素坯置于高温烧结炉中进行烧结,得到氮化硅陶瓷基板;
高温烧结需在真空条件下进行:
1)0℃-200℃为低温升温阶段,此时的升温速率为1℃-3℃/min;
2)200℃-1300℃的升温速率为5℃/min;
3)加热至1300℃-1500℃时,保温1-5h;
4)在10MPa的氮气压力下,加热至1900℃,保温5-20h;
5)1900℃-500℃为降温阶段,降温速度为5℃/min;
6)500℃-0℃为自然冷却阶段。
2.根据权利要求1所述的一种高导热高强度氮化物陶瓷基板的制作方法,其特征在于:所述巴基管和氮化硅粉的质量比为1:50-1:200。
3.根据权利要求1所述的一种高导热高强度氮化物陶瓷基板的制作方法,其特征在于:所述聚乙烯醇溶液和氮化硅粉的质量比为1:10,所述聚乙二醇和氮化硅粉的质量比为1:5-1:20,磷酸三乙酯和氮化硅粉的质量比为1:20-1:150。
4.根据权利要求2所述的一种高导热高强度氮化物陶瓷基板的制作方法,其特征在于:所述溶剂为无水乙醇和丁酮的混合溶液,无水乙醇和丁酮的质量比为1:1;溶剂与氮化硅粉的质量比为1:1-1:4。
5.根据权利要求2所述的一种高导热高强度氮化物陶瓷基板的制作方法,其特征在于:所述第一次球磨和第二次球磨的时间均为12h。
6.根据权利要求1所述的一种高导热高强度氮化物陶瓷基板的制作方法,其特征在于:所述排胶处理为在真空条件下,在400-600℃的温度下,保温1-10h。
CN202110858855.8A 2021-07-28 2021-07-28 一种高导热高强度氮化物陶瓷基板的制作方法 Pending CN113461425A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110858855.8A CN113461425A (zh) 2021-07-28 2021-07-28 一种高导热高强度氮化物陶瓷基板的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110858855.8A CN113461425A (zh) 2021-07-28 2021-07-28 一种高导热高强度氮化物陶瓷基板的制作方法

Publications (1)

Publication Number Publication Date
CN113461425A true CN113461425A (zh) 2021-10-01

Family

ID=77883059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110858855.8A Pending CN113461425A (zh) 2021-07-28 2021-07-28 一种高导热高强度氮化物陶瓷基板的制作方法

Country Status (1)

Country Link
CN (1) CN113461425A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477540A (zh) * 2022-10-14 2022-12-16 衡阳凯新特种材料科技有限公司 一种高导热氮化硅陶瓷材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080076657A1 (en) * 2004-10-01 2008-03-27 Katsutoshi Komeya Conductive Silicon Nitride Materials and Method for Producing the Same
CN105753492A (zh) * 2016-01-27 2016-07-13 天津大学 氮化硅和碳纳米管纤维的复合材料及其制备方法
CN111517806A (zh) * 2020-04-26 2020-08-11 中国科学院上海硅酸盐研究所 一种高韧性氮化硅陶瓷及其制备方法
CN112159236A (zh) * 2020-10-19 2021-01-01 江苏贝色新材料有限公司 高导热氮化硅陶瓷基板及其制备方法
CN112745126A (zh) * 2020-12-21 2021-05-04 南京工程学院 一种Si3N4晶须增韧的高导热AlN陶瓷基板和制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080076657A1 (en) * 2004-10-01 2008-03-27 Katsutoshi Komeya Conductive Silicon Nitride Materials and Method for Producing the Same
CN105753492A (zh) * 2016-01-27 2016-07-13 天津大学 氮化硅和碳纳米管纤维的复合材料及其制备方法
CN111517806A (zh) * 2020-04-26 2020-08-11 中国科学院上海硅酸盐研究所 一种高韧性氮化硅陶瓷及其制备方法
CN112159236A (zh) * 2020-10-19 2021-01-01 江苏贝色新材料有限公司 高导热氮化硅陶瓷基板及其制备方法
CN112745126A (zh) * 2020-12-21 2021-05-04 南京工程学院 一种Si3N4晶须增韧的高导热AlN陶瓷基板和制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐明等: "碳纳米管增韧氮化硅陶瓷复合材料的研究", 《科技创新与应用》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477540A (zh) * 2022-10-14 2022-12-16 衡阳凯新特种材料科技有限公司 一种高导热氮化硅陶瓷材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2020215699A1 (zh) 一种抗低熔点氧化物腐蚀的稀土钽酸盐陶瓷及其制备方法
CN112939607B (zh) 一种高热导率氮化铝陶瓷及其制备方法
CN100355701C (zh) 一种高热导氮化硅陶瓷的制备方法
CN115557792B (zh) 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法
JP2951771B2 (ja) 希土類酸化物−アルミナ−シリカ焼結体およびその製造方法
CN113461425A (zh) 一种高导热高强度氮化物陶瓷基板的制作方法
CN110041071A (zh) 一种三稀土铌酸盐陶瓷及其制备方法
CN105236942A (zh) 一种高导热陶瓷基片材料及其制备方法
JP7328484B2 (ja) 高熱膨張係数オルトリン酸塩遮熱コーティング材料及びその製造方法
CN104926355B (zh) 基于明胶溶液冷冻干燥技术制备定向多孔氮化硅陶瓷的方法
CN114621014B (zh) 一种高强度高热导氮化硅陶瓷材料及其制备方法
CN111302809B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN108863395B (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
CN113354418B (zh) 一种真空热压烧结法制备的高性能氮化铝陶瓷基板及制备方法
CN112209722A (zh) 氮化硅复合材料及其制备方法、发热体
CN110670171B (zh) 一种致密硅酸钇陶瓷纤维的制备方法
CN107399972A (zh) 一种基于sps方法制备透明氮化铝陶瓷的方法
CN116606146A (zh) 一种高良品率的氮化硅基板及其制备方法
CN112898031A (zh) 一种含稀土元素的高热导高强韧的氮化硅陶瓷材料及其制备方法
CN115745625A (zh) 一种高导热氮化硅基板及其制备方法
CN115304383A (zh) 一种氮化铝基板及其制备方法与应用
JPH0585821A (ja) 希土類酸化物−アルミナ焼結体およびその製造方法
CN113213944A (zh) 一种BN纳米片强韧化高导热AlN陶瓷基板和制备方法
CN111635233A (zh) 原位生成AlN/SiC结合C复合材料及其制备方法
CN114538933B (zh) 一种行波管夹持杆的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211001

RJ01 Rejection of invention patent application after publication