CN113355346A - Method for deleting redundant segments on a stable vector, stable vector obtained by said method and use thereof - Google Patents

Method for deleting redundant segments on a stable vector, stable vector obtained by said method and use thereof Download PDF

Info

Publication number
CN113355346A
CN113355346A CN202010850010.XA CN202010850010A CN113355346A CN 113355346 A CN113355346 A CN 113355346A CN 202010850010 A CN202010850010 A CN 202010850010A CN 113355346 A CN113355346 A CN 113355346A
Authority
CN
China
Prior art keywords
recombinase
stable vector
plasmid
vector
resistance gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010850010.XA
Other languages
Chinese (zh)
Inventor
尹进
胡潇婕
李腾
张浩千
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Blue Crystal Biotechnology Co ltd
Original Assignee
Shenzhen Blue Crystal Biotechnology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Blue Crystal Biotechnology Co ltd filed Critical Shenzhen Blue Crystal Biotechnology Co ltd
Priority to CN202010850010.XA priority Critical patent/CN113355346A/en
Publication of CN113355346A publication Critical patent/CN113355346A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y599/00Other isomerases (5.99)
    • C12Y599/01Other isomerases (5.99.1)
    • C12Y599/01002DNA topoisomerase (5.99.1.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/70Vectors containing special elements for cloning, e.g. topoisomerase, adaptor sites

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention provides a method for deleting redundant segments on a stable vector, the stable vector obtained by the method and application thereof. The method comprises the following steps: 1) introducing a stable vector into a eumycete rokitamuni to obtain a transformant, wherein 1 recombinase-specific recognition nucleotide sequence is respectively arranged at the upstream and downstream of the redundant fragment in the stable vector, and the stable vector comprises a promoter parP in a par region, a plasmid stabilizing factor parA, a parB, a recognition sequence parS, a replication protein repA, and the redundant fragment; 2) and introducing a helper plasmid for expressing the recombinase into the transformant, and deleting the redundant fragment through recombination. The invention can eliminate the potential hidden trouble that the resistance gene is diffused to the nature caused by using the resistance gene in the industrial strain.

Description

Method for deleting redundant segments on a stable vector, stable vector obtained by said method and use thereof
Technical Field
The invention belongs to the field of genetic engineering, and particularly relates to a method for deleting a stable vector of a redundant fragment on the stable vector and the stable vector obtained by the method.
Background
The fungus Eutropha rolfsii (Ralstonia eutropha, also known as cupriavidius necator) is an important model bacterium for studying PHA (polyhydroxyalkanoate), a completely degradable bio-based material, and has potential as a strain for PHA industrial production. A target gene is delivered to a biological cell (a receptor cell) by genetic engineering means, and a carrier is required to carry the foreign gene into the receptor cell, and the carrier is called a vector (vector), and a plasmid is the most commonly used vector. In the research and development and industrial production of Ralstonia eutropha strains, a plasmid vector is often used to introduce foreign genes to achieve the purpose of optimizing the strains.
The problem of high yields in large scale production and the associated problems that may be encountered in fermentation and subsequent purification are taken into account in the construction of plasmid vectors and in the selection of host bacteria. Plasmid stability is one of the problems frequently encountered in plasmid production, and plasmid instability refers to mutation or loss of recombinant bacteria in a culture process, so that the recombinant bacteria lose the original phenotypic characteristics. Destabilisation of plasmids is the destabilisation caused by the separation of daughter cells after cell division. This is also a significant cause of plasmid loss, as a result of the uneven distribution of plasmid among daughter cells leaving a portion of the cells free of plasmid. In general experiments, selection resistance can be usually applied using antibiotics to maintain plasmid stability, but considering the amount of industrial fermentation, adding antibiotics in actual production greatly increases costs.
The par system is a system for stably maintaining a plasmid, and after the par system is activated, the plasmid is uniformly distributed into daughter cells after replication, so that a strain stably maintaining the plasmid can be obtained even without applying selection resistance by antibiotic resistance (Salje J, Gayathri P,
Figure BDA0002644405950000011
J.The ParMRC system:molecular mechanisms of plasmid segregation by actin-like filaments[J]nature Reviews Microbiology 2010,8(10): 683-692.). At present, the methodA plasmid vector constructed using the par system, which can be stably maintained without applying antibiotic selection pressure and can be hosted by Ralstonia eutropha, has been developed. The vector used the promoter parP, plasmid stabilizing factors parA28, parB28 and the recognition sequence parS in the par region of the huge plasmid pMOL28 of Cupridopis metalate CH 34. Meanwhile, the vector is provided with an escherichia coli replicon and a kanamycin resistance gene so as to facilitate genetic operation related to vector modification in escherichia coli (see the Chinese patent application publication No. CN 101297036A).
In general, maintaining the presence of plasmid and replication of plasmid depend on the energy produced by the metabolism of the host cell, and the plasmid copy number is too high or large, which can increase the metabolic burden of the host cell and even affect the growth of the host cell (Karim A S, Current K A, Alper H S. characteristics of plasmid and copy number in Saccharomyces cerevisiae for optimization of metabolic engineering applications [ J ]. Fems Yeast Research, 2013; 13(1): 107-116.). Since the size of the foreign gene is usually not easily regulated, it is necessary to simplify the vector design as much as possible to avoid the replication burden caused by the ineffective gene. In the process of plasmid transformation, the recipient bacteria are often subjected to antibiotic pressure screening by means of resistance genes on the vector to ensure that transformants carrying the plasmid are obtained. However, in the case of a stable plasmid vector, after the plasmid is transferred into a recipient bacterium, the use value of the resistance gene on the vector is lost and the vector becomes an "invalid" fragment because antibiotics are no longer required.
The site-specific recombination system consists of a recognition site/sequence of integrase and integrase which recognizes DNA sequences and mediates DNA recombination. By altering the position and sequence orientation of the recombinase recognition sites, the site-specific recombinase can serve as a tool enzyme for inserting a specific sequence into a DNA strand or deleting or inverting a specific sequence from a DNA strand. The commonly used site-specific recombinases are TP901, PhiC31, P22 and VCre, among others.
The vectors used in the prior art contain a DNA replication initiation region which functions in the genera Ralstonia, Cupriavidus and Waters and a region (par region) which stabilizes the recombinant vector using the promoter parP in the par region of the giant plasmid pMOL28 of the metal-tolerant Cupriavium CH34, the plasmid stabilizing factors parA28, parB28 and the recognition sequence parS. The vector is stable in bacteria using the par system without antibiotic selection pressure. Meanwhile, the carrier is provided with an escherichia coli replicon and a kanamycin resistance gene so as to facilitate genetic operation related to carrier modification in escherichia coli.
The stable vectors of the prior art, although not requiring the addition of antibiotics, still have kanamycin resistance gene present and expressed, which is an extra energy and raw material consumption for DNA replication and protein expression; moreover, the stable vector with the kanamycin resistance gene is applied to industrial production bacteria, and the hidden danger that the kanamycin resistance gene diffuses to the nature exists; in addition, replicons remain on the stable vectors, which are replicable in E.coli, and which are redundant fragments that are no longer functional after the vectors have been transferred into Ralstonia bacteria, and are an excess of energy and material consumed for DNA replication.
Based on the above-described situation, it is necessary to provide a method capable of deleting redundant E.coli replicon and kanamycin resistance gene in the above recombinant vector to provide a stable vector suitable for Ralstonia eutropha.
Disclosure of Invention
It is an object of the present invention to provide a method for deleting redundant fragments on a stable vector.
It is another object of the present invention to provide a stable vector from which redundant fragments are deleted, obtained by the above method.
It is a further object of the present invention to provide a use of the above-mentioned stabilized carrier.
It is still another object of the present invention to provide a recombinant strain of a eubacterium reuteri comprising a stable vector from which redundant fragments have been deleted by the above method.
Still another object of the present invention is to provide the use of the recombinant strain of Eubacterium reuteri for PHA production.
In one aspect, the present invention provides a method for deleting redundant fragments on a stable vector, the method comprising the steps of:
1) introducing a stable vector into the Eubacterium rolfsii to obtain a transformant, wherein the upstream and downstream of the redundant fragment in the stable vector have 1 recombinase-specific recognition nucleotide sequences, and the stable vector comprises a promoter parP in the par region, a plasmid stabilizing factor parA, a parB, a recognition sequence parS, a replication protein repA, and the redundant fragment;
2) and introducing a helper plasmid for expressing the recombinase into the transformant, and deleting the redundant fragment through recombination.
In the method of the present invention, the recombinase may be preferably selected from VCre recombinase, Bxb1 recombinase, phiC31 recombinase, TP901 recombinase, HK022 recombinase, Phi80 recombinase, P21 recombinase, Int3 recombinase, Int4 recombinase, Int5 recombinase, Int9 recombinase, Int11 recombinase, Int12 recombinase, Int13 recombinase, P22 recombinase, lamda recombinase, Cre recombinase, Dre recombinase, Vika recombinase, Flp recombinase, FimE recombinase, HbiF recombinase, and a118 recombinase.
In a specific embodiment, the recombinase is a VCre recombinase and the nucleotide sequence specifically recognized by the recombinase is a VloxP sequence (SEQ ID No.: 20).
In specific embodiments, the amino acid sequence of the VCre recombinase is as set forth in SEQ ID No.: 22, respectively.
In specific embodiments, the nucleotide sequence of the VCre recombinase is as set forth in SEQ ID No.: shown at 21.
In a specific embodiment, the nucleotide sequence of the par region comprises a nucleotide sequence as set forth in SEQ ID No.: 25, or a sequence shown in seq id no.
In a specific embodiment, the replication protein repA is replication protein repA28 comprising a sequence as set forth in SEQ ID No.: 26, or a sequence shown in fig. 26.
In the method of the invention, the optional par sequence may preferably further comprise vector stabilizing regions of RP4, RK 2.
In the present invention, examples of the Eubacterium reuteri are not particularly limited, and may be any of the Eubacterium reuteri used in the art for PHA production. In a specific embodiment, the Eubacterium rolfsii is Ralstonia eutropha H16.
The term "redundant fragment" as used herein refers to a gene fragment and/or nucleotide sequence in which the sequence of the stabilizing vector does not function and/or has no practical significance after introduction into Eubacterium reuteri.
In a specific embodiment, the redundant fragment comprises a resistance gene. Preferably, the resistance gene is an antibiotic resistance gene.
In a specific embodiment, the resistance gene is a kanamycin resistance gene.
In particular embodiments, the redundant fragment further comprises an E.coli replicon.
In specific embodiments, the Ptet inducible promoter may also be replaced by other promoters for expressing VCre, including but not limited to inducible promoters Ptac, pBAD, pra, pTrp, T7 promoter, heat-inducible promoters, etc., as well as constitutive promoters J23119 and other J231xx series, constitutive promoters of Sigma70 factor mediated transcription in prokaryotic cells, etc.
In another aspect, the present invention provides a stable vector suitable for a eubacterium reuteri obtained by the above method.
In still another aspect, the present invention provides the use of the above-described stable vector in genetic engineering.
In a further aspect, the present invention provides the use of a stable vector as described above for use in a eubacterium reuteri.
In still another aspect, the present invention provides a recombinant strain of a eubacterium reuteri comprising a stable vector from which redundant fragments have been deleted by the above-described method.
In still another aspect, the present invention provides the use of the above recombinant strain of Eubacterium reuteri for the production of Polyhydroxyalkanoates (PHA).
Advantageous effects
The invention has the beneficial technical effects that on one hand, redundant DNA replication and protein expression of the escherichia coli replicon and resistance gene when the stable vector is used in the eumycete rolfsii are avoided, so that energy is saved and raw material consumption is reduced; on the other hand, the potential hidden danger that the resistance gene is diffused to the nature because of using the resistance gene in the industrial strain is avoided.
Drawings
FIG. 1 is a schematic diagram of deletion of an E.coli replicon and an antibiotic resistance gene by a vector containing a recombinase VCre gene in a stable vector according to the present invention.
FIG. 2 shows the plasmid retention rate of Ralstonia eutropha H16(pSP-kana-GFP) in example 2, both with and without kanamycin.
FIG. 3 shows the plasmid retention rate of Ralstonia eutropha H16(pBBR1-GFP) in comparative example 2, both with and without kanamycin addition.
FIG. 4 shows the results of PCR before (lanes 1-3)/after (lanes 5-7) deletion of the E.coli p15A replicon and kanamycin resistance gene using the helper plasmid pVCre.
FIG. 5 shows the plasmid retention rates of Ralstonia eutropha H16(pSP-kana-GFP) without deletion of the p15A replicon and kanamycin resistance gene and Ralstonia eutropha H16(pSP-GFP) with deletion of the p15A replicon and kanamycin resistance gene.
Detailed Description
Hereinafter, the present invention will be described in detail by examples. However, the examples provided herein are for illustrative purposes only and are not intended to limit the present invention.
The experimental procedures used in the following examples are all conventional procedures unless otherwise specified.
Materials, reagents and the like used in the following examples are commercially available unless otherwise specified.
The enzymatic reagents used were purchased from ThermoFisher and New England Biolabs (NEB), the kit for plasmid extraction was purchased from Tiangen Biotechnology technology (Beijing) Ltd, the kit for DNA fragment recovery was purchased from omega USA, the corresponding procedures were performed strictly according to the product instructions, and all media were prepared with deionized water if no special instructions were given.
The formula of the culture medium is as follows:
LB culture medium: 5g/L yeast extract (from OXID, U.K., catalog No. LP0021), 10g/L peptone (from OXID, U.K., catalog No. LP0042),10g/L NaCl, and the balance water. Adjusting pH to 7.0-7.2, and sterilizing with high pressure steam.
Example 1: preparation of Green Fluorescent Protein (GFP) -integrating plasmid pSP-kana-GFP Using plasmid vector pSP
A fragment containing the p15A replicon and kanamycin resistance gene was amplified using the template of synthetic fragment 01(SEQ ID No.: 15) using primer 1(SEQ ID No.: 1) and primer 2(SEQ ID No.: 2), a fragment containing the par region was amplified using the template of synthetic fragment 02(SEQ ID No.: 16) using primer 3(SEQ ID No.: 3) and primer 4(SEQ ID No.: 4), a fragment containing the par region was amplified using the template of synthetic fragment 03(SEQ ID No.: 17) using primer 7(SEQ ID No.: 5) and primer 8(SEQ ID No.: 6), a fragment containing the replication initiation protein Rep and the restriction endonuclease BsaI site was amplified using the template of synthetic fragment 03(SEQ ID No.: 17), and the three fragments obtained were subjected to a commercial kit (SEQ ID No.: 2)
Figure BDA0002644405950000062
Master Mix, purchased from New England Biolabs (NEB) company) was ligated by the Gibson Assembly method to obtain a pSP vector with kanamycin resistance, upstream of the p15A replicon and downstream of the kanamycin resistance gene, 1 VCre recombinase (amino acid sequence SEQ ID No.: 22, gene sequence SEQ ID No.: 21) specifically recognized VloxP sequence (SEQ ID No.: 20). The primers used are as in table 1 below:
TABLE 1
Figure BDA0002644405950000061
Synthesis of fragment 04(SEQ ID No.: 18) including the GFP green fluorescent protein gene was treated with BsaI, and the digested fragment was introduced into the restriction enzyme BsaI site of pSP vector by Golden Gate (Werner S, Engler C, Weber E, et al, fast track assembly of multigene constraction using Golden Gate cloning and the MoClo system [ J ]. Bioengineered plugs, 2012,3(1):38-43.), to obtain pSP-kana-GFP plasmid constructed using pSP vector.
The plasmid pSP-kana-GFP was transferred into E.coli S17-1(ATCC No. 47055, available from American Type Culture Collection), and then transferred into Ralstonia eutropha H16 (China general microbiological Culture Collection center, CGMCC 1.7092) by the ligation transformation method, and LB plate containing 250. mu.g/ml kanamycin and 50. mu.g/ml apramycin at the same time was used to screen positive clones with green fluorescence, thus obtaining a transformant Ralstonia eutropha H16(pSP-kana-GFP) constructed using the pSP vector.
Comparative example 1: preparation of a plasmid pBBR1-GFP incorporating the Green Fluorescent Protein (GFP) Using the vector pBBR1MCS2
PCR was performed using primers 9(SEQ ID No.: 7) and 10(SEQ ID No.: 8) with plasmid pBBR1MCS-2(Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM.,1995.Four new derivatives of the branched-host-range cloning vector pBBR1MCS, and random differential anti-viral-resistance cassettes genes. Gene.166,175-176) as templates to obtain vector fragments carrying replicon and kanamycin resistance genes; amplifying a DNA fragment containing the GFP gene by using a primer 11(SEQ ID No.: 9) and a primer 12(SEQ ID No.: 10) and using the synthesized fragment 04(SEQ ID No.: 18) as a template; the two fragments were ligated by the Gibson Assembly method to obtain a plasmid pBBR1-GFP which integrates Green Fluorescent Protein (GFP) using the plasmid vector pBBR1MCS 2. The primers used are as in table 2 below.
TABLE 2
Figure BDA0002644405950000071
The plasmid pBBR1-GFP was transferred into Ralstonia eutropha H16 in the same manner as in example 1, whereby Ralstonia eutropha H16(pBBR1-GFP) into which the plasmid pBBR1-GFP was transferred was obtained.
Example 2: plasmid Retention Rate of Ralstonia eutropha H16(pSP-kana-GFP)
The plasmid retention of Ralstonia eutropha H16(pSP-kana-GFP) was identified using flow cytometry. The assay was performed as follows: the transformants were subjected to shake culture (30 ℃ C., 220rpm/min) using LB liquid medium containing 250. mu.g/ml kanamycin and no antibiotic, respectively, and passaged every 24 hours, and the plasmid retention of the transformants after 2, 4, 6, and 8 days of serial passaging was measured.
Firstly, the OD value of the bacterial liquid of the transferred bacterial liquid is adjusted to 0.012 by 10 XPBS (purchased from Beijing Solarbio company, product catalog number P1022), 200 mul of diluted bacterial liquid is absorbed and added into a 96-well plate (purchased from Corning company, product catalog number 351172), the number of cells with green fluorescence in each sample is counted by a flow cytometer (Beckmann Cytoflex), only the transformant which retains pSP-kana-GFP can emit green fluorescence, and the percentage of the transformant which occupies the total number of all cells is the plasmid retention rate. Specific experimental procedures were performed according to the instrument instructions. The results are shown in FIG. 2.
As can be seen from FIG. 2, after continuous transfer of Ralstonia eutropha H16(pSP-kana-GFP) without addition of kanamycin resistance, no significant loss of plasmid occurred, and the plasmid retention remained above 90% after 8 days of transfer, which is not significantly different from transfer with addition of kanamycin. From the above results, it is considered that the pSP vector can be stably maintained without antibiotic application.
Comparative example 2: plasmid Retention of Ralstonia eutropha H16(pBBR1-GFP)
The plasmid retention was determined in the same manner as in example 2, except that Ralstonia eutropha H16(pBBR1-GFP) was used in place of Ralstonia eutropha H16(pSP-kana-GFP) in example 1. The results are shown in FIG. 3.
As can be seen from FIG. 3, the plasmid was significantly lost after continuous transfer of Ralstonia eutropha H16(pBBR1-GFP) without addition of kanamycin resistance, and only less than 10% of the transformants retained the pBBR1-GFP plasmid after 8 days of transfer, which is significantly different from transfer with addition of kanamycin resistance. From the above results, it is considered that the pBBR1MCS2 vector could not be stably maintained without applying antibiotic selection pressure.
Example 3: deletion of the kanamycin resistance Gene on the pSP-kana-GFP plasmid Using the helper plasmid
Carrying out PCR amplification by using a primer 13(SEQ ID No.: 11) and a primer 14(SEQ ID No.: 12) by using a plasmid pBBR1MCS2 as a template to obtain a vector fragment, wherein the fragment carries a replicon and a kanamycin resistance gene; amplifying a DNA fragment containing a Ptet inducible promoter, a VCre gene (SEQ ID No.: 21) and a spectinomycin resistance gene by using a primer 15(SEQ ID No.: 13) and a primer 16(SEQ ID No.: 14) and a synthetic fragment 05(SEQ ID No.: 19) as a template; the two fragments were ligated by the Gibson Assembly method to obtain the helper plasmid pVCre. The primers used are as in table 3 below.
TABLE 3
Figure BDA0002644405950000081
Figure BDA0002644405950000091
The helper plasmid pVCre was transferred into E.coli S17-1, the transformant obtained in example 1 was transferred by the conjugal transformation method, 3 clones with green fluorescence were randomly picked up using LB plates containing both 500. mu.g/ml spectinomycin and 50. mu.g/ml apramycin, PCR verification was performed using primer 17(SEQ ID No.: 23) and primer 18(SEQ ID No.: 24) to obtain the expected band of 1104bp, and the transformant Ralstonia eutropha H16(pSP-kana-GFP) was amplified using the same primers as a control to obtain the expected band of 3074bp (FIG. 4), demonstrating that the helper plasmid pVCre containing the introduced gene of VCre recombinase deletes the p15A replicon and kanamycin resistance gene whose fragment lengths are 1970 bp. Finally, the positive clones were cultured on a non-resistant plate to lose the pVCre plasmid, resulting in the pSP vector transformant Ralstonia eutropha H16(pSP-GFP) without the p15A replicon and kanamycin resistance gene.
Example 4: plasmid Retention of Ralstonia eutropha H16(pSP-GFP)
Plasmid retention was determined in the same manner as in example 2 using Ralstonia eutropha H16(pSP-GFP) under non-resistant conditions, while using Ralstonia eutropha H16(pSP-kana-GFP) as a control. The results are shown in FIG. 5.
As can be seen from FIG. 5, there was no significant loss of plasmid after continuous transfer of Ralstonia eutropha H16(pSP-GFP) without addition of kanamycin resistance, which was not significantly different from Ralstonia eutropha H16 (pSP-kana-GFP). From the above results, it is considered that pSP-kana-GFP could be stably maintained even after deletion of the kanamycin resistance gene and the p15A replicon.
In summary, the vector constructed by the present application, in which the p15A replicon and the kanamycin resistance gene were deleted, had no significant difference in stability retention rate with respect to the vector in which the above genes were not deleted, and in addition, the stable vector constructed by the present application eliminated the risk of the kanamycin resistance gene diffusing into the natural world.
Sequence listing
<110> Shenzhen Lanjing Biotech Ltd
<120> method for deleting redundant fragment on stable vector, stable vector obtained by the method and use thereof
<130> DI20-1223-XC03
<160> 26
<170> PatentIn version 3.5
<210> 1
<211> 47
<212> DNA
<213> Artificial sequence
<220>
<223> primer 1
<400> 1
cgtctcattt tcgccagata tcggtagcgg agtgtatact ggcttac 47
<210> 2
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> primer 2
<400> 2
tcagaagaac tcgtcaagaa ggc 23
<210> 3
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> primer 3
<400> 3
gccttcttga cgagttcttc tga 23
<210> 4
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> primer 4
<400> 4
gcataaggtt cgcgtagaac g 21
<210> 5
<211> 21
<212> DNA
<213> Artificial sequence
<220>
<223> primer 7
<400> 5
cgttctacgc gaaccttatg c 21
<210> 6
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> primer 8
<400> 6
cgatatctgg cgaaaatgag acg 23
<210> 7
<211> 49
<212> DNA
<213> Artificial sequence
<220>
<223> primer 9
<400> 7
cgatttaaat tggcgaaaat gagacgtatc gaattcctgc agcccgggg 49
<210> 8
<211> 40
<212> DNA
<213> Artificial sequence
<220>
<223> primer 10
<400> 8
aagcacatcc ggtgacagct atcaagctta tcgataccgt 40
<210> 9
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<223> primer 11
<400> 9
agctgtcacc ggatgtgctt 20
<210> 10
<211> 27
<212> DNA
<213> Artificial sequence
<220>
<223> primer 12
<400> 10
acgtctcatt ttcgccaatt taaatcg 27
<210> 11
<211> 49
<212> DNA
<213> Artificial sequence
<220>
<223> primer 13
<400> 11
cgatttaaat tggcgaaaat gagacgtatc gaattcctgc agcccgggg 49
<210> 12
<211> 45
<212> DNA
<213> Artificial sequence
<220>
<223> primer 14
<400> 12
cgatatctgg cgaaaatgag acgatatcaa gcttatcgat accgt 45
<210> 13
<211> 23
<212> DNA
<213> Artificial sequence
<220>
<223> primer 15
<400> 13
cgtctcattt tcgccagata tcg 23
<210> 14
<211> 27
<212> DNA
<213> Artificial sequence
<220>
<223> primer 16
<400> 14
acgtctcatt ttcgccaatt taaatcg 27
<210> 15
<211> 1912
<212> DNA
<213> Artificial sequence
<220>
<223> Synthesis of fragment 01
<400> 15
gtagcggagt gtatactggc ttactatgtt ggcactgatg agggtgtcag tgaagtgctt 60
catgtggcag gagaaaaaag gctgcaccgg tgcgtcagca gaatatgtga tacaggatat 120
attccgcttc ctcgctcact gactcgctac gctcggtcgt tcgactgcgg cgagcggaaa 180
tggcttacga acggggcgga gatttcctgg aagatgccag gaagatactt aacagggaag 240
tgagagggcc gcggcaaagc cgtttttcca taggctccgc ccccctgaca agcatcacga 300
aatctgacgc tcaaatcagt ggtggcgaaa cccgacagga ctataaagat accaggcgtt 360
tcccctggcg gctccctcgt gcgctctcct gttcctgcct ttcggtttac cggtgtcatt 420
ccgctgttat ggccgcgttt gtctcattcc acgcctgaca ctcagttccg ggtaggcagt 480
tcgctccaag ctggactgta tgcacgaacc ccccgttcag tccgaccgct gcgccttatc 540
cggtaactat cgtcttgagt ccaacccgga aagacatgca aaagcaccac tggcagcagc 600
cactggtaat tgatttagag gagttagtct tgaagtcatg cgccggttaa ggctaaactg 660
aaaggacaag ttttggtgac tgcgctcctc caagccagtt acctcggttc aaagagttgg 720
tagctcagag aaccttcgaa aaaccgccct gcaaggcggt tttttcgttt tcagagcaag 780
agattacgcg cagaccaaaa cgatctcaag aagatcatct tattaaaggg tccccaataa 840
ttacgattta aattggatga atgtcagcta ctgggctatc tggacaaggg aaaacgcaag 900
cgcaaagaga aagcaggtag cttgcagtgg gcttacatgg cgatagctag actgggcggt 960
tttatggaca gcaagcgaac cggaattgcc agctggggcg ccctctggta aggttgggaa 1020
gccctgcaaa gtaaactgga tggctttctt gccgccaagg atctgatggc gcaggggatc 1080
aagatctgat caagagacag gatgaggatc gtttcgcatg attgaacaag atggattgca 1140
cgcaggttct ccggccgctt gggtggagag gctattcggc tatgactggg cacaacagac 1200
aatcggctgc tctgatgccg ccgtgttccg gctgtcagcg caggggcgcc cggttctttt 1260
tgtcaagacc gacctgtccg gtgccctgaa tgaactgcag gacgaggcag cgcggctatc 1320
gtggctggcc acgacgggcg ttccttgcgc agctgtgctc gacgttgtca ctgaagcggg 1380
aagggactgg ctgctattgg gcgaagtgcc ggggcaggat ctcctgtcat ctcaccttgc 1440
tcctgccgag aaagtatcca tcatggctga tgcaatgcgg cggctgcata cgcttgatcc 1500
ggctacctgc ccattcgacc accaagcgaa acatcgcatc gagcgagcac gtactcggat 1560
ggaagccggt cttgtcgatc aggatgatct ggacgaagag catcaggggc tcgcgccagc 1620
cgaactgttc gccaggctca aggcgcgcat gcccgacggc gaggatctcg tcgtgaccca 1680
tggcgatgcc tgcttgccga atatcatggt ggaaaatggc cgcttttctg gattcatcga 1740
ctgtggccgg ctgggtgtgg cggaccgcta tcaggacata gcgttggcta cccgtgatat 1800
tgctgaagag cttggcggcg aatgggctga ccgcttcctc gtgctttacg gtatcgccgc 1860
tcccgattcg cagcgcatcg ccttctatcg ccttcttgac gagttcttct ga 1912
<210> 16
<211> 2503
<212> DNA
<213> Artificial sequence
<220>
<223> Synthesis of fragment 02
<400> 16
gccttcttga cgagttcttc tgatcaattt ccgagaatga cagttctcag aaattgattt 60
gacttttgtc cttttccgct gcataaccct gcttcggggt cattatagcg attttttcgg 120
tatatccatc ctttttcgca cgatatacag gattttgcca aagggttcgt gtagactttc 180
cttggtgtat ccaacggcgt cagccgggca ggataggtga agtaggccca cccgcgagcg 240
ggtgttcctt cttcactgtc ccttattcgc acctggcggt gctcaacggg aatcctgctc 300
tgcgaggctg gccgtaggcc ggccgcgatg caggtggctg ctgaaccccc agccggaact 360
gaccccacaa ggccctgtac acgcctcaaa aggacgggag tgggacagcg tagccatagt 420
ccgagccgaa gagacaatcg ttcccgacag cgaaagccca gaaagcgaag aaaggcgcct 480
cttctacgtc gccgtcacgc gcgccaggga ttgcctgttt atctcaacgg cgaagaagaa 540
cccgacctcg cgcttcgtcc ttgaggctgg cctaagcctt acttcctgag gcgcgcattc 600
tttgtgcgtt atatggcact ttcgtagaat tcctcgcctt ttactttaac aacgacccgt 660
aagtaccggg ggaacagctc gatctctcgg gtacaacagg cacaaagtta acttgcgtat 720
acgtctaagg gccgctaacc ttcacggcaa cgcaaccgcg gacgtcattt ttgccgaaaa 780
cggttgcacg atccaccggc ggttccggtg aacagcttaa aggtttttga accgaatgga 840
tatcaagcta gcccacccca gcaagacgac gcctgaggat ttgaagcagt tggcaaatct 900
ctccgcggtg atgctgcaga aaattcggga tgagatgctg gagccatttc ctcggaagga 960
agccccgctg atcccgtctg gccgcctaca agaattgtgt ggcatcgaca aaacgcggat 1020
gaaccggtcc ctcaaaaagg gggatctccc tcagggccag caatcgcgac ccggtgcagt 1080
gcgctatttc agcctcagcg aggcaatgca atggatccga gcggaactta agcctgtccc 1140
gcgaagggga ccaggtaaag tcattgcagt tgcgaacttc aagggcggtg tcacgaagac 1200
cactatgtcc accctcctct gccagggctt gagtctgcgg cgaggtcgga aggtgtgcca 1260
cgttgatctg gatccgcagg gaagcgcaac cacgctgtat ggcatcaatc cacatgccga 1320
ggtgtcgtcc gaaaacacca ttatgccgct catcgaggcg tatttggcgg gcgagtcctt 1380
cgatatgcga gggcttcctc aggagactta ctggcctaac ctggatttga ttccttcgtc 1440
tactgagctt ttcaacgcgg agtttatgct tccggctcgg gcgacggcag aggaaggcca 1500
tattccgttc gagcgcgtgt taagtaacgg cctcgattcg ttgaaagacg aatatgacta 1560
catcatcctc gacacggctc ctaccctcag ctacctgacc atcaacgcga ttttcgctgc 1620
cgatggcgtc atcgtaccgg tggtcccgga caccttggct ttcgcgtcta tggtccagtt 1680
ctggcaactc ttctcggacc tagtaacagg catggaagag cagagcgagg gatctaaaaa 1740
ggagttcgac tttctcgatg ttctcatgac acgcatggag aaaaagaacg ctcctcgcct 1800
ggtggcagac tggattcgcg gcgtctatgg gtcgcgcgtg ctgccgattg agatccctga 1860
gacggacctc gcccgtaaca gcagcattca atttcgcacg gtctatgacc tctcctctag 1920
cgaggcgaac accgagacga tgcgacgcat tcgccaaccc tgcgatgagt ttgtcgacta 1980
tgtggacgac aaggtcagcg cgctttggca aggaattgaa gaatgagttt gagagaaaag 2040
cttgccgcaa aggctgggaa catcaaggtc acggcggaag acttggagaa agccgctgcg 2100
cgcggtccgc aagcgccgcg aactgcgccc ggtcagttaa tgcatatgca agggaaggtt 2160
gagcgacagg ctaacgagat cgcgcaacta agagcagaac ttgagtcggc ccgcgtcagc 2220
ggcggcgcag tggatgtgcc tatcgaccaa ctgcatgagg tcccaggccg cagacgcttc 2280
atgcctcccg agaagtatgt cgaattgagg gaaaacctca ggcacaacaa gctcgttcat 2340
cctgtgattg tatgccctcg gcctgcggga ggcttcgaga ttgtctccgg gcatcaccgg 2400
acagacgcgt accgcgagct tgggcgcgat cacatacgct gcgtgctcgg cgaacttagt 2460
tcagacgagg ctgacacggg cgcgttctac gcgaacctta tgc 2503
<210> 17
<211> 2381
<212> DNA
<213> Artificial sequence
<220>
<223> Synthesis of fragment 03
<400> 17
cgttctacgc gaaccttatg cagtcagatt taacggattt cgagaagttt cggaagttcg 60
acgaactgct gcttcgcagc ccagacaaga ctcaagccgc aatagctgaa caggctggtg 120
tacctgtctc gactctctca gagattttgt cgttccggaa cttgcctccc gaggtcctaa 180
gccttctcga tagccgccca gacctgctcg ggtcgaatgc tggcgccgag ttggcaaggg 240
cgaccaaaga cggtcgcggg gatcgggtcg tcgaagcggt taagttgttg gccgagaaga 300
agatcgatca acagcaggcc gtacggatga ctaaggccga gcaggttaag accaggcctg 360
ccgcatctac cggcttcaaa atcaaggcgg gaaaggcgac ttggtgcgat gttcgtatcg 420
caaagaaagt catgcgcatt gagttccgca gcgaggaaga agcggaagcg gcccaatcgg 480
ccattcgcga acatctggaa gggttagcta aagctgcgtc ggaagacgca aaaagctaag 540
tgcttgtttt ttaaggactt cgtactacga atcgaggttt taagccatgt ctagactgta 600
atcctacaaa aacaaaagcc cacggcggca accgtgggct tttgagaact tcaagctgac 660
cagtttcccg gccgctacac accgaagcca ctcgacatgg attcgttagt cggagtgtag 720
cggaacgcga acctgagtca agcgacttca accatttttt acgaatggga aggtcatatg 780
actttcgcgc aacgctccgt tgctggcgag gatgttgctc gcccacaaaa acaccttaac 840
cagacagacg ctctgattgc tccggcgccc aagcgcctca aacgcaagac tatcgaagca 900
gtcgagcgcg caactcgaat cgtcgggatc gggcgtagcg cccgatcagc tcttgccgcc 960
ctcgcccgca cggcgaataa cgatgacccc accggtaaga tctttaagca ccgggaaacg 1020
ctttgtgccg aaaccggaat gtcgccggct acttggtacc gtgctcaacg agaactgctc 1080
gacttgggcc taattaccgt cgacgttcaa gttcggaagc gatttggccg attcgcagga 1140
gcctacattt acctgacgga aaaagcgacg gagatgctcg gcttaagctc gcgaaaagaa 1200
gaagaaacca cgggtacggg cgaggacgac acagcgcagc tcggcgagcc ggccgttcca 1260
ccaccctctt ctatggcgca accgtctctc aaaacgagag tcctgtttac agaagatcgt 1320
gtcccatact cctttcaaaa aagacagcag gatcggctcc cccaggacct gacacgtctg 1380
cgcggcctgg gtcttgatgt aaatttaatt ttttggttga tgcgaaaggc taaagagcaa 1440
ggccactttc tctcagatgt cgtaagcgcg acatgggaga gtcttgcgaa agcacgcgtg 1500
ccaaaagcgt atctgcttgc cctactcacc gcccgcaccg atttcagtgc tgtctgcaaa 1560
gcaaaggcac tcaaagaaga caaagcccga atccaagtgc aggaccgcga tttcgtgcgt 1620
tcgatactcg caggggcagc gcggcagtgt ttcgtggacg aaaaaggcaa ccatttcgaa 1680
gtcgaaagcg acggaagctc agtgcttgtc accgaggtcc aaagtgcggt cacttcccgc 1740
ttggtaggaa cttccctcgc cgaatttgca aggcgactac acgctggtgc gtaccagaaa 1800
gctgaggtct acgctgctcc ccagagagca agcggccggc tcgagaaacg gggaaaggag 1860
gcggcttcga cgttatcggc gttgcgagcg atgctgcgcg accgcaggtc agccaacgcg 1920
gcaaacacga cgaacaatgc tcatgccatg gcctagggtg tgttttgcgc tgaaagtcta 1980
gggcggcgga tttgtcctac tcaggagagc gttcaccgac aaacaacaga taaaacgaaa 2040
ggcccagtct ttcgactgag cctttcgttt tatttgatgc ctttaattaa agcggataac 2100
aatttcacac aggagagtga agagcttttg ctcttcatcc aagcgagacc aaaaggtctc 2160
gccgcgaccc attaccgcct ttgagtgagc gtcgtgactg ggaaaaccct ggcgactagt 2220
cttggactcc tgttgataga tccagtaatg acctcagaac tccatctgga tttgttcaga 2280
acgctcggtt gccgccgggc gttttttatt ggtgagaatc cagtcaattt ccgagaatga 2340
cagttctcag aaattgaacg tctcattttc gccagatatc g 2381
<210> 18
<211> 1549
<212> DNA
<213> Artificial sequence
<220>
<223> Synthesis of fragment 04
<400> 18
agctgtcacc ggatgtgctt tccggtctga tgagtccgtg aggacgaaac agcctctaca 60
aataattttg tttaagagcg gcgagacctt tcacacagga atgcctccac accgctcgtc 120
acatcctgtt gcgttcactg gaatcccagt atagactttg acctgcgagc aagctgtcac 180
cggatgtgct ttccggtctg atgagtccgt gaggacgaaa cagcctctac aaataatttt 240
gtttaagagt tactagagaa agaggagaaa tactagatgc gtaaaggcga agagctgttc 300
actggtgtcg tccctattct ggtggaactg gatggtgatg tcaacggtca taagttttcc 360
gtgcgtggcg agggtgaagg tgacgcaact aatggtaaac tgacgctgaa gttcatctgt 420
actactggta aactgccggt accttggccg actctggtaa cgacgctgac ttatggtgtt 480
cagtgctttg ctcgttatcc ggaccatatg aagcagcatg acttcttcaa gtccgccatg 540
ccggaaggct atgtgcagga acgcacgatt tcctttaagg atgacggcac gtacaaaacg 600
cgtgcggaag tgaaatttga aggcgatacc ctggtaaacc gcattgagct gaaaggcatt 660
gactttaaag aagacggcaa tatcctgggc cataagctgg aatacaattt taacagccac 720
aatgtttaca tcaccgccga taaacaaaaa aatggcatta aagcgaattt taaaattcgc 780
cacaacgtgg aggatggcag cgtgcagctg gctgatcact accagcaaaa cactccaatc 840
ggtgatggtc ctgttctgct gccagacaat cactatctga gcacgcaaag cgttctgtct 900
aaagatccga acgagaaacg cgatcatatg gttctgctgg agttcgtaac cgcagcgggc 960
atcacgcatg gtatggatga actgtacaaa taatcgtcac tccaccggtg cttaataacc 1020
aggcatcaaa taaaacgaaa ggctcagtcg aaagactggg cctttcgttt tatctgttgt 1080
ttgtcggtga acgctctcta ctagagtcac actggctcac cttcgggtgg gcctttctgc 1140
gtttatatac tagagctgct aacaaagccc gaaaggaagc tgagttggct gctgccaccg 1200
ctgagcaata actagcataa ccccttgggg cctctaaacg ggtcttgagg ggttttttgc 1260
tgaaaggagg aactatatcc ggattactag aggtcatgct tgccatctgt tttcttgcaa 1320
gatgctcact caaaggcggt aatgggtcga tgaagagcaa aagctcttca ctcgtcgtga 1380
ctgggaaaac cctggcggtc tcgcttggac tcctgttgat agatccagta atgacctcag 1440
aactccatct ggatttgttc agaacgctcg gttgccgccg ggcgtttttt attggtgaga 1500
atccaggggt ccccaataat tacgatttaa attggcgaaa atgagacgt 1549
<210> 19
<211> 2185
<212> DNA
<213> Artificial sequence
<220>
<223> Synthesis of fragment 05
<400> 19
cgtctcattt tcgccagata tcgacgtctt aagacccact ttcacattta agttgttttt 60
ctaatccgca tatgatcaat tcaaggccga ataagaaggc tggctctgca ccttggtgat 120
caaataattc gatagcttgt cgtaataatg gcggcatact atcagtagta ggtgtttccc 180
tttcttcttt agcgacttga tgctcttgat cttccaatac gcaacctaaa gtaaaatgcc 240
ccacagcgct gagtgcatat aatgcattct ctagtgaaaa accttgttgg cataaaaagg 300
ctaattgatt ttcgagagtt tcatactgtt tttctgtagg ccgtgtacct aaatgtactt 360
ttgctccatc gcgatgactt agtaaagcac atctaaaact tttagcgtta ttacgtaaaa 420
aatcttgcca gctttcccct tctaaagggc aaaagtgagt atggtgccta tctaacatct 480
caatggctaa ggcgtcgagc aaagcccgct tattttttac atgccaatac aatgtaggct 540
gctctacacc tagcttctgg gcgagtttac gggttgttaa accttcgatt ccgacctcat 600
taagcagctc taatgcgctg ttaatcactt tacttttatc taatctagac atcattaatt 660
cctaattttt gttgacactc tatcgttgat agagttattt taccactccc tatcagtgat 720
agagaaaaga attcaagctg tcaccggatg tgctttccgg tctgatgagt ccgtgaggac 780
gaaacagcct ctacaaataa ttttgtttaa tactagagaa agaggagaaa tactagatga 840
tcgagaacca gctgagcctg ctgggtgatt tcagcggcgt gcgtccggac gatgttaaga 900
ccgcgatcca ggcggcgcaa aagaaaggta ttaacgttgc ggagaacgaa caattcaaag 960
cggcgtttga gcacctgctg aacgagttca agaaacgtga ggaacgttac agcccgaaca 1020
ccctgcgtcg tctggaaagc gcgtggacct gctttgtgga ttggtgcctg gcgaaccatc 1080
gtcacagcct gccggcgacc ccggacaccg ttgaggcgtt ctttatcgaa cgtgcggagg 1140
aactgcaccg taacaccctg agcgtgtacc gttgggcgat tagccgtgtt catcgtgttg 1200
cgggttgccc ggacccgtgc ctggatatct atgtggagga tcgtctgaag gcgattgcgc 1260
gtaagaaagt gcgtgagggc gaagcggtta aacaggcgag cccgtttaac gaacaacacc 1320
tgctgaagct gaccagcctg tggtaccgta gcgacaaact gctgctgcgt cgtaacctgg 1380
cgctgctggc ggtggcgtat gagagcatgc tgcgtgcgag cgaactggcg aacatccgtg 1440
ttagcgacat ggagctggcg ggtgatggca ccgcgattct gaccatcccg attaccaaga 1500
ccaaccacag cggcgagccg gacacctgca ttctgagcca ggatgtggtt agcctgctga 1560
tggactacac cgaagcgggc aagctggaca tgagcagcga tggtttcctg tttgtgggcg 1620
ttagcaaaca caacacctgc atcaagccga agaaagataa acagaccggt gaagttctgc 1680
acaagccgat taccaccaaa accgtggagg gcgttttcta tagcgcgtgg gaaaccctgg 1740
atctgggtcg tcaaggcgtg aagccgttta ccgcgcacag cgcgcgtgtt ggtgcggcgc 1800
aggacctgct gaagaaaggc tacaacaccc tgcaaatcca gcaaagcggt cgttggagca 1860
gcggcgcgat ggttgcgcgt tatggtcgtg cgatcctggc gcgtgacggc gcgatggcgc 1920
acagccgtgt gaaaacccgt agcgcgccga tgcaatgggg caaggacgag aaagattaat 1980
gataagtagc ggagtgtata ctggcttacg tcgtgactgg gaaaaccctg gcgactagtc 2040
ttggactcct gttgatagat ccagtaatga cctcagaact ccatctggat ttgttcagaa 2100
cgctcggttg ccgccgggcg ttttttattg gtgagaatcc aggggtcccc aataattacg 2160
atttaaattg gcgaaaatga gacgt 2185
<210> 20
<211> 34
<212> DNA
<213> Artificial sequence
<220>
<223> VloxP sequence
<400> 20
tcaatttccg agaatgacag ttctcagaaa ttga 34
<210> 21
<211> 1143
<212> DNA
<213> Artificial sequence
<220>
<223> gene sequence of VCre recombinase
<400> 21
atgatcgaga accagctgag cctgctgggt gatttcagcg gcgtgcgtcc ggacgatgtt 60
aagaccgcga tccaggcggc gcaaaagaaa ggtattaacg ttgcggagaa cgaacaattc 120
aaagcggcgt ttgagcacct gctgaacgag ttcaagaaac gtgaggaacg ttacagcccg 180
aacaccctgc gtcgtctgga aagcgcgtgg acctgctttg tggattggtg cctggcgaac 240
catcgtcaca gcctgccggc gaccccggac accgttgagg cgttctttat cgaacgtgcg 300
gaggaactgc accgtaacac cctgagcgtg taccgttggg cgattagccg tgttcatcgt 360
gttgcgggtt gcccggaccc gtgcctggat atctatgtgg aggatcgtct gaaggcgatt 420
gcgcgtaaga aagtgcgtga gggcgaagcg gttaaacagg cgagcccgtt taacgaacaa 480
cacctgctga agctgaccag cctgtggtac cgtagcgaca aactgctgct gcgtcgtaac 540
ctggcgctgc tggcggtggc gtatgagagc atgctgcgtg cgagcgaact ggcgaacatc 600
cgtgttagcg acatggagct ggcgggtgat ggcaccgcga ttctgaccat cccgattacc 660
aagaccaacc acagcggcga gccggacacc tgcattctga gccaggatgt ggttagcctg 720
ctgatggact acaccgaagc gggcaagctg gacatgagca gcgatggttt cctgtttgtg 780
ggcgttagca aacacaacac ctgcatcaag ccgaagaaag ataaacagac cggtgaagtt 840
ctgcacaagc cgattaccac caaaaccgtg gagggcgttt tctatagcgc gtgggaaacc 900
ctggatctgg gtcgtcaagg cgtgaagccg tttaccgcgc acagcgcgcg tgttggtgcg 960
gcgcaggacc tgctgaagaa aggctacaac accctgcaaa tccagcaaag cggtcgttgg 1020
agcagcggcg cgatggttgc gcgttatggt cgtgcgatcc tggcgcgtga cggcgcgatg 1080
gcgcacagcc gtgtgaaaac ccgtagcgcg ccgatgcaat ggggcaagga cgagaaagat 1140
taa 1143
<210> 22
<211> 380
<212> PRT
<213> Artificial sequence
<220>
<223> amino acid sequence of VCre recombinase
<400> 22
Met Ile Glu Asn Gln Leu Ser Leu Leu Gly Asp Phe Ser Gly Val Arg
1 5 10 15
Pro Asp Asp Val Lys Thr Ala Ile Gln Ala Ala Gln Lys Lys Gly Ile
20 25 30
Asn Val Ala Glu Asn Glu Gln Phe Lys Ala Ala Phe Glu His Leu Leu
35 40 45
Asn Glu Phe Lys Lys Arg Glu Glu Arg Tyr Ser Pro Asn Thr Leu Arg
50 55 60
Arg Leu Glu Ser Ala Trp Thr Cys Phe Val Asp Trp Cys Leu Ala Asn
65 70 75 80
His Arg His Ser Leu Pro Ala Thr Pro Asp Thr Val Glu Ala Phe Phe
85 90 95
Ile Glu Arg Ala Glu Glu Leu His Arg Asn Thr Leu Ser Val Tyr Arg
100 105 110
Trp Ala Ile Ser Arg Val His Arg Val Ala Gly Cys Pro Asp Pro Cys
115 120 125
Leu Asp Ile Tyr Val Glu Asp Arg Leu Lys Ala Ile Ala Arg Lys Lys
130 135 140
Val Arg Glu Gly Glu Ala Val Lys Gln Ala Ser Pro Phe Asn Glu Gln
145 150 155 160
His Leu Leu Lys Leu Thr Ser Leu Trp Tyr Arg Ser Asp Lys Leu Leu
165 170 175
Leu Arg Arg Asn Leu Ala Leu Leu Ala Val Ala Tyr Glu Ser Met Leu
180 185 190
Arg Ala Ser Glu Leu Ala Asn Ile Arg Val Ser Asp Met Glu Leu Ala
195 200 205
Gly Asp Gly Thr Ala Ile Leu Thr Ile Pro Ile Thr Lys Thr Asn His
210 215 220
Ser Gly Glu Pro Asp Thr Cys Ile Leu Ser Gln Asp Val Val Ser Leu
225 230 235 240
Leu Met Asp Tyr Thr Glu Ala Gly Lys Leu Asp Met Ser Ser Asp Gly
245 250 255
Phe Leu Phe Val Gly Val Ser Lys His Asn Thr Cys Ile Lys Pro Lys
260 265 270
Lys Asp Lys Gln Thr Gly Glu Val Leu His Lys Pro Ile Thr Thr Lys
275 280 285
Thr Val Glu Gly Val Phe Tyr Ser Ala Trp Glu Thr Leu Asp Leu Gly
290 295 300
Arg Gln Gly Val Lys Pro Phe Thr Ala His Ser Ala Arg Val Gly Ala
305 310 315 320
Ala Gln Asp Leu Leu Lys Lys Gly Tyr Asn Thr Leu Gln Ile Gln Gln
325 330 335
Ser Gly Arg Trp Ser Ser Gly Ala Met Val Ala Arg Tyr Gly Arg Ala
340 345 350
Ile Leu Ala Arg Asp Gly Ala Met Ala His Ser Arg Val Lys Thr Arg
355 360 365
Ser Ala Pro Met Gln Trp Gly Lys Asp Glu Lys Asp
370 375 380
<210> 23
<211> 37
<212> DNA
<213> Artificial sequence
<220>
<223> primer 17
<400> 23
aaggcgagga attctacgaa agtgccatat aacgcac 37
<210> 24
<211> 34
<212> DNA
<213> Artificial sequence
<220>
<223> primer 18
<400> 24
gcgtcagttt accattagtt gcgtcacctt cacc 34
<210> 25
<211> 2298
<212> DNA
<213> Artificial sequence
<220>
<223> par region
<400> 25
atggatatca agctagccca ccccagcaag acgacgcctg aggatttgaa gcagttggca 60
aatctctccg cggtgatgct gcagaaaatt cgggatgaga tgctggagcc atttcctcgg 120
aaggaagccc cgctgatccc gtctggccgc ctacaagaat tgtgtggcat cgacaaaacg 180
cggatgaacc ggtccctcaa aaagggggat ctccctcagg gccagcaatc gcgacccggt 240
gcagtgcgct atttcagcct cagcgaggca atgcaatgga tccgagcgga acttaagcct 300
gtcccgcgaa ggggaccagg taaagtcatt gcagttgcga acttcaaggg cggtgtcacg 360
aagaccacta tgtccaccct cctctgccag ggcttgagtc tgcggcgagg tcggaaggtg 420
tgccacgttg atctggatcc gcagggaagc gcaaccacgc tgtatggcat caatccacat 480
gccgaggtgt cgtccgaaaa caccattatg ccgctcatcg aggcgtattt ggcgggcgag 540
tccttcgata tgcgagggct tcctcaggag acttactggc ctaacctgga tttgattcct 600
tcgtctactg agcttttcaa cgcggagttt atgcttccgg ctcgggcgac ggcagaggaa 660
ggccatattc cgttcgagcg cgtgttaagt aacggcctcg attcgttgaa agacgaatat 720
gactacatca tcctcgacac ggctcctacc ctcagctacc tgaccatcaa cgcgattttc 780
gctgccgatg gcgtcatcgt accggtggtc ccggacacct tggctttcgc gtctatggtc 840
cagttctggc aactcttctc ggacctagta acaggcatgg aagagcagag cgagggatct 900
aaaaaggagt tcgactttct cgatgttctc atgacacgca tggagaaaaa gaacgctcct 960
cgcctggtgg cagactggat tcgcggcgtc tatgggtcgc gcgtgctgcc gattgagatc 1020
cctgagacgg acctcgcccg taacagcagc attcaatttc gcacggtcta tgacctctcc 1080
tctagcgagg cgaacaccga gacgatgcga cgcattcgcc aaccctgcga tgagtttgtc 1140
gactatgtgg acgacaaggt cagcgcgctt tggcaaggaa ttgaagaatg agtttgagag 1200
aaaagcttgc cgcaaaggct gggaacatca aggtcacggc ggaagacttg gagaaagccg 1260
ctgcgcgcgg tccgcaagcg ccgcgaactg cgcccggtca gttaatgcat atgcaaggga 1320
aggttgagcg acaggctaac gagatcgcgc aactaagagc agaacttgag tcggcccgcg 1380
tcagcggcgg cgcagtggat gtgcctatcg accaactgca tgaggtccca ggccgcagac 1440
gcttcatgcc tcccgagaag tatgtcgaat tgagggaaaa cctcaggcac aacaagctcg 1500
ttcatcctgt gattgtatgc cctcggcctg cgggaggctt cgagattgtc tccgggcatc 1560
accggacaga cgcgtaccgc gagcttgggc gcgatcacat acgctgcgtg ctcggcgaac 1620
ttagttcaga cgaggctgac acgggcgcgt tctacgcgaa ccttatgcag tcagatttaa 1680
cggatttcga gaagtttcgg aagttcgacg aactgctgct tcgcagccca gacaagactc 1740
aagccgcaat agctgaacag gctggtgtac ctgtctcgac tctctcagag attttgtcgt 1800
tccggaactt gcctcccgag gtcctaagcc ttctcgatag ccgcccagac ctgctcgggt 1860
cgaatgctgg cgccgagttg gcaagggcga ccaaagacgg tcgcggggat cgggtcgtcg 1920
aagcggttaa gttgttggcc gagaagaaga tcgatcaaca gcaggccgta cggatgacta 1980
aggccgagca ggttaagacc aggcctgccg catctaccgg cttcaaaatc aaggcgggaa 2040
aggcgacttg gtgcgatgtt cgtatcgcaa agaaagtcat gcgcattgag ttccgcagcg 2100
aggaagaagc ggaagcggcc caatcggcca ttcgcgaaca tctggaaggg ttagctaaag 2160
ctgcgtcgga agacgcaaaa agctaagtgc ttgtttttta aggacttcgt actacgaatc 2220
gaggttttaa gccatgtcta gactgtaatc ctacaaaaac aaaagcccac ggcggcaacc 2280
gtgggctttt gagaactt 2298
<210> 26
<211> 92
<212> DNA
<213> Artificial sequence
<220>
<223> replication protein repA28
<400> 26
ggtcttgatg taaatttaat tttttggttg atgcgaaagg ctaaagagca aggccacttt 60
ctctcagatg tcgtaagcgc gacatgggag ag 92

Claims (10)

1. A method of deleting redundant fragments on a stable vector, the method comprising the steps of:
1) introducing a stable vector into a eubacterium roche to obtain a transformant, wherein the stable vector has 1 recombinase-specific recognition nucleotide sequence upstream and downstream of the redundant fragment, and the stable vector comprises a promoter parP in a par region, a plasmid stabilizing factor parA, a parB, a recognition sequence parS, a replication protein repA, and the redundant fragment, preferably, the nucleotide sequence of the par region comprises a nucleotide sequence as set forth in SEQ ID No.: 25;
2) and introducing a helper plasmid for expressing the recombinase into the transformant, and deleting the redundant fragment through recombination.
2. The method of claim 1, wherein the recombinase is selected from the group consisting of VCre recombinase, Bxb1 recombinase, phiC31 recombinase, TP901 recombinase, HK022 recombinase, Phi80 recombinase, P21 recombinase, Int3 recombinase, Int4 recombinase, Int5 recombinase, Int9 recombinase, Int11 recombinase, Int12 recombinase, Int13 recombinase, P22 recombinase, lamda recombinase, Cre recombinase, Dre recombinase, Vika recombinase, Flp recombinase, FimE recombinase, HbiF recombinase, and a118 recombinase.
3. The method of claim 1, wherein the recombinase specifically recognizes the nucleotide sequence VloxP sequence and the recombinase is VCre recombinase.
4. The method of claim 1, wherein the Eubacterium rolfsii is Ralstonia eutropha H16.
5. The method according to claim 1, wherein the redundant fragment comprises a resistance gene, preferably the resistance gene is an antibiotic resistance gene, more preferably the resistance gene is a kanamycin resistance gene.
6. The method of claim 5, wherein the redundant fragment further comprises an E.coli replicon.
7. A stable vector obtainable by the method of any one of claims 1 to 6.
8. Use of the stable vector of claim 7 in genetic engineering.
9. Use of the stable vector of claim 7 for a eubacterium reuteri.
10. A recombinant strain of Eubacterium reuteri comprising the stable vector of claim 7.
CN202010850010.XA 2020-08-21 2020-08-21 Method for deleting redundant segments on a stable vector, stable vector obtained by said method and use thereof Pending CN113355346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010850010.XA CN113355346A (en) 2020-08-21 2020-08-21 Method for deleting redundant segments on a stable vector, stable vector obtained by said method and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010850010.XA CN113355346A (en) 2020-08-21 2020-08-21 Method for deleting redundant segments on a stable vector, stable vector obtained by said method and use thereof

Publications (1)

Publication Number Publication Date
CN113355346A true CN113355346A (en) 2021-09-07

Family

ID=77524443

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010850010.XA Pending CN113355346A (en) 2020-08-21 2020-08-21 Method for deleting redundant segments on a stable vector, stable vector obtained by said method and use thereof

Country Status (1)

Country Link
CN (1) CN113355346A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381415A (en) * 2022-03-22 2022-04-22 深圳蓝晶生物科技有限公司 Gene recombination strain for high-yield PHA and construction method thereof
CN116288740A (en) * 2023-05-11 2023-06-23 北京蓝晶微生物科技有限公司 Microorganism promoter library and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101297036A (en) * 2005-10-27 2008-10-29 株式会社钟化 Novel plasmid vector and transformant capable of carrying plasmid stably
CN103409446A (en) * 2013-05-31 2013-11-27 江南大学 Corynebacterium gene continuous knockout system, as well as construction method and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101297036A (en) * 2005-10-27 2008-10-29 株式会社钟化 Novel plasmid vector and transformant capable of carrying plasmid stably
CN103409446A (en) * 2013-05-31 2013-11-27 江南大学 Corynebacterium gene continuous knockout system, as well as construction method and application thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
柳杰 等: "微生物合成PHA的研究进展", 《高分子通报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381415A (en) * 2022-03-22 2022-04-22 深圳蓝晶生物科技有限公司 Gene recombination strain for high-yield PHA and construction method thereof
CN116288740A (en) * 2023-05-11 2023-06-23 北京蓝晶微生物科技有限公司 Microorganism promoter library and application thereof
CN116288740B (en) * 2023-05-11 2023-08-29 北京蓝晶微生物科技有限公司 Microorganism promoter library and application thereof

Similar Documents

Publication Publication Date Title
CN108707621B (en) CRISPR/Cpf1 system-mediated homologous recombination method taking RNA transcript as repair template
DK2443163T3 (en) POLYMERIZATION OF ISOPREN FROM RENEWABLE RESOURCES
CN113355346A (en) Method for deleting redundant segments on a stable vector, stable vector obtained by said method and use thereof
CN106906175A (en) Method and recombinant microorganism for producing cadaverine
KR20110038087A (en) Polymers of isoprene from renewable resources
EP0082485A2 (en) Novel vector plasmids
KR20110122672A (en) Methods of producing isoprene and a co-product
US20070254342A1 (en) Process for Plasmid Dna Fermentation
KR20100118973A (en) Compositions and methods for producing isoprene
KR20110076868A (en) Compositions and methods for producing isoprene free of c5 hydrocarbons under decoupling conditions and/or safe operating ranges
JPH0138475B2 (en)
JP2009521936A (en) Promoter engineering and gene regulation
KR20100049012A (en) Microorganisms with deregulated vitamin b12 system
Miwa et al. Construction of L-threonine overproducing strains of Escherichia coli K-12 using recombinant DNA techniques
EP0093611B1 (en) Composite plasmid
CN113502254B (en) Olive alcohol synthetase variants and engineered microorganisms expressing same
CN113502255B (en) Engineered microorganisms for the production of olivetol and olivetol
CN114410560B (en) Engineering strain for high-yield FK228 and construction and application thereof
CN106929528B (en) Novel recombination system in pseudomonas and application thereof
CN113355345B (en) Method for integrating exogenous sequences in genome
CN101223279A (en) Methionine producing recombinant microorganisms
CA2509702A1 (en) Mutations affecting plasmid copy number
EP0048497A2 (en) DNA transducing vector and microorganism containing it
JPS6158595A (en) Scale production of protein by microorganism
CN111893130A (en) PCCI-2U plasmid and construction method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210907