CN113428979A - 基于生物膜的两段式强化pdamox工艺同步处理硝酸盐废水和生活污水的装置和方法 - Google Patents
基于生物膜的两段式强化pdamox工艺同步处理硝酸盐废水和生活污水的装置和方法 Download PDFInfo
- Publication number
- CN113428979A CN113428979A CN202110792231.0A CN202110792231A CN113428979A CN 113428979 A CN113428979 A CN 113428979A CN 202110792231 A CN202110792231 A CN 202110792231A CN 113428979 A CN113428979 A CN 113428979A
- Authority
- CN
- China
- Prior art keywords
- water inlet
- wastewater
- controlled
- reactor
- pump
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 43
- 239000010865 sewage Substances 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 27
- NHNBFGGVMKEFGY-UHFFFAOYSA-N nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 title claims abstract description 27
- 239000012528 membrane Substances 0.000 title claims abstract description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 105
- 239000010802 sludge Substances 0.000 claims abstract description 47
- -1 nitrate nitrogen Chemical compound 0.000 claims abstract description 34
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 32
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 31
- 230000003647 oxidation Effects 0.000 claims abstract description 30
- 238000010992 reflux Methods 0.000 claims abstract description 19
- 238000003756 stirring Methods 0.000 claims abstract description 13
- 239000000945 filler Substances 0.000 claims description 20
- CVTZKFWZDBJAHE-UHFFFAOYSA-N [N].N Chemical compound [N].N CVTZKFWZDBJAHE-UHFFFAOYSA-N 0.000 claims description 12
- 238000004062 sedimentation Methods 0.000 claims description 10
- IOVCWXUNBOPUCH-UHFFFAOYSA-M nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 claims description 7
- 239000004698 Polyethylene (PE) Substances 0.000 claims description 6
- 230000003203 everyday Effects 0.000 claims description 6
- 238000011049 filling Methods 0.000 claims description 6
- 230000014759 maintenance of location Effects 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 238000001556 precipitation Methods 0.000 claims description 6
- 238000005070 sampling Methods 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 4
- 241000276438 Gadus morhua Species 0.000 claims description 3
- 238000009825 accumulation Methods 0.000 claims description 3
- 235000019516 cod Nutrition 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 10
- 229910052799 carbon Inorganic materials 0.000 abstract description 10
- 241000894006 Bacteria Species 0.000 abstract description 5
- 239000002028 Biomass Substances 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 abstract description 3
- 238000004065 wastewater treatment Methods 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000000758 substrate Substances 0.000 description 2
- 238000005273 aeration Methods 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 230000001651 autotrophic Effects 0.000 description 1
- 238000011030 bottleneck Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001360 synchronised Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
- C02F3/307—Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/008—Control or steering systems not provided for elsewhere in subclass C02F
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/1236—Particular type of activated sludge installations
- C02F3/1263—Sequencing batch reactors [SBR]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
- C02F3/2846—Anaerobic digestion processes using upflow anaerobic sludge blanket [UASB] reactors
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water, or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/16—Nitrogen compounds, e.g. ammonia
- C02F2101/163—Nitrates
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/002—Grey water, e.g. from clothes washers, showers or dishwashers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2203/00—Apparatus and plants for the biological treatment of water, waste water or sewage
- C02F2203/006—Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/003—Downstream control, i.e. outlet monitoring, e.g. to check the treating agents, such as halogens or ozone, leaving the process
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/07—Alkalinity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/08—Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/14—NH3-N
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/15—N03-N
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/44—Time
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Abstract
基于生物膜的两段式强化PDAMOX工艺同步处理硝酸盐废水和生活污水的装置和方法属于废水生物处理领域。城市生活污水和硝酸盐废水首先进入短程反硝化序批式生物膜反应器中,由生活污水提供有机碳源,缺氧搅拌使反硝化细菌将硝酸盐氮转化成亚硝酸盐氮;短程反硝化序批式生物膜反应器出水进入厌氧氨氧化上流式厌氧污泥床生物膜反应器中进行脱氮。同时厌氧氨氧化上流式厌氧污泥床生物膜反应器部分出水回流至原水箱将厌氧氨氧化反应生成的硝酸盐氮深度去除。本发明无需外加碳源,同时短程反硝化过程产生的OH‑给厌氧氨氧化过程提供碱度,并且回流解决了硝酸盐氮无法去除的问题;生物膜载体提高系统生物量和耐冲击负荷能力,以达到废水深度脱氮。
Description
技术领域
本发明涉及一种基于生物膜的两段式强化PDAMOX工艺同步处理硝酸盐废水和生活污水的装置和方法,属于废水生物处理技术领域。
背景技术
在实际生活中,工业生产往往产生大量含硝酸盐氮的废水,这类废水的物理化学处理方法通常需要投加大量药剂,运行成本高且无法去除水中含有的氮素;而采用完全硝化反硝化的生物处理方法也需要投加大量碳源,且剩余污泥产高,增加污水处理厂运行成本。
厌氧氨氧化技术因其不需曝气,无需碳源,污泥产量小等优点,属于自养脱氮技术,近年来引起业内普遍关注。而其与其他技术耦合的深度脱氮技术也逐渐发展成熟。厌氧氨氧化菌将氨氮和亚硝酸盐转变成氮气。限制其大规模应用的瓶颈之一是底物亚硝酸盐的稳定获取。
短程反硝化技术能够将硝酸盐氮转化成亚硝酸盐,相比于完全反硝化,其节省部分碳源,污泥产量较少,同时可为厌氧氨氧化提供底物亚硝酸盐。将含硝酸盐氮的工业废水与城市生活污水混合,城市生活污水中的可降解有机物为短程反硝化提供碳源,同时产生的亚硝酸盐氮和生活污水中的氨氮可通过厌氧氨氧化技术同步去除。
由于反应器在运行过程中出水往往会造成生物量的流失,因此采取投加载体填料的方式,可以有效截留生物量,并提高反应器的沉降性能,从而提高总氮去除率达到深度高效脱氮。
发明内容
本发明提出了一种基于生物膜的两段式强化PDAMOX工艺同步处理硝酸盐废水和生活污水的装置和方法。首先,含硝酸盐的废水和城市生活污水一起进入短程反硝化序批式生物膜反应器,硝酸盐还原菌利用生活污水中的有机碳源将硝态氮转化成亚硝态氮;含有氨氮和亚硝态氮的序批式生物膜反应器出水进入厌氧氨氧化上流式厌氧污泥床生物膜反应器,厌氧氨氧化菌将氨氮和亚硝酸盐氮转化成氮气和少量的硝酸盐氮;厌氧氨氧化上流式厌氧污泥床生物膜反应器出水一部分回流至原水箱中,进而将产生的硝酸盐氮进一步去除。最终实现硝酸盐废水和城市生活污水的同步深度脱氮。
为实现上述目的,本发明提出了基于生物膜的两段式强化PDAMOX工艺同步处理硝酸盐废水和生活污水的装置,装置包括:原水箱(1)、短程反硝化序批式生物膜反应器(2)、中间水箱(3)、厌氧氨氧化上流式厌氧污泥床生物膜反应器(4)、沉淀池(5);短程反硝化序批式生物膜反应器(2)中含直径在20~50mm、密度在0.9~1.0g/cm3、比表面积在200~800m2/m3、孔隙率为94%~96%、填充比为15%~25%的聚乙烯空心环填料(2.3)、搅拌器(2.4)、第一取样口(2.5)、第一出水口(2.6)、排水阀(2.7)、放空管(2.8)、第一pH在线测定仪(2.9);所述厌氧氨氧化上流式厌氧污泥床生物膜反应器(4)包括第二进水泵(4.1)、第二进水口(4.2)、第二取样口(4.3)、第二出水口(4.4)、回流口(4.5)、第一回流泵(4.6)、第三进水口(4.7)、第二放空管(4.8)、三相分离器(4.9)、第二pH在线测定仪(4.10)、第二回流泵(4.11);原水箱(1)通过第一进水泵(2.1)与短程反硝化序批式生物膜反应器(2)相连接;中间水箱(3)通过第二进水泵(4.1)与厌氧氨氧化上流式厌氧污泥床生物膜反应器(4)第二进水口(4.2)相连;另外,第一pH在线测定仪(2.9)和第二pH在线测定仪(4.10)与过程控制器(6)相连;设置过程控制器(6)和计算机(7)相连,用以控制第一进水泵(2.1)、第二进水泵(4.1)、第一回流泵(4.6)、第二回流泵(4.11)、搅拌器(2.4)、排水阀(2.7)、第一pH在线测定仪(2.9)、第二pH在线测定仪(4.10);自动控制系统包括过程控制器(6)、计算机(7)。
基于生物膜的两段式强化PDAMOX工艺同步处理硝酸盐废水和生活污水的方法,其特征在于,包括以下过程:
(1)短程反硝化序批式生物膜反应器的启动:接种聚乙烯空心环填料,控制填料的填充比在20%~40%,接种填料污泥浓度为2000~4000mg/L;进水为硝酸盐氮的废水和生活污水,控制硝酸盐废水和生活污水混合比例,使其进水中COD/NO3 -质量浓度控制在2~4,其中硝酸盐浓度为50~200mg/L,每天运行6周期,每周期4h,包括进水、搅拌、沉淀、排水、闲置五个阶段,其中进水时间控制在10~20min,搅拌时间控制在60~120min,沉淀时间控制在50~100min,闲置时间控制在20~40min,排水比控制在40~60%,当亚硝酸盐积累率大于80%时,该反应器启动成功。
(2)厌氧氨氧化上流式厌氧污泥床生物膜反应器的启动:首先接种附着厌氧氨氧化种泥的悬浮填料于上流式厌氧污泥床生物膜反应器中,控制接种后上流式厌氧污泥床生物膜反应器填料的污泥浓度在2000~5000mg/L,进水为人工配置的亚硝酸盐氮浓度为100mg/L,氨氮浓度在100mg/L的模拟废水,水力停留时间为6~15h,出水回流与进水流量之比控制在100%~200%,控制污泥龄为6~15d;当出水中氨氮与亚硝态氮去除率大于80%时,该反应器启动成功。
(3)联合运行:
原水箱中含有生活污水和硝酸盐废水的混合废水通过第一进水泵进入短程反硝化SBBR反应器中,每天运行6周期,每周期4h,包括进水、搅拌、沉淀、排水、闲置五个阶段,其中进水时间控制在10~20min,搅拌时间控制在60~120min,沉淀时间控制在50~100min,闲置时间控制在20~40min,排水比控制在40~60%,出水进入中间水箱。
中间水箱中的废水通过第二进水泵进入厌氧氨氧化上流式厌氧污泥床生物膜反应器,水力停留时间为6~15h,调节第一回流泵泵速使出水回流与进水流量之比控制在100%~200%。厌氧氨氧化上流式厌氧污泥床生物膜反应器出水的50%由第二回流泵泵入原水箱。
所述过程中进水泵、回流泵、排水阀均由自动控制系统进行控制。
本发明提出的基于生物膜的两段式强化PDAMOX工艺同步处理硝酸盐废水和生活污水的装置和方法,其特点和优势如下:
(1)相比于完全反硝化,短程反硝化节省部分碳源,减少剩余污泥产量,氮素去除速率高;此外,生活污水中的有机物用作短程反硝化碳源,无需外加碳源,节约运行成本;
(2)上流式厌氧污泥床生物膜反应器出水部分回流,去除厌氧氨氧化反应产生的硝态氮,进一步提高出水水质,解决了厌氧氨氧化反应产生的硝态氮无法去除的问题;
(3)采取投加载体填料的方式可有效截留生物量,同时提高系统对环境变化的鲁棒性;提高了细菌的活性和丰度从而达到稳定高效脱氮;
(4)短程反硝化过程产生的OH-可以为后续厌氧氨氧化过程提供碱度。
附图说明
图1为一种基于生物膜的两段式强化PDAMOX工艺同步处理硝酸盐废水和生活污水的装置,图中:1-原水箱、2-短程反硝化序批式生物膜反应器、3-中间水箱、4-厌氧氨氧化上流式厌氧污泥床生物膜反应器、5-沉淀池。
具体实施方式
结合附图和具体实施方式对本发明做进一步详细的说明。
如图1所示,基于生物膜的两段式强化PDAMOX工艺同步处理硝酸盐废水和生活污水的装置,包括原水箱(1)、短程反硝化序批式生物膜反应器(2)、中间水箱(3)、厌氧氨氧化上流式厌氧污泥床生物膜反应器(4)、沉淀池(5);短程反硝化序批式生物膜反应器(2)中含直径在20~50mm、密度在0.9~1.0g/cm3、比表面积在200~800m2/m3、孔隙率为94%~96%、填充比为15%~25%的聚乙烯空心环填料(2.3)、搅拌器(2.4)、第一取样口(2.5)、第一出水口(2.6)、排水阀(2.7)、放空管(2.8)、第一pH在线测定仪(2.9);所述厌氧氨氧化上流式厌氧污泥床生物膜反应器(4)包括第二进水泵(4.1)、第二进水口(4.2)、第二取样口(4.3)、第二出水口(4.4)、回流口(4.5)、第一回流泵(4.6)、第三进水口(4.7)、第二放空管(4.8)、三相分离器(4.9)、第二pH在线测定仪(4.10)、第二回流泵(4.11);原水箱(1)通过第一进水泵(2.1)与短程反硝化序批式生物膜反应器(2)相连接;中间水箱(3)通过第二进水泵(4.1)与厌氧氨氧化上流式厌氧污泥床生物膜反应器(4)第二进水口(4.2)相连;另外,第一pH在线测定仪(2.9)和第二pH在线测定仪(4.10)与过程控制器(6)相连;设置过程控制器(6)和计算机(7)相连,用以控制第一进水泵(2.1)、第二进水泵(4.1)、第一回流泵(4.6)、第二回流泵(4.11)、搅拌器(2.4)、排水阀(2.7)、第一pH在线测定仪(2.9)、第二pH在线测定仪(4.10);自动控制系统包括过程控制器(6)、计算机(7)。
具体操作过程如下:
(1)短程反硝化序批式生物膜反应器的启动:接种具有不完全硝酸盐还原特性的短程反硝化污泥的聚乙烯空心环填料,控制填料的填充比在20%~40%,接种填料污泥浓度为2000~4000mg/L;进水为硝酸盐氮的废水和生活污水,控制硝酸盐废水和生活污水混合比例,使其进水中COD/NO3 -质量浓度控制在2~4,其中硝酸盐浓度为50~200mg/L,每天运行6周期,每周期4h,包括进水、搅拌、沉淀、排水、闲置五个阶段,其中进水时间控制在10~20min,搅拌时间控制在60~120min,沉淀时间控制在50~100min,闲置时间控制在20~40min,排水比控制在40~60%,当亚硝酸盐积累率大于80%时,该反应器启动成功。
(2)厌氧氨氧化上流式厌氧污泥床生物膜反应器的启动:首先接种附着厌氧氨氧化种泥的悬浮填料于上流式厌氧污泥床生物膜反应器中,控制接种后反应器填料的污泥浓度在2000~5000mg/L,进水为人工配置的亚硝酸盐氮浓度为100mg/L,氨氮浓度在100mg/L的模拟废水,水力停留时间为6~15h,出水回流与进水流量之比控制在100%~200%,控制污泥龄为6~15d;当出水中氨氮与亚硝态氮去除率大于80%时,该反应器启动成功。
(3)联合运行:
原水箱中含有生活污水和硝酸盐废水的混合废水通过第一进水泵进入短程反硝化SBBR反应器中,每天运行6周期,每周期4h,包括进水、搅拌、沉淀、排水、闲置五个阶段,其中进水时间控制在10~20min,搅拌时间控制在60~120min,沉淀时间控制在50~100min,闲置时间控制在20~40min,排水比控制在40~60%,出水进入中间水箱。
中间水箱中的废水通过第二进水泵进入厌氧氨氧化上流式厌氧污泥床生物膜反应器,水力停留时间为6~15h,调节第一回流泵泵速使出水回流与进水流量之比控制在100%~200%。厌氧氨氧化上流式厌氧污泥床生物膜反应器出水50%由第二回流泵泵入原水箱。
所述过程中进水泵、回流泵、排水阀均由自动控制系统进行控制。
连续试验结果表明:
该装置能够同步处理高浓度硝态氮废水和城市生活污水,氨氮去除率大于93.6%,有机物去除率大于91.3%,系统出水氨氮质量浓度小于10mg/L,亚硝酸盐氮出水质量浓度小于5mg/L,硝酸盐氮出水质量浓度小于10mg/L。
Claims (2)
1.基于生物膜的两段式强化PDAMOX工艺同步处理硝酸盐废水和生活污水的装置,其特征在于,包括原水箱(1)、短程反硝化序批式生物膜反应器(2)、中间水箱(3)、厌氧氨氧化上流式厌氧污泥床生物膜反应器(4)、沉淀池(5);短程反硝化序批式生物膜反应器(2)中含直径在20~50mm、密度在0.9~1.0g/cm3、比表面积在200~800m2/m3、孔隙率为94%~96%、填充比为15%~25%的聚乙烯空心环填料(2.3)、搅拌器(2.4)、第一取样口(2.5)、第一出水口(2.6)、排水阀(2.7)、放空管(2.8)、第一pH在线测定仪(2.9);所述厌氧氨氧化上流式厌氧污泥床生物膜反应器(4)包括第二进水泵(4.1)、第二进水口(4.2)、第二取样口(4.3)、第二出水口(4.4)、回流口(4.5)、第一回流泵(4.6)、第三进水口(4.7)、第二放空管(4.8)、三相分离器(4.9)、第二pH在线测定仪(4.10)、第二回流泵(4.11);原水箱(1)通过第一进水泵(2.1)与短程反硝化序批式生物膜反应器(2)相连接;中间水箱(3)通过第二进水泵(4.1)与厌氧氨氧化上流式厌氧污泥床生物膜反应器(4)第二进水口(4.2)相连;另外,第一pH在线测定仪(2.9)和第二pH在线测定仪(4.10)与过程控制器(6)相连;设置过程控制器(6)和计算机(7)相连,用以控制第一进水泵(2.1)、第二进水泵(4.1)、第一回流泵(4.6)、第二回流泵(4.11)、搅拌器(2.4)、排水阀(2.7)、第一pH在线测定仪(2.9)、第二pH在线测定仪(4.10);自动控制系统包括过程控制器(6)、计算机(7)。
2.应用权利要求1所述的装置同步处理硝酸盐废水和生活污水的方法,其特征在于,包括以下过程:
(1)短程反硝化序批式生物膜反应器的启动:接种聚乙烯空心环填料,控制填料的填充比在20%~40%,接种填料污泥浓度为2000~4000mg/L;进水为硝酸盐氮的废水和生活污水,控制硝酸盐废水和生活污水混合比例,使其进水中COD/NO3 -的质量浓度控制在2~4,其中硝酸盐浓度为50~200mg/L,每天运行6周期,每周期4h,包括进水、搅拌、沉淀、排水、闲置五个阶段,其中进水时间控制在10~20min,搅拌时间控制在60~120min,沉淀时间控制在50~100min,闲置时间控制在20~40min,排水比控制在40~60%,当亚硝酸盐积累率大于80%时,短程反硝化序批式生物膜反应器启动成功;
(2)厌氧氨氧化上流式厌氧污泥床生物膜反应器的启动:首先接种附着厌氧氨氧化种泥的悬浮填料于上流式厌氧污泥床生物膜反应器中,控制接种后上流式厌氧污泥床生物膜反应器填料的污泥浓度在2000~5000mg/L,进水为人工配置的亚硝酸盐氮浓度为100mg/L,氨氮浓度在100mg/L的模拟废水,水力停留时间为6~15h,出水回流与进水流量之比控制在100%~200%,控制污泥龄为6~15d;当出水中氨氮与亚硝态氮去除率大于80%时,厌氧氨氧化上流式厌氧污泥床生物膜反应器启动成功;
(3)联合运行:
原水箱中含有生活污水和硝酸盐废水的混合废水通过第一进水泵进入短程反硝化序批式生物膜反应器中,每天运行6周期,每周期4h,包括进水、搅拌、沉淀、排水、闲置五个阶段,其中进水时间控制在10~20min,搅拌时间控制在60~120min,沉淀时间控制在50~100min,闲置时间控制在20~40min,排水比控制在40~60%,出水进入中间水箱;
中间水箱中的废水通过第二进水泵进入厌氧氨氧化上流式厌氧污泥床生物膜反应器,水力停留时间为6~15h,调节第一回流泵泵速使出水回流与进水流量之比控制在100%~200%;厌氧氨氧化上流式厌氧污泥床生物膜反应器出水50%由第二回流泵泵入原水箱;
所述过程中进水泵、回流泵、排水阀均由自动控制系统进行控制。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110792231.0A CN113428979A (zh) | 2021-07-14 | 2021-07-14 | 基于生物膜的两段式强化pdamox工艺同步处理硝酸盐废水和生活污水的装置和方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110792231.0A CN113428979A (zh) | 2021-07-14 | 2021-07-14 | 基于生物膜的两段式强化pdamox工艺同步处理硝酸盐废水和生活污水的装置和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113428979A true CN113428979A (zh) | 2021-09-24 |
Family
ID=77760252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110792231.0A Pending CN113428979A (zh) | 2021-07-14 | 2021-07-14 | 基于生物膜的两段式强化pdamox工艺同步处理硝酸盐废水和生活污水的装置和方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113428979A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113800637A (zh) * | 2021-09-27 | 2021-12-17 | 北京工业大学 | 基于短程反硝化-厌氧氨氧化的两段式组合工艺处理城市生活污水的装置与方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016016347A (ja) * | 2014-07-07 | 2016-02-01 | 新日鐵住金株式会社 | 生物学的窒素除去方法 |
CN106115915A (zh) * | 2016-07-10 | 2016-11-16 | 北京工业大学 | 低c/n比城市生活污水短程反硝化/短程硝化厌氧氨氧化生物膜工艺的装置与方法 |
CN110526528A (zh) * | 2019-10-10 | 2019-12-03 | 苏州科技大学 | 一体式短程反硝化厌氧氨氧化水处理快速启动方法及系统 |
EP3747836A1 (en) * | 2018-03-09 | 2020-12-09 | Shanghai Supratec Membrane Technology Co., Ltd. | Anaerobic ammonia oxidation-based sewage treatment process using mbr |
CN112142274A (zh) * | 2020-11-02 | 2020-12-29 | 天津城建大学 | 短程反硝化-厌氧氨氧化耦合双膜法工艺的城市污水处理装置 |
CN112479371A (zh) * | 2020-11-10 | 2021-03-12 | 青岛大学 | 一种城市污水脱氮除磷的装置和方法 |
-
2021
- 2021-07-14 CN CN202110792231.0A patent/CN113428979A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016016347A (ja) * | 2014-07-07 | 2016-02-01 | 新日鐵住金株式会社 | 生物学的窒素除去方法 |
CN106115915A (zh) * | 2016-07-10 | 2016-11-16 | 北京工业大学 | 低c/n比城市生活污水短程反硝化/短程硝化厌氧氨氧化生物膜工艺的装置与方法 |
EP3747836A1 (en) * | 2018-03-09 | 2020-12-09 | Shanghai Supratec Membrane Technology Co., Ltd. | Anaerobic ammonia oxidation-based sewage treatment process using mbr |
CN110526528A (zh) * | 2019-10-10 | 2019-12-03 | 苏州科技大学 | 一体式短程反硝化厌氧氨氧化水处理快速启动方法及系统 |
CN112142274A (zh) * | 2020-11-02 | 2020-12-29 | 天津城建大学 | 短程反硝化-厌氧氨氧化耦合双膜法工艺的城市污水处理装置 |
CN112479371A (zh) * | 2020-11-10 | 2021-03-12 | 青岛大学 | 一种城市污水脱氮除磷的装置和方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113800637A (zh) * | 2021-09-27 | 2021-12-17 | 北京工业大学 | 基于短程反硝化-厌氧氨氧化的两段式组合工艺处理城市生活污水的装置与方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110015757B (zh) | Aoa工艺缺氧区内源短程反硝化耦合厌氧氨氧化处理城市污水的方法与装置 | |
CN107162193B (zh) | 低氧硝化耦合短程反硝化厌氧氨氧化处理生活污水的装置及方法 | |
CN109721158B (zh) | 半短程硝化/双厌氧氨氧化工艺处理晚期垃圾渗滤液的装置与方法 | |
CN109368792B (zh) | 污泥双回流aoa短程硝化耦合厌氧氨氧化与内源反硝化处理城市污水的方法与装置 | |
CN109721156B (zh) | 间歇曝气一体化/短程反硝化-厌氧氨氧化处理晚期垃圾渗滤液的装置与方法 | |
CN1887740A (zh) | 城市垃圾渗滤液短程深度生物脱氮方法 | |
CN112250180B (zh) | 半短程硝化-厌氧氨氧化耦合硫自养反硝化实现生活污水深度脱氮的装置与方法 | |
CN108946944A (zh) | 短程反硝化促进废水总氮去除的方法 | |
CN110104773B (zh) | 全流程厌氧氨氧化强化脱氮的aoa工艺处理城市污水的方法与装置 | |
CN110054291B (zh) | 低c/n比生活污水短程硝化/厌氧氨氧化后接短程反硝化/厌氧氨氧化工艺的装置和方法 | |
CN110563271B (zh) | 短程硝化-厌氧氨氧化耦合反硝化实现城市生活污水深度脱氮的装置与方法 | |
CN109160670B (zh) | 一种基于短程反硝化+厌氧氨氧化的城市污水反硝化滤池脱氮方法 | |
CN100554195C (zh) | 一种对高氨氮低c/n比的废水处理工艺及用途 | |
CN107381815B (zh) | 一种主流内源短程反硝化/厌氧氨氧化工艺实现生活污水深度脱氮的装置和方法 | |
CN112390362A (zh) | 短程硝化/厌氧氨氧化后接短程反硝化/厌氧氨氧化高效处理氨氮废水的系统和方法 | |
CN112479361A (zh) | 一种深度处理含盐废水的装置及方法 | |
CN113023872B (zh) | 同步短程硝化反硝化-厌氧氨氧化耦合反硝化实现生活污水脱氮的装置与方法 | |
CN107324497B (zh) | 一种耦合反硝化Canon工艺处理猪场沼液的启动方法 | |
CN110436704B (zh) | 一种基于厌氧氨氧化的城市污水处理升级改造工艺 | |
CN106542636B (zh) | 一种快速启动全程自养脱氮的方法 | |
CN113428979A (zh) | 基于生物膜的两段式强化pdamox工艺同步处理硝酸盐废水和生活污水的装置和方法 | |
CN113023871B (zh) | 短程硝化-厌氧氨氧化耦合反硝化工艺同步处理生活污水和晚期垃圾渗滤液的装置与方法 | |
CN102198978A (zh) | 膜生物反应器实现短程硝化的装置和方法 | |
CN113200600A (zh) | 半短程硝化厌氧氨氧化串联短程反硝化厌氧氨氧化处理高氨氮有机物废水的装置与方法 | |
CN110342638B (zh) | 基于双回流和梯度限氧的低碳氮比污水脱氮装置及其方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |