CN113155501B - 一种基于物联网技术的工业设备实时监测系统 - Google Patents

一种基于物联网技术的工业设备实时监测系统 Download PDF

Info

Publication number
CN113155501B
CN113155501B CN202110463252.8A CN202110463252A CN113155501B CN 113155501 B CN113155501 B CN 113155501B CN 202110463252 A CN202110463252 A CN 202110463252A CN 113155501 B CN113155501 B CN 113155501B
Authority
CN
China
Prior art keywords
data
algorithm
follows
decomposition
kurtosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110463252.8A
Other languages
English (en)
Other versions
CN113155501A (zh
Inventor
孙骏
陆晓佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Sifeijie Software Technology Co ltd
Original Assignee
Nanjing Sifeijie Software Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Sifeijie Software Technology Co ltd filed Critical Nanjing Sifeijie Software Technology Co ltd
Priority to CN202110463252.8A priority Critical patent/CN113155501B/zh
Publication of CN113155501A publication Critical patent/CN113155501A/zh
Application granted granted Critical
Publication of CN113155501B publication Critical patent/CN113155501B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/005Testing of complete machines, e.g. washing-machines or mobile phones
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

一种基于物联网技术的工业设备实时监测系统。1)利用加速度传感器采集所监测设备的振动信号并通过通信模块上传至物联网云平台;2)利用基于云计算的数据存储技术对采集到的数据进行分类与整合;3)服务器从云平台中获取数据,并利用变分模态分解算法对数据进行模态分解,接着利用峭度和谐波因子指标筛选出敏感模态并重构;4)利用最大相关峭度解卷积算法对步骤3中重构模态进行滤波增强;5)利用希尔伯特包络解调对步骤4滤波后数据进行处理,结合故障特征频率进行判断,若判断出故障,则发出相应的报警,反之继续监测。本发明利用物联网技术对工业中的海量数据进行存储,并利用相关算法对数据进行特征提取。

Description

一种基于物联网技术的工业设备实时监测系统
技术领域
本发明涉及工业设备实时健康监测领域,特别是涉及一种基于物联网技术的工业设备实时监测系统。
背景技术
工业中旋转机械设备的检修方式为定期检修,这种检修方式容易造成过度检修和检修不及时,既增加了日常维护的工作量,又可能达不到预期目的,造成了人力、物力和财力的多重浪费,所以对旋转机械设备及系统进行状态监测以及可能出现的故障进行诊断具有非常重要的意义,是企业日常生产的重要保障。
一方面,工业物联网是将具有感知、监控能力的各类采集、控制传感器或控制器,以及移动通信、智能分析等技术不断融入到工业生产过程各个环节,从而大幅提高制造效率,改善产品质量,降低产品成本和资源消耗,最终实现将传统工业提升到智能化的新阶段。另一方面,针对选择工业设备的状态监测与故障诊断,其核心涉及到信号处理和深度学习两大方面,其中信号处理涉及非线性、非稳定的分解方法,这类分解方法有变分模态分解(VMD)、集合经验模态分解(EEMD)和经验小波变换(EWT),传统的方法有频谱分析、包络谱分析等,但传统的信号处理算法都存在一定的弊端,如VMD分解算法中如何有效的对分解得到的一系列模态进行准确的筛选是一大问题,同时工业数据中含有较大的噪声,如何消除噪声的影响也是一大难题。
国内涉及工业设备状态监测的国内专利有 “基于噪声和振动的动力机械设备故障和能耗分析方法”(申请号为CN202010935729.3),利用包括解耦分析,特征识别和频谱分析的数据分析方法对采集到的设备的噪声和振动信号进行特征分析,然后利用设备的噪声和振动信号反映其运行状态,包括设备不同负荷下的状态变化和不同的故障状态的特征变化,最终利用噪声和振动信号监测动力机械设备的故障和能耗状态。国家发明专利“一种机械设备的无线监测装置和监测系统”(申请号为CN201711376796.0),该方法包括:信号处理模块、处理器、WIFI通信模块和Zigbee通信模块,通过在机械设备上分布多个信号采集点,各信号采集点处设有传感器来采集设备监测信号,而后通过该系统对机械设备实现实时的状态监测。
发明内容
为解决上述问题,本发明在物联网技术,VMD算法和MCKD算法的基础上,提出了一种基于物联网技术的工业设备实时监测系统。首先,利用MYSQL和Hadoop分布式文件系统对采集的工业数据进行分类整合;而后针对传统VMD算法中分解模态筛选的难题,提出谐波因子周期性量化指标,并结合现有的峭度指标,实现了对分解模态准确的筛选;接着利用MCKD算法对重构信号进行进一步的滤波以增强故障特征;最后利用Hilbert解调对数据故障与否进行判断,实现了对工业设备的智能监测。为达此目的,本发明提供一种基于物联网技术的工业设备实时监测系统,具体步骤如下,其特征在于:
步骤1,设备数据采集与传输:利用加速度传感器采集所监测设备的振动信号并通过通信模块上传至物联网云平台;
步骤2,数据的分类整合:利用基于云计算的数据存储技术对采集到的数据进行分类与整合;
步骤3,模态分解与重构:服务器从云平台中获取数据,并利用变分模态分解算法对数据进行模态分解,接着利用峭度和谐波因子指标筛选出敏感模态并重构;
步骤3中采集数据的模态分解与重构的具体步骤为:
步骤3.1,构建VMD分解中分解模态函数uk(t) 的约束变分问题,其表达式如下:
Figure 182292DEST_PATH_IMAGE001
式中,f(t)为原始信号,K为VMD算法中分解的模态总数,u k 表示分解得到的第k个模态分量,ω k 表示u k 的中心频率,δ(t)表示狄利克雷函数,*表示卷积运算;
步骤3.2,引入拉格朗日乘子λ(t)和惩罚因子α构建增广拉格朗日式,其表达式如下:
Figure 974667DEST_PATH_IMAGE003
式中, <.>表示内积运算;
步骤3.3,引入交替方向乘子法ADMM,对步骤3.2中的增广拉格朗日式中的参数进行交替更新,直至算法收敛;
步骤3.4,利用峭度和谐波因子Harmonic factor, HF对步骤3.1~步骤3.3分解得到的模态进行筛选,筛选的准则为:按照所提出的HF从大到小的顺序选取前5个模态,并将所选取的5个模态中峭度大于3.0的模态进一步选取出来,此时认为所选取的模态为故障模态,并将最终所选的模态线性相加构成重构信号,其中信号x的峭度表达式为:
Figure 191016DEST_PATH_IMAGE004
式中,𝜇和𝜎分别是信号x的均值和标准差,E为x的期望;
谐波因子HF定义为:
Figure 653221DEST_PATH_IMAGE005
式中,f表示旋转机械的故障特征频率,es()为信号x的包络谱,fs为信号的采样频率;
步骤4,模态滤波增强:利用最大相关峭度解卷积算法对步骤3中重构模态进行滤波增强;
步骤4中利用最大相关峭度解卷积算法MCKD对步骤3中重构模态进行滤波增强的具体步骤为:
步骤4.1,计算并设定滤波器的长度L、冲击信号y的周期T和位移数M ,其中相关峭度的定义为:
Figure 1026DEST_PATH_IMAGE006
步骤4.2,求取滤波所得信号y(n),并根据y(n)计算矩阵α和β,表达式分别如下:
Figure 472459DEST_PATH_IMAGE007
步骤4.3,利用计算得出的α和β对MCKD算法中的滤波器系数进行更新;
步骤4.4,重复步骤4.1~4.3,直至算法收敛,此时认为最佳滤波器确定完毕;
步骤5,数据结果处理:利用Hilbert包络解调对步骤4滤波后数据进行处理,结合故障特征频率进行判断,若判断出故障,则发出相应的报警,反之继续监测。
进一步改进,步骤1中设备数据采集与传输的具体描述为:
加速度传感器型号选取的是CAYD187T02,数据采集卡使用的是NI-PXle4496,通讯模块使用的是STM32型号芯片,而后通过RS485总线通讯接口,最后通过4G通讯模块传输至物联网数据云平台。
进一步改进,步骤2中的数据分类整合具体描述为:
整个数据分类整合系统,是基于云计算进行搭建的,其中采用访问控制和数据的存储加密保证数据存储的安全,具体的,数据存储的方式为MYSQL和Hadoop分布式文件系统。
本发明一种基于物联网技术的工业设备实时监测系统,有益效果:本发明的技术效果在于:
1. 本发明基于云计算搭建了数据管理系统,其中利用MYSQL和Hadoop分布式文件系统对采集的工业数据进行分类整合,提高了数据存储和获取的效率与安全性;
2. 本发明针对传统VMD算法中分解模态筛选的难题,提出谐波因子周期性量化指标,并结合现有的峭度指标,实现了对分解模态准确的筛选;
3. 本发明利用MCKD算法对重构信号进行进一步的滤波以增强故障特征,最后结合Hilbert解调对数据故障与否进行判断,实现了对工业设备的智能监测。
附图说明
图1为本发明的流程图;
图2整个系统不同模块间的信息交互规则图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步详细描述:
本发明提出了一种基于物联网技术的工业设备实时监测系统,旨在实现对工业设备健康状态的实时监测以保障生产的安全运行和提高生产效率。
图1为本发明的流程图,面结合流程图对本发明的步骤作详细介绍。
步骤1,设备数据采集与传输:利用加速度传感器采集所监测设备的振动信号并通过通信模块上传至物联网云平台;
步骤1中设备数据采集与传输的具体描述为:
加速度传感器型号选取的是CAYD187T02,数据采集卡使用的是NI-PXle4496,通讯模块使用的是STM32型号芯片,而后通过RS485总线通讯接口,最后通过4G通讯模块传输至物联网数据云平台。
步骤2,数据的分类整合:利用基于云计算的数据存储技术对采集到的数据进行分类与整合;
步骤2中的数据分类整合可具体描述为:
整个数据分类整合系统,是基于云计算进行搭建的,其中采用访问控制和数据的存储加密保证数据存储的安全,具体的,数据存储的方式为MYSQL和Hadoop分布式文件系统。
步骤3,模态分解与重构:服务器从云平台中获取数据,并利用变分模态分解算法对数据进行模态分解,接着利用峭度和谐波因子指标筛选出敏感模态并重构;
步骤3中采集数据的模态分解与重构的具体步骤为:
步骤3.1,构建VMD分解中分解模态函数uk(t) 的约束变分问题,其表达式如下:
Figure 340052DEST_PATH_IMAGE001
式中,f(t)为原始信号,K为VMD算法中分解的模态总数,u k 表示分解得到的第k个模态分量,ω k 表示u k 的中心频率,δ(t)表示狄利克雷函数,*表示卷积运算;
步骤3.2,引入拉格朗日乘子λ(t)和惩罚因子α构建增广拉格朗日式,其表达式如下:
Figure 238737DEST_PATH_IMAGE008
式中, <.>表示内积运算;
步骤3.3,引入交替方向乘子法ADMM,对步骤3.2中的增广拉格朗日式中的参数进行交替更新,直至算法收敛;
步骤3.4,利用峭度和谐波因子Harmonic factor, HF对步骤3.1~步骤3.3分解得到的模态进行筛选,筛选的准则为:按照所提出的HF从大到小的顺序选取前5个模态,并将所选取的5个模态中峭度大于3.0的模态进一步选取出来,此时认为所选取的模态为故障模态,并将最终所选的模态线性相加构成重构信号,其中信号x的峭度表达式为:
Figure 277101DEST_PATH_IMAGE004
式中,𝜇和𝜎分别是信号x的均值和标准差,E为x的期望;
谐波因子HF定义为:
Figure 896432DEST_PATH_IMAGE005
式中,f表示旋转机械的故障特征频率,es()为信号x的包络谱,fs为信号的采样频率;
步骤4,模态滤波增强:利用最大相关峭度解卷积算法对步骤3中重构模态进行滤波增强;
步骤4中利用最大相关峭度解卷积算法MCKD对步骤3中重构模态进行滤波增强的具体步骤为:
步骤4.1,计算并设定滤波器的长度L、冲击信号y的周期T和位移数M ,其中相关峭度的定义为:
Figure 8744DEST_PATH_IMAGE006
步骤4.2,求取滤波所得信号y(n),并根据y(n)计算矩阵α和β,表达式分别如下:
Figure 937386DEST_PATH_IMAGE007
步骤4.3,利用计算得出的α和β对MCKD算法中的滤波器系数进行更新;
步骤4.4,重复步骤4.1~4.3,直至算法收敛,此时认为最佳滤波器确定完毕;
步骤5,数据结果处理:利用Hilbert包络解调对步骤4滤波后数据进行处理,结合故障特征频率进行判断,若判断出故障,则发出相应的报警,反之继续监测。
图2为整个系统不同模块间的信息交互示意图。从该示意图中可以清晰的看出:在数据采集模块中,利用CAYD187T02型号的加速度传感器和NI-PXle4496型号的数据采集卡对机械设备的振动信号进行采集,而后利用STM32核心监测模块和4G传输模块将采集到的数据上传至云平台,并在云平台中采用MYSQL数据库和Hadoop分布式文件系统对数据进行分类整合;在数据处理阶段,服务器通过从云平台中获取数据,接着利用VMD分解算法对数据进行模态分解,随后利用峭度与谐波因子HF指标对分解所得的模态进行筛选并重构,而后利用MCKD滤波增强算法对重构的模态进行处理,最后结合Hilbert包络解调算法和故障特征频率实现故障的判断,若判断出故障则发出相应的警报,这时需要工作人员做出相应的检查以解除警报,从而保障机械设备安全稳定的运行。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。

Claims (1)

1.一种基于物联网技术的工业设备实时监测方法,具体步骤如下,其特征在于:
步骤1,设备数据采集与传输:利用加速度传感器采集所监测设备的振动信号并通过通信模块上传至物联网云平台;
步骤1中设备数据采集与传输的具体描述为:
加速度传感器型号选取的是CAYD187T02,数据采集卡使用的是NI-PXle4496,通讯模块使用的是STM32型号芯片,而后通过RS485总线通讯接口,最后通过4G通讯模块传输至物联网数据云平台;
步骤2,数据的分类整合:利用基于云计算的数据存储技术对采集到的数据进行分类与整合;
步骤2中的数据分类整合具体描述为:
整个数据分类整合系统,是基于云计算进行搭建的,其中采用访问控制和数据的存储加密保证数据存储的安全,具体的,数据存储的方式为MYSQL和Hadoop分布式文件系统;
步骤3,模态分解与重构:服务器从云平台中获取数据,并利用变分模态分解算法对数据进行模态分解,接着利用峭度和谐波因子指标筛选出敏感模态并重构;
步骤3中采集数据的模态分解与重构的具体步骤为:
步骤3.1,构建VMD分解中分解模态函数uk(t)的约束变分问题,其表达式如下:
Figure FDA0003899426780000011
式中,f(t)为原始信号,K为VMD算法中分解的模态总数,uk表示分解得到的第k个模态分量,ωk表示uk的中心频率,δ(t)表示狄利克雷函数,*表示卷积运算,||.||2 2表示2范数平方;
步骤3.2,引入拉格朗日乘子λ(t)和惩罚因子α构建增广拉格朗日式,其表达式如下:
Figure FDA0003899426780000021
式中,<.>表示内积运算;
步骤3.3,引入交替方向乘子法ADMM,对步骤3.2中的增广拉格朗日式中的参数进行交替更新,直至算法收敛;
步骤3.4,利用峭度和谐波因子Harmonic factor,HF对步骤3.1~步骤3.3分解得到的模态进行筛选,筛选的准则为:按照所提出的HF从大到小的顺序选取前5个模态,并将所选取的5个模态中峭度大于3.0的模态进一步选取出来,此时认为所选取的模态为故障模态,并将最终所选的模态线性相加构成重构信号,其中信号x的峭度表达式为:
Figure FDA0003899426780000022
式中,μ和σ分别是信号x的均值和标准差,E为x的期望;
谐波因子HF定义为:
Figure FDA0003899426780000023
式中,f表示旋转机械的故障特征频率,es()为信号x的包络谱,fs为信号的采样频率;
步骤4,模态滤波增强:利用最大相关峭度解卷积算法对步骤3中重构模态进行滤波增强;
步骤4中利用最大相关峭度解卷积算法MCKD对步骤3中重构模态进行滤波增强的具体步骤为:
步骤4.1,计算并设定滤波器的长度L、冲击信号y的周期T和位移数M,其中相关峭度的定义为:
Figure FDA0003899426780000031
步骤4.2,求取滤波所得信号y(n),并根据y(n)计算矩阵α和β,表达式分别如下:
Figure FDA0003899426780000032
Figure FDA0003899426780000033
步骤4.3,利用计算得出的α和β对MCKD算法中的滤波器系数进行更新;
步骤4.4,重复步骤4.1~4.3,直至算法收敛,此时认为最佳滤波器确定完毕;
步骤5,数据结果处理:利用Hilbert包络解调对步骤4滤波后数据进行处理,结合故障特征频率进行判断,若判断出故障,则发出相应的报警,反之继续监测。
CN202110463252.8A 2021-04-28 2021-04-28 一种基于物联网技术的工业设备实时监测系统 Active CN113155501B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110463252.8A CN113155501B (zh) 2021-04-28 2021-04-28 一种基于物联网技术的工业设备实时监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110463252.8A CN113155501B (zh) 2021-04-28 2021-04-28 一种基于物联网技术的工业设备实时监测系统

Publications (2)

Publication Number Publication Date
CN113155501A CN113155501A (zh) 2021-07-23
CN113155501B true CN113155501B (zh) 2022-11-29

Family

ID=76871573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110463252.8A Active CN113155501B (zh) 2021-04-28 2021-04-28 一种基于物联网技术的工业设备实时监测系统

Country Status (1)

Country Link
CN (1) CN113155501B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114330455B (zh) * 2022-01-05 2022-10-11 哈尔滨工业大学 一种基于压缩感知的钢轨声发射信号快速高精度重构方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106017926A (zh) * 2016-05-13 2016-10-12 山东理工大学 基于变模态分解的滚动轴承故障诊断方法
CN108426715A (zh) * 2018-06-13 2018-08-21 福州大学 基于pso-vmd-mckd的滚动轴承微弱故障诊断方法
CN109029977B (zh) * 2018-07-12 2019-12-31 福州大学 一种基于vmd-amckd的行星齿轮箱早期故障诊断方法
CN111178318B (zh) * 2020-01-06 2023-07-11 东南大学 一种基于渐进式vmd的滚动轴承早期复合故障特征提取方法

Also Published As

Publication number Publication date
CN113155501A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN112016828B (zh) 基于流式大数据的工业设备健康管理云平台架构
CN109743356B (zh) 工业互联网数据采集方法及装置、可读存储介质和终端
CN111698267B (zh) 一种工业控制系统信息安全测试系统及方法
CN106484709A (zh) 一种日志数据的审计方法和审计装置
CN109670584A (zh) 一种基于大数据的故障诊断方法及系统
CN111224840A (zh) 具有故障诊断性能的网关系统及其方法
CN104318305B (zh) 一种基于小波与神经网络的逆变器低频噪声故障诊断方法
CN113155501B (zh) 一种基于物联网技术的工业设备实时监测系统
CN114637263B (zh) 一种异常工况实时监测方法、装置、设备及存储介质
CN115022187B (zh) 一种电-气综合能源系统态势感知方法与装置
CN112084684A (zh) 一种基于物联网的桥梁健康可视化监测系统
CN113743246A (zh) 一种基于深度学习的关键电能设备故障诊断方法
CN116049654A (zh) 一种选煤设备的安全监测预警方法及系统
CN104954351B (zh) 数据检测方法和装置
CN113092083A (zh) 一种基于分形维数和神经网络的机泵故障诊断方法和装置
CN115657533A (zh) 一种压力机边缘控制设备及控制方法
CN114760341B (zh) 一种工业互联网设备智能管控远程运维平台及方法
CN115310499A (zh) 一种基于数据融合的工业设备故障诊断系统及方法
CN115564075A (zh) 一种城市电网主配一体故障协同诊断方法、系统
CN114116831A (zh) 一种大数据挖掘处理方法及装置
CN113934175A (zh) 一种智能无线汽轮机数据采集系统
CN110807481A (zh) 一种基于多源数据的针对起重机械的故障预测方法
CN116737797B (zh) 一种基于高性能时序数据库的桥梁在线健康监测系统
CN116861204B (zh) 基于数字孪生的智能制造设备数据管理系统
CN114596011B (zh) 基于人工智能的企业数据处理方法及相关装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant