CN113328340A - 一种液态反冲灭弧防雷方法 - Google Patents

一种液态反冲灭弧防雷方法 Download PDF

Info

Publication number
CN113328340A
CN113328340A CN202110443307.9A CN202110443307A CN113328340A CN 113328340 A CN113328340 A CN 113328340A CN 202110443307 A CN202110443307 A CN 202110443307A CN 113328340 A CN113328340 A CN 113328340A
Authority
CN
China
Prior art keywords
arc
liquid
electric arc
electric
recoil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110443307.9A
Other languages
English (en)
Inventor
王嬿蕾
王巨丰
陈宇宁
卢杨
李庆一
骆耀敬
谭思源
王晓蕾
杨子童
段小嬿
李�浩
贾征浩
宋永锋
何琪文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Leishan Electric Technology Co ltd
Original Assignee
Guangxi Leishan Electric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Leishan Electric Technology Co ltd filed Critical Guangxi Leishan Electric Technology Co ltd
Priority to CN202110443307.9A priority Critical patent/CN113328340A/zh
Publication of CN113328340A publication Critical patent/CN113328340A/zh
Priority to CN202210418333.0A priority patent/CN114629003B/zh
Priority to CN202210418335.XA priority patent/CN114665383A/zh
Priority to CN202210419441.XA priority patent/CN114629008B/zh
Priority to CN202210417656.8A priority patent/CN114628995B/zh
Priority to CN202210402700.8A priority patent/CN114640026B/zh
Priority to CN202210418331.1A priority patent/CN114629001A/zh
Priority to CN202210416259.9A priority patent/CN115548881B/zh
Priority to CN202210416294.0A priority patent/CN115621845B/zh
Priority to CN202210417907.2A priority patent/CN114628998A/zh
Priority to CN202210418057.8A priority patent/CN114629000A/zh
Priority to CN202210418332.6A priority patent/CN114629002A/zh
Priority to CN202210417818.8A priority patent/CN114628996A/zh
Priority to CN202210418410.2A priority patent/CN114629007B/zh
Priority to CN202210417886.4A priority patent/CN114628997B/zh
Priority to CN202210402699.9A priority patent/CN114640025A/zh
Priority to CN202210418032.8A priority patent/CN114628999B/zh
Priority to CN202210417679.9A priority patent/CN115548882B/zh
Priority to CN202210418407.0A priority patent/CN114629006A/zh
Priority to CN202210418334.5A priority patent/CN114629004A/zh
Priority to CN202210418408.5A priority patent/CN114665384B/zh
Priority to CN202210418406.6A priority patent/CN114629005B/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T1/00Details of spark gaps
    • H01T1/02Means for extinguishing arc
    • H01T1/08Means for extinguishing arc using flow of arc-extinguishing fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/42Means for obtaining improved distribution of voltage; Protection against arc discharges
    • H01B17/46Means for providing an external arc-discharge path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

本发明公开了一种液态反冲灭弧防雷方法,属于灭弧防雷技术领域,方法包括在反冲管内放置液体,电弧进入反冲管时,电弧预击穿液体的瞬间,由于雷电弧冲击时间极短,液体无法瞬时发生变形和位移,发生液电爆轰效应,反冲灭弧压力峰值与冲击陡度电弧预击穿时间同步,冲击电弧在刚形成时立即被截断,电弧导通液体后,电弧和液体进行热交换产生电液热交换效应,电弧热产生的液体气泡和热蒸发效应存储动能,释放灭弧压力,液电爆轰效应和电液热交换效应产生的向下的冲击波被反冲管的底部反射回来形成冲击波正反射效应灭弧。本发明截断电弧早,反冲灭弧压力峰值与冲击大陡度电弧预击穿时间同步,冲击电弧在刚刚形成之时立即被截断,截断电弧的压力巨大。

Description

一种液态反冲灭弧防雷方法
技术领域
本发明涉及电子技术领域,尤其涉及一种液态反冲灭弧防雷方法。
背景技术
雷击会给电力设施带来不同形式的损伤和破坏,雷云放电在电力系统中会引起雷击过电压。雷击过电压可能对绝缘子、输电线造成损伤;输电线路发生雷击时引起的冲击闪络,导致线路绝缘子闪络,继而产生很大的工频续流,损坏绝缘子串及金具,导致线路事故;雷电击打在输电线或避雷线上,可能会引起断股甚至断裂,使输电工作无法进行。
气体反冲灭弧装置能有效降低雷击电流,使主动式灭弧并联间隙的伏秒特性变得更为平坦,但是现有的气体反冲灭弧装置反冲压力较低,仅能减小雷电流的波头陡度,无法进一步衰减雷电流幅值大小,雷电流衰减率较低,电弧电流截断能力还不足够大。针对上述所述问题,提出了一种液态反冲灭弧防雷方法。
发明内容
本发明的目的在于提供一种液态反冲灭弧防雷方法,解决背景技术中提到的技术问题。目的在于提高气体反冲灭弧装置在反冲灭弧过程中对雷电流的衰减强度和截断巨大电弧的能力。在于增强单反冲灭弧装置在反冲灭弧过程中的灭弧压强,既能衰减雷电流幅值大小,也可以延长电弧的放电时间,避免瞬时雷电流幅值过大对输电线路造成损坏。
一种液态反冲灭弧防雷方法,在反冲管内放置液体,当电弧进入反冲管内时,电弧预击穿液体的瞬间,由于雷电弧冲击时间极短,液体无法瞬时发生变形和位移,发生液电爆轰效应,反冲灭弧压力峰值与冲击陡度电弧预击穿时间同步,冲击电弧在刚形成时立即被截断,电弧导通液体后,电弧和液体进行热交换产生电液热交换效应,电弧热产生的液体气泡和热蒸发效应存储动能,持久释放灭弧压力,液电爆轰效应和电液热交换效应产生的向下的冲击波被反冲管的底部反射回来形成冲击波正反射效应进行灭弧。
进一步地,液电爆轰效应的具体过程为:电弧从腔体入口被灌注到反冲管后通过腔体另一端的电极入地形成放电回路,腔体内的电弧发生液体内放电现象,液体内的放电电弧温度瞬间达到104K以上,电弧发生由温度梯度差引起的瞬间膨胀,由于电弧104K以上的温度瞬间出现,包裹在电弧四周的液体来不及位移和热蒸发,液体呈“刚性”的固体状并包裹住电弧阻止电弧膨胀,将液体视为自身不会被压缩的激波传递介质,液体在电弧的锤击作用下会同步产生100Mpa以上的压力,此时电弧电流值小,但电弧电压降大,电弧内聚集的能量等于电弧电压和电弧电流乘积的积分,电弧的温度取决于电弧能量,而电弧能量的峰值出现在电弧接通的瞬间,随着电弧电流变大,电弧压降会降到视为0值,电流和电弧压降的乘积也视为0,积分后的能量下降,由于液体承受的电弧膨胀压力取决于由电弧能量决定的电弧温度,在电弧接通瞬间压力达到峰值,液体对电弧的“刚性”包裹使电弧温度产生的膨胀力瞬间转化为压力冲击波,冲击波唯一的释放出口是电弧入口,此时在整个腔体内被液体包裹住的电弧瞬间骤然膨胀,出现电弧爆轰效应,并同步产生100Mpa以上的峰值压力冲击波并从腔体内的出口喷出,在压力波从腔体出口释放的同时,机械压力波的“活塞”把电弧推出腔体,把腔体内的电弧截断,同时喷出腔体外的压力波惯性对腔体外的电弧进行截断,切断电弧的尺度大,通过反冲压力释放作用到反冲管内的冲击电弧并使其截断,切断建弧通道。
进一步地,电液热交换效应的具体过程为:电弧接通瞬间产生的液电爆轰效应会产生电弧爆轰效应在接通电弧瞬间产生压力峰值,随着电弧的发展,电弧电离度增加,电弧电流增加,电弧压降降低到视为0的水平,电弧能量降低,液电爆轰效应产生的压力降低,但电弧和液体的热交换出现,电弧通过气化液体产生蒸气,带走电弧热量衰减电弧电离度削弱电弧强度的同时,水蒸气会产生膨胀压力补偿电液爆轰的压力衰减,热交换压力维持比液电爆轰效应更长的时间,对电弧重燃抑制和再次截断电弧。
进一步地,冲击波正反射效应的具体过程为:电弧产生的冲击波传导到腔室内被封堵的底部障碍物时会产生正反射冲击波波,反射波的压力增加数倍,反射波相当于对电液爆轰波和热交换膨胀波压力再放大数倍,反冲压力提升,灭弧反冲能力提升。
反冲管包括陶瓷管体、顶部套盖板、固定装置、底部套盖板、绝缘覆盖层和裙边,顶部套盖板设置在陶瓷管体的顶部,底部套盖板设置在陶瓷管体的底部,固定装置穿过顶部套盖板和底部套盖板,并固定设置,绝缘覆盖层设置在陶瓷管体的外侧,裙边设置在绝缘覆盖层的外侧,顶部套盖板上设置有反冲喷孔。陶瓷管体内部设置为中空的圆柱结构,陶瓷管体的内部中空孔与反冲喷孔设置在同一条直线上。
进一步地,顶部套盖板包括顶盖板套盖和顶盖板沿边,顶盖板套盖设置为向上凹陷结构,顶盖板沿边设置在顶盖板套盖的底部侧边上。
进一步地,底部套盖板包括底盖板套盖和底盖板沿边,底盖板套盖设置为向下凹陷结构,底盖板沿边设置在底盖板套盖的顶部侧边上。
进一步地,固定装置设置为绝缘螺杆,顶盖板沿边和底盖板套盖上均设置有相同数量和大小的螺孔,绝缘螺杆穿过螺孔并设置螺母拧紧设置。
进一步地,顶盖板套盖套设在陶瓷管体的顶部,底盖板套盖套设在陶瓷管体的底部,顶盖板沿边和底盖板套盖设置为圆形结构,且内径与陶瓷管体的外径相同。
进一步地,绝缘覆盖层设置为环氧树脂层,覆盖在绝缘螺杆、螺母、顶盖板沿边和底盖板套盖上,并包合陶瓷管体。顶部套盖板和底部套盖板为钢板或者锌合金板。底部套盖板的底盖板套盖底部设置有固定墩,固定墩底部设置有内陷的螺丝孔,固定墩使用导电材料制成并与底盖板套盖一体设置,螺丝孔设置有螺杆,螺杆与大地连接。
进一步地,液体为绝缘液体。
本发明采用了上述技术方案,本发明具有以下技术效果:
本发明截断电弧早,反冲灭弧压力峰值与冲击大陡度电弧预击穿时间同步,冲击电弧在刚刚形成之时立即被截断,截断电弧的压力巨大,灭弧压力达到100个大气压,如此大的压力峰值时间出现在冲击预击穿瞬间,压力持续时间久,电弧热产生的液体气泡和热蒸发效应存储大量动能,能够持久释放灭弧压力,冲击电弧重燃被延迟,持久巨大的反冲压力破坏了持续放电条件和重燃条件,截断冲击电弧后,重燃击穿时间被大幅度延迟十几到几十微秒以上,雷电流的陡度显著降低90%,电流幅值衰减50%以上,液态反冲的多种灭弧机制的叠加与互补——突变冲击电弧产生的液电效应下灭弧压力出现的又早又强特性;冲击或工频电弧的热效应产生的液体蒸气压力强化灭弧压力特性;液体蒸气冷却电弧温度使电弧熄灭特性;细管灌注和波反射提高灭弧压力特性。
附图说明
图1为本发明原理结构图。
图2为本发明反冲管结构的剖面图。
图3为本发明反冲管结构没有安装裙边和环氧树脂的俯视图。
图4为本发明反冲管结构的顶部套盖板结构示意图。
图5为本发明反冲管结构的底部套盖板结构示意图。
图6为本发明自然电弧波形图。
图7为本发明液体为水时的电弧波形。
图8为本发明液体为绝缘液体时的电弧波形。
图中标号:A-反冲管;1-陶瓷管体;2-顶部套盖板;2.1-顶盖板套盖;2.2-顶盖板沿边;2.3-顶盖板沿边固定孔;3-螺母;4-固定装置;5-底部套盖板;5.1-底盖板套盖;5.2-底盖板沿边;5.3-底盖板沿边固定孔;6-绝缘覆盖层;7-裙边;8-反冲喷孔;9-固定墩;10-螺孔;11-液体;12-螺杆。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,举出优选实施例,对本发明进一步详细说明。然而,需要说明的是,说明书中列出的许多细节仅仅是为了使读者对本发明的一个或多个方面有一个透彻的理解,即便没有这些特定的细节也可以实现本发明的这些方面。
一种液态反冲灭弧防雷方法,如图1所示,在反冲管A内放置液体11,当电弧进入反冲管A内时,电弧预击穿液体11的瞬间,由于雷电弧冲击时间极短,液体无法瞬时发生变形和位移,发生液电爆轰效应,反冲灭弧压力峰值与冲击陡度电弧预击穿时间同步,冲击电弧在刚形成时立即被截断,电弧导通液体后,电弧和液体进行热交换产生电液热交换效应,电弧热产生的液体气泡和热蒸发效应存储动能,持久释放灭弧压力,液电爆轰效应和电液热交换效应产生的向下的冲击波被反冲管A的底部反射回来形成冲击波正反射效应进行灭弧。
液电爆轰效应:在一个只有一个电弧入口,另一端被接地电极封堵的反冲管腔体内注入液体,电弧从腔体入口被灌注到反冲管后通过腔体另一端的电极入地形成放电回路,而腔体内的电弧会发生液体内放电现象,液体内的放电电弧温度瞬间达到104K以上,电弧必然要发生由巨大温度梯度差引起的瞬间膨胀。由于电弧104K以上的温度瞬间出现,包裹在电弧四周的液体来不及位移和热蒸发,液体呈“刚性”固体状并紧紧地包裹住电弧不允许电弧膨胀,此时电弧电流值极小但电弧电压降十分巨大,电弧内聚集的能量等于电弧电压和电弧电流乘积的积分,电弧的温度取决于电弧能量,而电弧能量的峰值必然出现在电弧接通的瞬间,因为随着电弧电流变大,电弧压降会降到0值附近,电流和电弧压降的乘积也接近于0,积分后的能量也快速下降。由于液体承受的电弧膨胀压力取决于由电弧能量决定的电弧温度,必然在电弧接通瞬间压力达到峰值,液体对电弧的“刚性”包裹使电弧温度产生的巨大膨胀力瞬间转化为压力冲击波,冲击波唯一的释放出口只能是电弧入口,此时在整个腔体内被液体包裹住的电弧瞬间骤然膨胀,出现电弧“爆轰”效应,并同步产生100Mpa以上的峰值压力冲击波并从腔体内的唯一出口“喷出”,在压力波从腔体出口释放的同时,机械压力波“活塞”以快速把电弧推出腔体,把腔体内的电弧截断,同时“喷出”腔体外的压力波惯性对腔体外的电弧进行截断,切断电弧的尺度非常大。
在雷击含有液体的反冲管内部,发生大陡度预击穿的瞬间,由于雷电弧冲击时间极短,液体无法瞬时发生变形和位移,此时可将液体视为自身不会被压缩的激波传递介质,液体在电弧的“锤击”作用下会同步产生100Mpa左右的压力,通过反冲压力释放作用到反冲管内的冲击电弧并使其截断,切断建弧通道。
电液热交换效应:电弧接通瞬间产生的液电爆轰效应会产生电弧爆轰效应在接通电弧瞬间产生压力峰值,随着电弧的发展,电弧电离度增加,电弧电流增加,电弧压降降低到几乎为0的水平,电弧能量也随之降低,液电爆轰效应产生的压力也随之降低,但电弧和液体的热交换会随之出现,电弧通过气化液体产生大量蒸气,带走大量电弧热量衰减电弧电离度削弱电弧强度的同时,水蒸气会产生膨胀压力补偿电液爆轰的压力衰减,热交换压力可以维持更长的时间,这对电弧重燃抑制和再次截断电弧十分有利。试验表明,热交换压力可以推迟电弧重燃10μs以上,由于冲击重燃电流重新从0开始,冲击电流幅值的增加大幅度衰减,雷电流幅值的衰减度60%以上,可以线性降低雷电流在地网电阻上产生的欧姆压降,冲击电弧产生的巨大压力同时对工频建弧过程在建弧起始点就产生快速和巨大的“中断”作用,有效避免雷击跳闸的发生。
冲击波正反射效应:电弧产生的各种冲击波传导到腔室内被封堵的底部障碍物时会产生正反射冲击波波,反射波的压力会增加数倍,反射波相当于对电液爆轰波和热交换膨胀波压力再放大数倍,这对压力的提升和灭弧能力的提升十分有利。
液电爆轰效应和液电热交换效应共同抑制电弧重燃:电弧等离子体在进入反冲管内部时,物理形状发生改变,由粗电弧变成了极细的电弧,径向压力转成轴向压力,同时由于反冲管壁的限制,电弧进入反冲管后速度、温度增加,导致管内压力的增加,最终产生压爆效应,使电弧受到反冲作用力。同时,电弧在液体中产生的液电效应,进一步增强了反冲管内的压强,持久巨大的反冲压力破坏了持续放电条件和重燃条件,截断冲击电弧后,重燃击穿时间被大幅度延迟十几到几十微秒以上,雷电流的陡度显著降低90%,电流幅值衰减60%以上。其中电液爆轰效应于电弧接通时间同步产生压力峰值,在电弧十分弱小的起始点截断电弧,具有不对称灭弧的优势;电液热交换效应在压力峰值后会产生持久的膨胀压力维持电弧截断状态,推迟电弧重燃时间和衰减电弧电流幅值。
有效防护直击雷过电压:当雷电放电的先导通道击中输电线路的导线、杆塔或其他建筑物时,大量雷电流通过被击物体,在被击物体的阻抗接地电阻上产生欧姆电压降,使被击点出现很高的电位,形成反击过电压。液态反冲灭弧方法能够衰减雷电流幅值60%以上,通过降低雷电流强度衰减地网电阻欧姆压降60%以上,避免了反击过电压造成的绝缘闪络,可以有效降低雷击跳闸率和提高耐雷水平。通过降低雷电流幅值降低地网欧姆压降与传统的通过降低地网电阻降低地网欧姆压降相比,更具有效性、可控性和经济性。
避免感应过电压造成的损害:当雷击线路附近时,会在架空线路的三相导线上感应过电压,由于主放电有一个发展过程,导线上感应电荷并非瞬间立即释放,而是逐渐释放。其中雷击地面点到导线正下方间的水平距离为S,m,雷电电流幅值为I,kA,导线平均悬挂高度为hd,m。根据电力行业标准DL/T620-1997,雷电感应过电压Ug为:
Figure BDA0003035815050000061
液态反冲灭弧方法通过反冲压力释放作用到反冲管内的冲击电弧并使其截断,减小了雷电流的幅值,也就减小了雷电感应过电压。避免了感应过电压对配网绝缘引起的闪络,降低雷击跳闸率、事故率和断线率。
避免电磁感应过电压损坏设备:雷击放电过程中,放电通道周围空间产生瞬变的强电磁场脉冲,在空间变化电磁场中的被保护物,不论是导体还是非导体均做切割磁力线运动,使其产生更高的电磁感应电动势造成危害。受到静电感应的影响,干扰信号线、天线等无线电通讯,甚至损坏仪器设备。液态反冲灭弧方法通过液电效应释放冲击波截断电弧,不仅延缓了电弧的放电时间,也降低了雷电波的陡度。避免了感应电磁过电压对电力电子元器件、通讯信号等造成危害。
避免跨步电压的危害:输电线路或电气设备发生接地故障时,在接地电流入地点周围有电位分布,当人走进电流范围内,由于左右腿之间的电压不同,就产生了电势差,形成跨步电压,对人身安全造成危害。液态反冲灭弧方法减小了入地电流的大小,也就降低了以接地点为圆心,附近地面的电位差,防止跨步电压带来的危害。
电弧在反冲管中受到管壁压缩作用以及液电效应的影响,将一部分能量以反冲的形式从反冲管上端口排出,减小了雷电流的幅值大小,降低了雷电波的陡度,延长了电弧的放电时间。剩余的电弧能量通过“导电极-螺杆-地”的导电通道入地。
如图6为类电弧自然波形,图7为与图8相同条件下水中放电情况,波形被推迟和衰减了,但效果不如油中放电的好。如图8为绝缘油与电弧耦合(油中放电)后的波形,电流波形完全消失了,说明电弧强度被降低到无法测量出来的极低水平,但电荷完全释放完毕了。
如图2所示,反冲管A包括陶瓷管体1、顶部套盖板2、固定装置4、底部套盖板5、绝缘覆盖层6和裙边7,顶部套盖板2设置在陶瓷管体1的顶部,底部套盖板5设置在陶瓷管体1的底部,固定装置4穿过顶部套盖板2和底部套盖板5,并固定设置,绝缘覆盖层6设置在陶瓷管体1的外侧,裙边7设置在绝缘覆盖层6的外侧,顶部套盖板2上设置有反冲喷孔8。陶瓷管体1内部设置为中空的圆柱结构,陶瓷管体1的内部中空孔与反冲喷孔8设置在同一条直线上。
固定装置4设置为绝缘螺杆,顶盖板沿边2.2和底盖板套盖5.1上均设置有相同数量和大小的螺孔,绝缘螺杆穿过螺孔并设置螺母3拧紧设置。顶盖板套盖2.1套设在陶瓷管体1的顶部,底盖板套盖5.1套设在陶瓷管体1的底部,顶盖板沿边2.2和底盖板套盖5.1设置为圆形结构,且内径与陶瓷管体1的外径相同。绝缘覆盖层6设置为环氧树脂层,覆盖在绝缘螺杆、螺母3、顶盖板沿边2.2和底盖板套盖5.1上,并包合陶瓷管体1。顶部套盖板2和底部套盖板5为钢板或者锌合金板。
首先在反冲管的上下两端用环氧树脂分别紧密粘合一带凹槽的圆形钢板,其中反冲管上端的钢板中心有开孔,大小与反冲管的孔径大小一致。在钢板上还有4个能安装绝缘螺栓的圆孔,均匀分布在钢板外围。8个螺母分别用在4个绝缘螺杆的上下端,起到固定反冲管位置的作用。为避免雷击时,钢板之间距离太近而发生闪洛,将绝缘螺杆、陶瓷管及螺母用环氧树脂全封装起来。伞裙位于封装后环氧树脂筒的最外边。
如图4所示,顶部套盖板2包括顶盖板套盖2.1和顶盖板沿边2.2,顶盖板套盖2.1设置为向上凹陷结构,顶盖板沿边2.2设置在顶盖板套盖2.1的底部侧边上。顶部套盖板2主要是固定陶瓷管体1的上端,然后顶盖板套盖2.1的顶部裸露时,可以直接使用作为引弧电极,实现固定和引弧电极作用,实现双作用,同时这个引弧电极的实用寿命会非常好,具有固定性,厚度够厚,电弧多次烧后,磨损后一样可以正常工作。
如图5所示,底部套盖板5包括底盖板套盖5.1和底盖板沿边5.2,底盖板套盖5.1设置为向下凹陷结构,底盖板沿边5.2设置在底盖板套盖5.1的顶部侧边上。底部套盖板5主要是用于套住固定陶瓷管体1的底部,包住底部,不会出现破裂的情况,同时底盖板套盖5.1用作为接闪电极,把反冲剩余的电能往后传,解决原来接闪电极难固定,使用寿命不长的技术问题。
如图1所示,底部套盖板5的底盖板套盖5.1底部设置有固定墩9,固定墩9底部设置有内陷的螺丝孔,固定墩9使用导电材料制成并与底盖板套盖5.1一体设置。固定墩9主要是用于将整个反冲装置固定在外部结构上,实现快速的固定。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种液态反冲灭弧防雷方法,其特征在于:在反冲管(A)内放置液体(11),当电弧进入反冲管(A)内时,电弧预击穿液体(11)的瞬间,由于雷电弧冲击时间极短,液体无法瞬时发生变形和位移,发生液电爆轰效应,反冲灭弧压力峰值与冲击陡度电弧预击穿时间同步,冲击电弧在刚形成时立即被截断,电弧导通液体后,电弧和液体进行热交换产生电液热交换效应,电弧热产生的液体气泡和热蒸发效应存储动能,持久释放灭弧压力,液电爆轰效应和电液热交换效应产生的向下的冲击波被反冲管(A)的底部反射回来形成冲击波正反射效应进行灭弧。
2.根据权利要求1所述的一种液态反冲灭弧防雷方法,其特征在于:液电爆轰效应的具体过程为:电弧从腔体入口被灌注到反冲管(A)后通过腔体另一端的电极入地形成放电回路,腔体内的电弧发生液体内放电现象,液体内的放电电弧温度瞬间达到104K以上,电弧发生由温度梯度差引起的瞬间膨胀,由于电弧104K以上的温度瞬间出现,包裹在电弧四周的液体来不及位移和热蒸发,液体呈“刚性”的固体状并包裹住电弧阻止电弧膨胀,将液体视为自身不会被压缩的激波传递介质,液体在电弧的锤击作用下会同步产生100Mpa以上的压力,此时电弧电流值小,但电弧电压降大,电弧内聚集的能量等于电弧电压和电弧电流乘积的积分,电弧的温度取决于电弧能量,而电弧能量的峰值出现在电弧接通的瞬间,随着电弧电流变大,电弧压降会降到视为0值,电流和电弧压降的乘积也视为0,积分后的能量下降,由于液体承受的电弧膨胀压力取决于由电弧能量决定的电弧温度,在电弧接通瞬间压力达到峰值,液体对电弧的“刚性”包裹使电弧温度产生的膨胀力瞬间转化为压力冲击波,冲击波唯一的释放出口是电弧入口,此时在整个腔体内被液体包裹住的电弧瞬间骤然膨胀,出现电弧爆轰效应,并同步产生100Mpa以上的峰值压力冲击波并从腔体内的出口喷出,在压力波从腔体出口释放的同时,机械压力波的“活塞”把电弧推出腔体,把腔体内的电弧截断,同时喷出腔体外的压力波惯性对腔体外的电弧进行截断,切断电弧的尺度大,通过反冲压力释放作用到反冲管内的冲击电弧并使其截断,切断建弧通道。
3.根据权利要求1所述的一种液态反冲灭弧防雷方法,其特征在于:电液热交换效应的具体过程为:电弧接通瞬间产生的液电爆轰效应会产生电弧爆轰效应在接通电弧瞬间产生压力峰值,随着电弧的发展,电弧电离度增加,电弧电流增加,电弧压降降低到视为0的水平,电弧能量降低,液电爆轰效应产生的压力降低,但电弧和液体的热交换出现,电弧通过气化液体产生蒸气,带走电弧热量衰减电弧电离度削弱电弧强度的同时,水蒸气会产生膨胀压力补偿电液爆轰的压力衰减,热交换压力维持比液电爆轰效应更长的时间,对电弧重燃抑制和再次截断电弧。
4.根据权利要求1所述的一种液态反冲灭弧防雷方法,其特征在于:冲击波正反射效应的具体过程为:电弧产生的冲击波传导到腔室内被封堵的底部障碍物时会产生正反射冲击波波,反射波的压力增加数倍,反射波相当于对电液爆轰波和热交换膨胀波压力再放大数倍,反冲压力提升,灭弧反冲能力提升。
5.根据权利要求4所述的一种液态反冲灭弧防雷方法,其特征在于:反冲管(A)包括陶瓷管体(1)、顶部套盖板(2)、固定装置(4)、底部套盖板(5)、绝缘覆盖层(6)和裙边(7),顶部套盖板(2)设置在陶瓷管体(1)的顶部,底部套盖板(5)设置在陶瓷管体(1)的底部,固定装置(4)穿过顶部套盖板(2)和底部套盖板(5),并固定设置,绝缘覆盖层(6)设置在陶瓷管体(1)的外侧,裙边(7)设置在绝缘覆盖层(6)的外侧,顶部套盖板(2)上设置有反冲喷孔(8),陶瓷管体(1)内部设置为中空的圆柱结构,陶瓷管体(1)的内部中空孔与反冲喷孔(8)设置在同一条直线上。
6.根据权利要求5所述的一种液态反冲灭弧防雷方法,其特征在于:顶部套盖板(2)包括顶盖板套盖(2.1)和顶盖板沿边(2.2),顶盖板套盖(2.1)设置为向上凹陷结构,顶盖板沿边(2.2)设置在顶盖板套盖(2.1)的底部侧边上。
7.根据权利要求6所述的一种液态反冲灭弧防雷方法,其特征在于:底部套盖板(5)包括底盖板套盖(5.1)和底盖板沿边(5.2),底盖板套盖(5.1)设置为向下凹陷结构,底盖板沿边(5.2)设置在底盖板套盖(5.1)的顶部侧边上。
8.根据权利要求7所述的一种液态反冲灭弧防雷方法,其特征在于:固定装置(4)设置为绝缘螺杆,顶盖板沿边(2.2)和底盖板套盖(5.1)上均设置有相同数量和大小的螺孔,绝缘螺杆穿过螺孔并设置螺母(3)拧紧设置,顶盖板套盖(2.1)套设在陶瓷管体(1)的顶部,底盖板套盖(5.1)套设在陶瓷管体(1)的底部,顶盖板沿边(2.2)和底盖板套盖(5.1)设置为圆形结构,且内径与陶瓷管体(1)的外径相同。
9.根据权利要求8所述的一种液态反冲灭弧防雷方法,其特征在于:绝缘覆盖层(6)设置为环氧树脂层,覆盖在绝缘螺杆、螺母(3)、顶盖板沿边(2.2)和底盖板套盖(5.1)上,并包合陶瓷管体(1),顶部套盖板(2)和底部套盖板(5)为钢板或者锌合金板,底部套盖板(5)的底盖板套盖(5.1)底部设置有固定墩(9),固定墩(9)底部设置有内陷的螺丝孔,固定墩(9)使用导电材料制成并与底盖板套盖(5.1)一体设置,螺丝孔设置有螺杆(12),螺杆(12)与大地连接。
10.根据权利要求1所述的一种液态反冲灭弧防雷方法,其特征在于:液体(11)为绝缘液体。
CN202110443307.9A 2021-04-23 2021-04-23 一种液态反冲灭弧防雷方法 Pending CN113328340A (zh)

Priority Applications (22)

Application Number Priority Date Filing Date Title
CN202110443307.9A CN113328340A (zh) 2021-04-23 2021-04-23 一种液态反冲灭弧防雷方法
CN202210418406.6A CN114629005B (zh) 2021-04-23 2022-04-20 一种增强型防雷绝缘子及灭弧方法
CN202210418057.8A CN114629000A (zh) 2021-04-23 2022-04-20 一种液电效应灭弧避雷器及灭弧方法
CN202210417818.8A CN114628996A (zh) 2021-04-23 2022-04-20 一种固液组合灭弧增强型氧化锌避雷器及灭弧方法
CN202210419441.XA CN114629008B (zh) 2021-04-23 2022-04-20 一种电弧细管灌注液电效应灭弧装置、系统及方法
CN202210417656.8A CN114628995B (zh) 2021-04-23 2022-04-20 一种多间隙液电效应灭弧装置及灭弧方法
CN202210402700.8A CN114640026B (zh) 2021-04-23 2022-04-20 一种三态组合灭弧装置及灭弧方法
CN202210418331.1A CN114629001A (zh) 2021-04-23 2022-04-20 一种反冲结构固电和液电效应灭弧装置及其方法
CN202210416259.9A CN115548881B (zh) 2021-04-23 2022-04-20 一种高强度灭弧的密封装置及灭弧方法
CN202210416294.0A CN115621845B (zh) 2021-04-23 2022-04-20 一种补充液体和强密封的液电效应灭弧装置及其灭弧方法
CN202210417907.2A CN114628998A (zh) 2021-04-23 2022-04-20 一种液体阀片、阀片装置、灭弧方法及应用
CN202210418333.0A CN114629003B (zh) 2021-04-23 2022-04-20 一种全封闭液电腔室和开放液电腔室组合灭弧装置及方法
CN202210418332.6A CN114629002A (zh) 2021-04-23 2022-04-20 一种强化液电效应灭弧方法及装置
CN202210418335.XA CN114665383A (zh) 2021-04-23 2022-04-20 一种多液体介质变距自适应建弧抑制装置及方法
CN202210418410.2A CN114629007B (zh) 2021-04-23 2022-04-20 一种保护风机叶片的雷电强度衰减装置及方法
CN202210417886.4A CN114628997B (zh) 2021-04-23 2022-04-20 一种消除工频绝缘强度损失的动态灭弧系统及方法
CN202210402699.9A CN114640025A (zh) 2021-04-23 2022-04-20 一种多介质变距液电效应灭弧装置及方法
CN202210418032.8A CN114628999B (zh) 2021-04-23 2022-04-20 一种基于液电效应的衰减避雷针及其灭弧方法
CN202210417679.9A CN115548882B (zh) 2021-04-23 2022-04-20 一种组合液电效应灭弧方法及装置
CN202210418407.0A CN114629006A (zh) 2021-04-23 2022-04-20 一种液电效应衰减雷电流幅值和陡度避雷针及其灭弧方法
CN202210418334.5A CN114629004A (zh) 2021-04-23 2022-04-20 一种基于油水乳化混合液的液电效应灭弧装置及方法
CN202210418408.5A CN114665384B (zh) 2021-04-23 2022-04-20 一种多段液态灭弧装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110443307.9A CN113328340A (zh) 2021-04-23 2021-04-23 一种液态反冲灭弧防雷方法

Publications (1)

Publication Number Publication Date
CN113328340A true CN113328340A (zh) 2021-08-31

Family

ID=77413542

Family Applications (20)

Application Number Title Priority Date Filing Date
CN202110443307.9A Pending CN113328340A (zh) 2021-04-23 2021-04-23 一种液态反冲灭弧防雷方法
CN202210418332.6A Pending CN114629002A (zh) 2021-04-23 2022-04-20 一种强化液电效应灭弧方法及装置
CN202210418334.5A Withdrawn CN114629004A (zh) 2021-04-23 2022-04-20 一种基于油水乳化混合液的液电效应灭弧装置及方法
CN202210418410.2A Active CN114629007B (zh) 2021-04-23 2022-04-20 一种保护风机叶片的雷电强度衰减装置及方法
CN202210418057.8A Withdrawn CN114629000A (zh) 2021-04-23 2022-04-20 一种液电效应灭弧避雷器及灭弧方法
CN202210418408.5A Active CN114665384B (zh) 2021-04-23 2022-04-20 一种多段液态灭弧装置及方法
CN202210402699.9A Withdrawn CN114640025A (zh) 2021-04-23 2022-04-20 一种多介质变距液电效应灭弧装置及方法
CN202210417656.8A Active CN114628995B (zh) 2021-04-23 2022-04-20 一种多间隙液电效应灭弧装置及灭弧方法
CN202210417886.4A Active CN114628997B (zh) 2021-04-23 2022-04-20 一种消除工频绝缘强度损失的动态灭弧系统及方法
CN202210418333.0A Active CN114629003B (zh) 2021-04-23 2022-04-20 一种全封闭液电腔室和开放液电腔室组合灭弧装置及方法
CN202210418032.8A Active CN114628999B (zh) 2021-04-23 2022-04-20 一种基于液电效应的衰减避雷针及其灭弧方法
CN202210417818.8A Withdrawn CN114628996A (zh) 2021-04-23 2022-04-20 一种固液组合灭弧增强型氧化锌避雷器及灭弧方法
CN202210418331.1A Withdrawn CN114629001A (zh) 2021-04-23 2022-04-20 一种反冲结构固电和液电效应灭弧装置及其方法
CN202210418335.XA Withdrawn CN114665383A (zh) 2021-04-23 2022-04-20 一种多液体介质变距自适应建弧抑制装置及方法
CN202210416294.0A Active CN115621845B (zh) 2021-04-23 2022-04-20 一种补充液体和强密封的液电效应灭弧装置及其灭弧方法
CN202210418407.0A Withdrawn CN114629006A (zh) 2021-04-23 2022-04-20 一种液电效应衰减雷电流幅值和陡度避雷针及其灭弧方法
CN202210402700.8A Active CN114640026B (zh) 2021-04-23 2022-04-20 一种三态组合灭弧装置及灭弧方法
CN202210417907.2A Withdrawn CN114628998A (zh) 2021-04-23 2022-04-20 一种液体阀片、阀片装置、灭弧方法及应用
CN202210418406.6A Active CN114629005B (zh) 2021-04-23 2022-04-20 一种增强型防雷绝缘子及灭弧方法
CN202210419441.XA Active CN114629008B (zh) 2021-04-23 2022-04-20 一种电弧细管灌注液电效应灭弧装置、系统及方法

Family Applications After (19)

Application Number Title Priority Date Filing Date
CN202210418332.6A Pending CN114629002A (zh) 2021-04-23 2022-04-20 一种强化液电效应灭弧方法及装置
CN202210418334.5A Withdrawn CN114629004A (zh) 2021-04-23 2022-04-20 一种基于油水乳化混合液的液电效应灭弧装置及方法
CN202210418410.2A Active CN114629007B (zh) 2021-04-23 2022-04-20 一种保护风机叶片的雷电强度衰减装置及方法
CN202210418057.8A Withdrawn CN114629000A (zh) 2021-04-23 2022-04-20 一种液电效应灭弧避雷器及灭弧方法
CN202210418408.5A Active CN114665384B (zh) 2021-04-23 2022-04-20 一种多段液态灭弧装置及方法
CN202210402699.9A Withdrawn CN114640025A (zh) 2021-04-23 2022-04-20 一种多介质变距液电效应灭弧装置及方法
CN202210417656.8A Active CN114628995B (zh) 2021-04-23 2022-04-20 一种多间隙液电效应灭弧装置及灭弧方法
CN202210417886.4A Active CN114628997B (zh) 2021-04-23 2022-04-20 一种消除工频绝缘强度损失的动态灭弧系统及方法
CN202210418333.0A Active CN114629003B (zh) 2021-04-23 2022-04-20 一种全封闭液电腔室和开放液电腔室组合灭弧装置及方法
CN202210418032.8A Active CN114628999B (zh) 2021-04-23 2022-04-20 一种基于液电效应的衰减避雷针及其灭弧方法
CN202210417818.8A Withdrawn CN114628996A (zh) 2021-04-23 2022-04-20 一种固液组合灭弧增强型氧化锌避雷器及灭弧方法
CN202210418331.1A Withdrawn CN114629001A (zh) 2021-04-23 2022-04-20 一种反冲结构固电和液电效应灭弧装置及其方法
CN202210418335.XA Withdrawn CN114665383A (zh) 2021-04-23 2022-04-20 一种多液体介质变距自适应建弧抑制装置及方法
CN202210416294.0A Active CN115621845B (zh) 2021-04-23 2022-04-20 一种补充液体和强密封的液电效应灭弧装置及其灭弧方法
CN202210418407.0A Withdrawn CN114629006A (zh) 2021-04-23 2022-04-20 一种液电效应衰减雷电流幅值和陡度避雷针及其灭弧方法
CN202210402700.8A Active CN114640026B (zh) 2021-04-23 2022-04-20 一种三态组合灭弧装置及灭弧方法
CN202210417907.2A Withdrawn CN114628998A (zh) 2021-04-23 2022-04-20 一种液体阀片、阀片装置、灭弧方法及应用
CN202210418406.6A Active CN114629005B (zh) 2021-04-23 2022-04-20 一种增强型防雷绝缘子及灭弧方法
CN202210419441.XA Active CN114629008B (zh) 2021-04-23 2022-04-20 一种电弧细管灌注液电效应灭弧装置、系统及方法

Country Status (1)

Country Link
CN (20) CN113328340A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115579736A (zh) * 2022-04-21 2023-01-06 广西雷闪电气科技有限公司 一种液态反冲灭弧防雷方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115483612B (zh) * 2022-09-29 2023-06-06 张健 一种高塔电子设备防雷保护装置
CN117001651B (zh) * 2023-08-23 2024-03-29 大连理工大学 一种采用高压电驱动的小型人工肌肉及其驱动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779787A (zh) * 2012-10-17 2014-05-07 李世民 中低压配电网用水式熄弧保护间隙装置
CN110416877A (zh) * 2019-06-20 2019-11-05 王嬿蕾 一种反冲式抑制雷击强度的方法
CN112117647A (zh) * 2019-06-20 2020-12-22 南宁超伏电气科技有限公司 一种增压型单反冲灭弧方法及应用

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232163B (zh) * 2008-01-30 2010-06-02 江苏省电力公司常州供电公司 间隙防雷的保护方法及其装置
CN103730834B (zh) * 2012-10-15 2016-01-27 闫仁宝 喷气式并联间隙装置
CN205051347U (zh) * 2015-10-02 2016-02-24 陕西恒信远电力科技有限公司 一种110kV单相阻容过电压保护器
CN106169744B (zh) * 2016-08-24 2018-06-08 扬州华峰防雷新科技有限公司 一种变能化雷系统装置
CN207265416U (zh) * 2017-09-27 2018-04-20 海南电网有限责任公司临高供电局 一种10kV交流架空线路吹弧式防雷装置
CN108766697B (zh) * 2018-06-13 2023-10-03 泰州学院 一种复合绝缘金属氧化物避雷器
CN209045334U (zh) * 2018-10-13 2019-06-28 马山 一种具有防雷功能的变压器
CN109887693A (zh) * 2019-04-02 2019-06-14 泰州学院 一种可变串联间隙复合绝缘金属氧化物避雷器
CN209592619U (zh) * 2019-04-16 2019-11-05 王嬿蕾 一种直筒反冲式放电灭弧管
CN110021495B (zh) * 2019-04-23 2020-11-06 西安交通大学 用于直流开断的液体灭弧室、直流断路器及其方法
CN112117746B (zh) * 2019-06-20 2022-05-24 王巨丰 一种消除档距中央闪络和工频绝缘强度损失的方法及系统
CN112117745A (zh) * 2019-06-20 2020-12-22 王嬿蕾 一种消除工频绝缘强度损失的动态绝缘配合方法及装置
CN110660549A (zh) * 2019-10-09 2020-01-07 全球能源互联网研究院有限公司 避雷器及输电系统
CN110611245B (zh) * 2019-10-16 2023-10-24 南宁超伏电气科技有限公司 一种反冲压缩组合灭弧方法及装置
CN110571777A (zh) * 2019-10-16 2019-12-13 南宁超伏电气科技有限公司 一种防止雷电入侵配电柜的方法及装置
CN113745975B (zh) * 2020-05-28 2022-09-13 中国石油化工股份有限公司 一种间隙型避雷器
CN113206453A (zh) * 2021-04-23 2021-08-03 广西雷闪电气科技有限公司 一种液电爆轰波灭弧浪涌抑制装置及方法
CN113206455A (zh) * 2021-04-23 2021-08-03 广西雷闪电气科技有限公司 一种自补充液态反冲灭弧装置
CN113594869A (zh) * 2021-08-09 2021-11-02 南宁超伏电气科技有限公司 一种多级衰减雷电流强度和陡度的装置
CN113823466A (zh) * 2021-08-09 2021-12-21 南宁超伏电气科技有限公司 一种应对绝缘配合失败的绝缘子改造灭弧装置
CN113725733B (zh) * 2021-08-09 2023-11-03 南宁超伏电气科技有限公司 一种基于液电效应和帕斯卡原理的灭弧防雷方法
CN113594865A (zh) * 2021-08-09 2021-11-02 南宁超伏电气科技有限公司 一种承受高强度压力密封的灭弧装置
CN113594878A (zh) * 2021-08-09 2021-11-02 南宁超伏电气科技有限公司 一种基于液电效应灭弧防雷装置
CN113823998A (zh) * 2021-08-09 2021-12-21 南宁超伏电气科技有限公司 一种快速中断建弧过程的装置
CN113594877B (zh) * 2021-08-09 2023-11-24 南宁超伏电气科技有限公司 一种衰减雷电流强度和陡度避雷针及其方法
CN218940310U (zh) * 2022-04-20 2023-04-28 南宁超伏电气科技有限公司 一种三态组合灭弧装置
CN219086447U (zh) * 2022-04-20 2023-05-26 南宁超伏电气科技有限公司 一种电弧细管灌注液电效应灭弧装置、系统
CN219086446U (zh) * 2022-04-20 2023-05-26 南宁超伏电气科技有限公司 一种消除工频绝缘强度损失的动态灭弧系统
CN219086451U (zh) * 2022-04-20 2023-05-26 广西雷闪电气科技有限公司 一种多段液态灭弧装置
CN219086456U (zh) * 2022-04-20 2023-05-26 南宁超伏电气科技有限公司 一种补充液体和强密封的液电效应灭弧装置
CN218940308U (zh) * 2022-04-20 2023-04-28 南宁超伏电气科技有限公司 一种保护风机叶片的雷电强度衰减装置
CN218940311U (zh) * 2022-04-20 2023-04-28 南宁超伏电气科技有限公司 一种强化液电效应灭弧装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103779787A (zh) * 2012-10-17 2014-05-07 李世民 中低压配电网用水式熄弧保护间隙装置
CN110416877A (zh) * 2019-06-20 2019-11-05 王嬿蕾 一种反冲式抑制雷击强度的方法
CN112117647A (zh) * 2019-06-20 2020-12-22 南宁超伏电气科技有限公司 一种增压型单反冲灭弧方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115579736A (zh) * 2022-04-21 2023-01-06 广西雷闪电气科技有限公司 一种液态反冲灭弧防雷方法

Also Published As

Publication number Publication date
CN114629003B (zh) 2023-12-22
CN114629007A (zh) 2022-06-14
CN114665383A (zh) 2022-06-24
CN114629008A (zh) 2022-06-14
CN114629005B (zh) 2023-12-22
CN115548882A (zh) 2022-12-30
CN114628995B (zh) 2023-12-29
CN114629008B (zh) 2024-01-05
CN114640026B (zh) 2023-12-29
CN114628999A (zh) 2022-06-14
CN114629004A (zh) 2022-06-14
CN114629003A (zh) 2022-06-14
CN114665384B (zh) 2024-01-05
CN115621845B (zh) 2024-03-08
CN114629006A (zh) 2022-06-14
CN114629000A (zh) 2022-06-14
CN115621845A (zh) 2023-01-17
CN114628996A (zh) 2022-06-14
CN115548881A (zh) 2022-12-30
CN114629005A (zh) 2022-06-14
CN114665384A (zh) 2022-06-24
CN114628997B (zh) 2023-11-24
CN114629001A (zh) 2022-06-14
CN114628995A (zh) 2022-06-14
CN114628997A (zh) 2022-06-14
CN114628999B (zh) 2024-01-05
CN114628998A (zh) 2022-06-14
CN114640026A (zh) 2022-06-17
CN114640025A (zh) 2022-06-17
CN114629007B (zh) 2024-03-08
CN114629002A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
CN113328340A (zh) 一种液态反冲灭弧防雷方法
CN113206451A (zh) 一种液态反冲灭弧防雷装置
CN214849535U (zh) 一种液态反冲灭弧防雷装置
CN104779522A (zh) 一种具有绝缘子功能的雷电疏导器
CN113206453A (zh) 一种液电爆轰波灭弧浪涌抑制装置及方法
CN113206455A (zh) 一种自补充液态反冲灭弧装置
CN113823998A (zh) 一种快速中断建弧过程的装置
CN113206456A (zh) 一种液态反冲对吹灭弧装置及方法
CN115579736A (zh) 一种液态反冲灭弧防雷方法
CN219086456U (zh) 一种补充液体和强密封的液电效应灭弧装置
CN219086446U (zh) 一种消除工频绝缘强度损失的动态灭弧系统
CN215119539U (zh) 一种液态反冲对吹灭弧装置
CN215452048U (zh) 一种y型反冲灭弧装置
CN215771901U (zh) 一种动态自适应绝缘配合装置
CN113206450A (zh) 电弧反冲与雷电波反射叠加衰减雷击强度方法及其装置
CN214706582U (zh) 一种液电爆轰波灭弧浪涌抑制装置
CN106655067A (zh) 线路闪络保护器
CN214673451U (zh) 一种通过气体灭弧来抑制浪涌装置
CN218242555U (zh) 一种立式间隙防雷泄流喷射式避雷器
CN219329484U (zh) 一种优化管内压强的装置
CN113488849A (zh) 一种动态自适应绝缘配合装置及方法
CN214849534U (zh) 电弧反冲与雷电波反射叠加衰减雷击强度装置
CN215119538U (zh) 一种具有延时功能的反冲防雷灭弧装置
CN215452052U (zh) 一种全密封型液体避雷器
CN215816826U (zh) 多管液态反冲灭弧装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210831

WD01 Invention patent application deemed withdrawn after publication