CN113078112A - 一种氧化物基耗尽型负载反相器的制备方法 - Google Patents

一种氧化物基耗尽型负载反相器的制备方法 Download PDF

Info

Publication number
CN113078112A
CN113078112A CN202110335300.5A CN202110335300A CN113078112A CN 113078112 A CN113078112 A CN 113078112A CN 202110335300 A CN202110335300 A CN 202110335300A CN 113078112 A CN113078112 A CN 113078112A
Authority
CN
China
Prior art keywords
oxide
gate dielectric
dielectric layer
oxide semiconductor
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110335300.5A
Other languages
English (en)
Other versions
CN113078112B (zh
Inventor
钱凌轩
张�诚
谭欣月
张万里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110335300.5A priority Critical patent/CN113078112B/zh
Publication of CN113078112A publication Critical patent/CN113078112A/zh
Application granted granted Critical
Publication of CN113078112B publication Critical patent/CN113078112B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明属于半导体技术领域,具体提供一种氧化物基耗尽型负载反相器的制备方法,用以解决现有耗尽型负载反相器存在的制备工艺复杂、稳定性低、生产成本高等问题。本发明采用负载管(耗尽型晶体管)与驱动管(增强型晶体管)的栅介质层单独制备、氧化物半导体层一步制备的工艺,通过负载管与驱动管的栅介质层制备过程中的氧气含量的控制,实现负载管与驱动管的阈值电压的单独调节,使驱动管的阈值电压为正值、负载管的阈值电压为负值,进而构成氧化物基耗尽型负载反相器。本发明方法制备得氧化物基耗尽型负载反相器的氧化物半导体层一步制备可得,工艺稳定。因此,本发明具备制备工艺简单、稳定性高、制备成本低,利于工业化生产等优势。

Description

一种氧化物基耗尽型负载反相器的制备方法
技术领域
本发明属于半导体技术领域,具体提供一种氧化物基耗尽型负载反相器的制备方法。
背景技术
近年来,以InGaZnO为代表的氧化物半导体作为有源层材料的薄膜晶体管引起了国内外的研究热潮。氧化物薄膜晶体管具有高迁移率(利于精细化)、关态电流低(节能)、可见光透明(可实现全透明显示)、均匀性好(可应用于大尺寸面板的生产)和制备温度低(可采用塑料柔性衬底)等优点,全球面板巨头都在加速布局氧化物薄膜晶体管技术。基于氧化物薄膜晶体管制备的反相器不仅可以应用于显示领域,还可以应用于柔性电子、传感器等多个领域。
由于缺少高性能的P型氧化物半导体与N型氧化物半导体匹配组成互补金属氧化物半导体(CMOS),到目前为止,现有氧化物基反相器多使用NMOS反相器。根据负载的不同,NMOS反相器可以分为电阻负载反相器、增强型负载反相器和耗尽型负载反相器三种类型;由于电阻负载型反相器中电阻制备通常需要占用较大的空间,因此电阻负载型反相器的实际应用较少;耗尽型负载反相器相比于增强型负载反相器有着更陡峭的电压传输特性曲线、更好的噪声容限、更短的转化时间以及更小的面积需求,更加受到研究人员的青睐。
由于耗尽型负载反相器是以耗尽型晶体管为负载管,增强型晶体管为驱动管,为了实现耗尽型负载反相器则需要调节两个晶体管的阈值电压,使得驱动管的阈值电压为正值、负载管的阈值电压为负值。针对氧化物基耗尽型负载反相器,氧化物基晶体管常见为增强型,即阈值电压为正值,同时实现驱动管和负载管的阈值电压为正/负值较为困难。现行的方法是,通过两次生长氧化物半导体层,分别实现不同的载流子浓度,从而达到阈值电压的正负差异。然而,氧化物半导体的材料特性对生长工艺条件较为敏感,实现载流子浓度的精准控制难度大,工艺窗口窄;作为整个器件的关键层,氧化物半导体层对于生长工艺调节的敏感性又会导致器件性能的不稳定,进而影响到整个电路性能。另外,也可以通过改变器件结构来调控阈值电压,例如沉积钝化层或者采用多栅结构,但是这些方法需要复杂的器件结构以及繁琐的工艺步骤,从而增加了生产成本,并降低与现行技术的兼容性。
发明内容
针对现有氧化物基耗尽型负载反相器存在的问题,本发明提出一种氧化物基耗尽型负载反相器的制备方法,采用负载管(耗尽型晶体管)与驱动管(增强型晶体管)的栅介质层单独制备、氧化物半导体层一步制备的工艺,无须调控器件氧化物半导体层的生长工艺条件,通过负载管与驱动管的栅介质层制备过程中的氧气含量的控制,实现负载管与驱动管的阈值电压的单独调节,使驱动管的阈值电压为正值、负载管的阈值电压为负值,进而构成氧化物基耗尽型负载反相器。
为实现上述目的,本发明采用的技术方案如下:
一种氧化物基耗尽型负载反相器的制备方法,包括步骤如下:
步骤1、在衬底上预设位置处分别制备第一栅电极与第二栅电极;
步骤2、在第一栅电极上生长第一栅介质层,生长气氛为富氧状态;
步骤3、在第二栅电极上生长第二栅介质层,生长气氛为少氧状态;
步骤4、在第一、第二栅介质层上同时生长氧化物半导体材料,形成第一、第二氧化物半导体层;
步骤5、在第一、第二氧化物半导体层上预设位置处分别制备接地端电极、电源供应端电极、输出端电极。
步骤6、将经步骤1~5所得结构置于退火炉中进行退火处理,改善电极的欧姆接触。
进一步的,所述第一栅介质层与第二栅介质层材料相同,均为La基氧化物。
进一步的,所述第一栅介质层材料采用HfLaO薄膜层,所述步骤2的具体过程为:采用磁控溅射法,在第一栅电极上溅射生长HfLaO薄膜层,作为第一栅介质层;溅射参数为:靶材为Hf/La金属靶,背底真空度低于6.7×10-4Pa,溅射功率为50W-150W,生长温度为室温,溅射过程中氧气占比不低于20%,生长真空度为0.2Pa-1.5Pa。
进一步的,所述第二栅介质层材料采用HfLaO薄膜层,所述步骤3的具体过程为:采用磁控溅射法,在第二栅电极上溅射生长HfLaO薄膜层,作为第二栅介质层;溅射参数为:靶材为Hf/La金属靶,背底真空度低于6.7×10-4Pa,溅射功率为50W-150W,生长温度为室温,溅射过程中氧气占比不高于15%,生长真空度为0.2Pa-1.5Pa。
进一步的,所述第一栅介质层与第二栅介质层厚度相同,均为10nm-100nm。
进一步的,所述步骤6中,退火处理的参数为:退火条件为200℃-500℃、真空或氮气氛围,退火时间为5min-60min。
进一步的,所述衬底的材料为SiO2、SiC、Al2O3、玻璃或者高分子聚合物。
进一步的,所述第一、第二氧化物半导体层均采用In2O3、Ga2O3、InGaZnO或SnO2薄膜,厚度为10nm-50nm;所述第一、第二氧化物半导体层均采用InGaZnO薄膜层时,InGaZnO薄膜层采用磁控溅射法制备。
进一步的,所述第一栅电极与第二栅电极采用厚度为20nm-100nm的Mo金属层;所述接地端电极、电源供应端电极、输出端电极均采用Ti/Au金属层,Ti的厚度为5nm-50nm、Au的厚度为20nm-100nm。
进一步的,步骤4实施之前将经步骤1~3所得结构置于退火炉中进行退火处理。
本发明的有益效果在于:
本发明提供一种氧化物基耗尽型负载反相器的制备方法,采用负载管(耗尽型晶体管)与驱动管(增强型晶体管)的栅介质层单独制备、氧化物半导体层一步制备的工艺,通过负载管与驱动管的栅介质层制备过程中的氧气含量的控制,实现负载管与驱动管的阈值电压的单独调节,使驱动管的阈值电压为正值、负载管的阈值电压为负值,进而构成氧化物基耗尽型负载反相器。降低栅介质层制备过程中的氧气含量,使得栅介质薄膜层未完全氧化,由于栅介质层采用的金属离子的结合能较强,借助最后的器件电极退火工艺,会夺走氧化物半导体层的氧与其形成稳定的化学键,导致氧化物半导体层中载流子浓度发生变化,进而实现阈值电压的变化,从而满足驱动管和负载管正/负阈值电压的需要。
综上,采用本发明方法能够实现氧化物基耗尽型负载反相器中负载管(耗尽型晶体管)与驱动管(增强型晶体管)的阈值电压的有效调节,避免多步调控及制备器件关键层(氧化物半导体层),因此工艺简单、器件/电路稳定性高,且兼具成本优势,利于工业化生产。
附图说明
图1为本发明氧化物基耗尽型负载反相器的电路原理图;
图2为本发明氧化物基耗尽型负载反相器的整体结构示意图;
图3为本发明负载管(耗尽型晶体管)的结构示意图;
图4为本发明氧化物基耗尽型负载反相器的制备流程图;
图5为本发明实施例中负载管(耗尽型晶体管)的转移特性曲线;
图6为本发明实施例中驱动管(增强型晶体管)的转移特性曲线;
其中,1为衬底,2-1为第一栅电极、2-2为第二栅电极,3-1为第一栅介质层、3-2为第二栅介质层,4-1为第一氧化物半导体层、4-2为第二氧化物半导体层,5为接地端电极,6为输出端电极,7为电源供应端电极。
具体实施方式
以下结合实施例及附图对本发明的原理和特征进行详细说明,所举实施例只用于解释本发明,并非用于限定本发明的范围。
本实施例提供一种氧化物基耗尽型负载反相器的制备方法,所述氧化物基耗尽型负载反相器的电路原理图如图1所示,由负载管(耗尽型晶体管)与驱动管(增强型晶体管)构成,负载管的源极作为器件(氧化物基耗尽型负载反相器)的电源供应端,负载管的漏极与栅极相连、并与驱动管的源极相连、三者相连后作为器件的输出端,驱动管的栅极作为器件的输入端,驱动管的漏极作为器件的接地端。
基于上述电路原理图,所述氧化物基耗尽型负载反相器的具体结构的剖视图如图2所示,所述负载管(耗尽型晶体管)与驱动管(增强型晶体管)具有相同的结构,其中,衬底1、第一栅电极2-1、第一栅介质层3-1、第一氧化物半导体层4-1、接地端电极5、输出端电极6共同构成驱动管,接地端电极5即为驱动管的漏极,输出端电极6即为驱动管的源极;衬底1、第二栅电极2-2、第二栅介质层3-2、第二氧化物半导体层4-2、输出端电极6、电源供应端电极7共同构成负载管,输出端电极6即为负载管的漏极,电源供应端电极7即为负载管的源极。更为具体的讲,以负载管为例,其三维结构示意图如图3所示。
本实施例提供一种上述氧化物基耗尽型负载反相器的制备方法,其流程如图4所示,具体包括以下步骤:
步骤1、将二氧化硅晶圆切割为10mm×10mm的大小作为衬底,分别在丙酮、无水乙醇和去离子水中超声清洗10min,然后用氮气枪吹干,并采用热板在80℃~150℃温度下烘烤5min~15min以去除衬底表面的水汽,保证衬底表面清洁、干燥;如图4(a)所示;
步骤2、采用磁控溅射法,在衬底上预设位置处分别溅射生长厚度为100nm的Mo金属层,作为第一、第二栅电极层;溅射功率为100W;如图4(b)所示;
步骤3、采用磁控溅射法,在第一栅电极层上溅射生长厚度为100nm的HfLaO薄膜层,作为第一栅介质层;溅射参数为:靶材为Hf/La金属靶(La含量为40%),HfLaO薄膜的生长条件为:背底真空度为2×10-5Pa、溅射功率为100W、生长温度为室温、生长时的气体流量为Ar:36sccm、O2:9sccm,生长时真空度为0.5Pa;如图4(c)所示;
步骤4、采用磁控溅射法,在第二栅电极层上溅射生长厚度为100nm的HfLaO薄膜层,作为第二栅介质层;溅射参数为:靶材为Hf/La金属靶(La含量为40%),HfLaO薄膜的生长条件为:背底真空度为2×10-5Pa、溅射功率为100W、生长温度为室温、生长时的气体流量为Ar:36sccm、O2:4sccm,生长时真空度为0.5Pa;如图4(d)所示;
步骤5、将经步骤1~4所得结构置于退火炉中进行退火处理,以降低栅介质层的表面缺陷密度,同时重组材料内部结构,提升击穿电压承受力;退火条件为400℃、氮气氛围,退火时间为10min;
步骤6、采用磁控溅射法,在第一、第二栅介质层上分别生长厚度为50nm的InGaZnO博膜层,作为第一、第二氧化物半导体层;溅射参数为:InGaZnO氧化物靶材为In2O3:Ga2O3:ZnO=1:1:1,InGaZnO氧化物的生长条件为:背底真空度为2×10-5Pa、溅射功率为100W、生长温度为室温、生长时的气体流量为Ar:27sccm、O2:0.9sccm,生长时真空度为0.5Pa;如图4(e)所示;
步骤7、采用电子束蒸发法,在第一、第二氧化物半导体层上预设位置生长厚度为20/100nm的Ti/Au金属层,分别作为接地端电极、电源供应端电极、输出端电极;如图4(f)所示;
步骤8、为了更好的改善HfLaO/InGaZnO介面和InGaZnO/Ti/Au界面,对完成步骤1~7的结构进行再次退火处理;退火条件为400℃、N2氛围,退火时间为10min。
对上述方法制备得到的氧化物基耗尽型负载反相器进行性能测试,如图5所示为所述氧化物基耗尽型负载反相器中负载管(耗尽型晶体管)在Vds=1V时的转移特性曲线,如图6所示为所述氧化物基耗尽型负载反相器中驱动管(增强型晶体管)在Vds=1V时的转移特性曲线;由图5可见,负载管(InGaZnO薄膜晶体管)呈现耗尽状态、阈值电压为-0.9V,由图6可见,驱动管(InGaZnO薄膜晶体管)呈现增强状态、阈值电压为5.8V;该测试结果证明了采用本发明制备方法能够实现负载管(耗尽型晶体管)与驱动管(增强型晶体管)的阈值电压调控,使得驱动管的阈值电压为正值、负载管的阈值电压为负值,从而构成耗尽型负载反相器。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (9)

1.一种氧化物基耗尽型负载反相器的制备方法,包括步骤如下:
步骤1、在衬底上预设位置处分别制备第一栅电极与第二栅电极;
步骤2、在第一栅电极上生长第一栅介质层,生长气氛为富氧状态;
步骤3、在第二栅电极上生长第二栅介质层,生长气氛为少氧状态;
步骤4、在第一、第二栅介质层上同时生长氧化物半导体材料,形成第一、第二氧化物半导体层;
步骤5、在第一、第二氧化物半导体层上预设位置处分别制备接地端电极、电源供应端电极、输出端电极。
步骤6、将经步骤1~5所得结构置于退火炉中进行退火处理。
2.按权利要求1所述氧化物基耗尽型负载反相器的制备方法,其特征在于,所述第一栅介质层与第二栅介质层材料相同,均为La基氧化物。
3.按权利要求2所述氧化物基耗尽型负载反相器的制备方法,其特征在于,所述第一栅介质层材料采用HfLaO薄膜层,所述步骤2的具体过程为:采用磁控溅射法,在第一栅电极上溅射生长HfLaO薄膜层,作为第一栅介质层;溅射过程中氧气含量不低于20%。
4.按权利要求2所述氧化物基耗尽型负载反相器的制备方法,其特征在于,所述第二栅介质层材料采用HfLaO薄膜层,所述步骤3的具体过程为:采用磁控溅射法,在第二栅电极上溅射生长HfLaO薄膜层,作为第二栅介质层;溅射过程中氧气含量不高于15%。
5.按权利要求1所述氧化物基耗尽型负载反相器的制备方法,其特征在于,所述第一栅介质层与第二栅介质层厚度相同,均为10nm-100nm。
6.按权利要求1所述氧化物基耗尽型负载反相器的制备方法,其特征在于,所述步骤6中,退火处理的参数为:退火条件为200℃-500℃、真空或氮气氛围,退火时间为5min-60min。
7.按权利要求1所述氧化物基耗尽型负载反相器的制备方法,其特征在于,所述衬底的材料为SiO2、SiC、Al2O3、玻璃或者高分子聚合物。
8.按权利要求1所述氧化物基耗尽型负载反相器的制备方法,其特征在于,所述第一、第二氧化物半导体层均采用In2O3、Ga2O3、InGaZnO或SnO2薄膜。
9.按权利要求1所述氧化物基耗尽型负载反相器的制备方法,其特征在于,所述第一栅电极与第二栅电极采用厚度为20nm-100nm的Mo金属层;所述接地端电极、电源供应端电极、输出端电极均采用Ti/Au金属层,Ti的厚度为5nm-50nm,Au的厚度为20-100nm。
CN202110335300.5A 2021-03-29 2021-03-29 一种氧化物基耗尽型负载反相器的制备方法 Active CN113078112B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110335300.5A CN113078112B (zh) 2021-03-29 2021-03-29 一种氧化物基耗尽型负载反相器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110335300.5A CN113078112B (zh) 2021-03-29 2021-03-29 一种氧化物基耗尽型负载反相器的制备方法

Publications (2)

Publication Number Publication Date
CN113078112A true CN113078112A (zh) 2021-07-06
CN113078112B CN113078112B (zh) 2023-03-31

Family

ID=76611182

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110335300.5A Active CN113078112B (zh) 2021-03-29 2021-03-29 一种氧化物基耗尽型负载反相器的制备方法

Country Status (1)

Country Link
CN (1) CN113078112B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703460A (zh) * 2022-03-29 2022-07-05 电子科技大学 一种稀土元素掺入的铪基二元氧化物薄膜的制备方法
CN114899196A (zh) * 2022-06-14 2022-08-12 东南大学 一种基于igzo薄膜晶体管的反相器及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060214243A1 (en) * 2005-03-28 2006-09-28 Fujitsu Limited Semiconductor device and method for fabricating the same
US20110062992A1 (en) * 2009-09-16 2011-03-17 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, light emitting device, semiconductor device, and electronic device
US20110140096A1 (en) * 2009-12-15 2011-06-16 c/o Samsung Mobile Display Co., Ltd. Thin film transistor, method of manufacturing the same, and organic electroluminescent device including thin film transistor
US20110169097A1 (en) * 2009-06-26 2011-07-14 Wenwu Wang Cmosfet device with controlled threshold voltage and method of fabricating the same
US20120040522A1 (en) * 2010-08-12 2012-02-16 International Business Machines Corporation Method for integrating multiple threshold voltage devices for cmos
US20120049194A1 (en) * 2010-08-31 2012-03-01 Globalfoundries Inc. Increased Charge Carrier Mobility in Transistors by Providing a Strain-Inducing Threshold Adjusting Semiconductor Material in the Channel
US20120112180A1 (en) * 2010-11-05 2012-05-10 National Chiao Tung University Metal oxide thin film transistor and manufacturing method thereof
US20120181616A1 (en) * 2011-01-14 2012-07-19 International Business Machines Corporation STRUCTURE AND METHOD OF Tinv SCALING FOR HIGH k METAL GATE TECHNOLOGY
US20140103340A1 (en) * 2012-10-17 2014-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN104766823A (zh) * 2014-01-07 2015-07-08 中国科学院微电子研究所 半导体器件制造方法
US20160064502A1 (en) * 2014-08-29 2016-03-03 Toyoda Gosei Co., Ltd. MIS-type Semiconductor Device
CN109309049A (zh) * 2017-07-27 2019-02-05 中芯国际集成电路制造(上海)有限公司 半导体结构及其制造方法和高k金属栅鳍式场效应晶体管
US20190214388A1 (en) * 2018-01-09 2019-07-11 Samsung Electronics Co., Ltd. Semiconductor device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060214243A1 (en) * 2005-03-28 2006-09-28 Fujitsu Limited Semiconductor device and method for fabricating the same
US20110169097A1 (en) * 2009-06-26 2011-07-14 Wenwu Wang Cmosfet device with controlled threshold voltage and method of fabricating the same
US20110062992A1 (en) * 2009-09-16 2011-03-17 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, light emitting device, semiconductor device, and electronic device
US20110140096A1 (en) * 2009-12-15 2011-06-16 c/o Samsung Mobile Display Co., Ltd. Thin film transistor, method of manufacturing the same, and organic electroluminescent device including thin film transistor
US20120040522A1 (en) * 2010-08-12 2012-02-16 International Business Machines Corporation Method for integrating multiple threshold voltage devices for cmos
US20120049194A1 (en) * 2010-08-31 2012-03-01 Globalfoundries Inc. Increased Charge Carrier Mobility in Transistors by Providing a Strain-Inducing Threshold Adjusting Semiconductor Material in the Channel
US20120112180A1 (en) * 2010-11-05 2012-05-10 National Chiao Tung University Metal oxide thin film transistor and manufacturing method thereof
US20120181616A1 (en) * 2011-01-14 2012-07-19 International Business Machines Corporation STRUCTURE AND METHOD OF Tinv SCALING FOR HIGH k METAL GATE TECHNOLOGY
US20140103340A1 (en) * 2012-10-17 2014-04-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN104766823A (zh) * 2014-01-07 2015-07-08 中国科学院微电子研究所 半导体器件制造方法
US20160064502A1 (en) * 2014-08-29 2016-03-03 Toyoda Gosei Co., Ltd. MIS-type Semiconductor Device
CN109309049A (zh) * 2017-07-27 2019-02-05 中芯国际集成电路制造(上海)有限公司 半导体结构及其制造方法和高k金属栅鳍式场效应晶体管
US20190214388A1 (en) * 2018-01-09 2019-07-11 Samsung Electronics Co., Ltd. Semiconductor device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAJIME TAKAHASHI等: "Application of pentacene thin-film transistors with controlled threshold voltages to enhancement/depletion inverters", 《JAPANESE JOURNAL OF APPLIED PHYSICS》 *
LIN,CY等: "Polarity-controllable MoS2 transistor for adjustable complementary logic inverter applications", 《NANOSCALE HORIZONS》 *
QIAN,LX等: "Band alignment and interfacial chemical structure of the HfLao/InGaZno4 heterojunction investigated by x-ray photoelectron spectroscopy", 《JOURNAL OF PHYSICS D-APPLIED PHYSICS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114703460A (zh) * 2022-03-29 2022-07-05 电子科技大学 一种稀土元素掺入的铪基二元氧化物薄膜的制备方法
CN114899196A (zh) * 2022-06-14 2022-08-12 东南大学 一种基于igzo薄膜晶体管的反相器及其制备方法

Also Published As

Publication number Publication date
CN113078112B (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
KR101774520B1 (ko) 고성능 금속 산화물 및 금속 산질화물 박막 트랜지스터들을 제조하기 위한 게이트 유전체의 처리
KR101638978B1 (ko) 박막 트랜지스터 및 그 제조방법
CN113078112B (zh) 一种氧化物基耗尽型负载反相器的制备方法
JPH03231472A (ja) 薄膜トランジスタの作製方法
TW201234593A (en) Semiconductor device
JP2008130814A (ja) 薄膜トランジスタの製造方法
JP2008053356A (ja) アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
CN102683423A (zh) 一种顶栅结构金属氧化物薄膜晶体管及其制作方法
CN108735821B (zh) 一种镨铟锌氧化物薄膜晶体管及其制备方法
CN108336135B (zh) 一种钕铟锌氧化物薄膜晶体管及其制备方法
JP2011216574A (ja) 薄膜トランジスタとその製造方法
CN115132848B (zh) 一种高功率密度igzo薄膜晶体管及其制造方法
Han et al. Logic Inverter with All n-Type Amorphous SiZnSnO Thin Film Transistors
WO2020119126A1 (zh) 氧化物半导体材料、薄膜晶体管及制备方法和显示面板
KR101539294B1 (ko) ZnO/MgZnO 활성층 구조의 박막트랜지스터
CN109742152A (zh) 一种稀土Er掺杂SnO2薄膜晶体管及其制备方法
CN110890280B (zh) 一种利用钯/钯氧化物双层肖特基电极制备氧化物半导体肖特基二极管的方法
CN112002762B (zh) 一种梯度沟道掺氮氧化锌薄膜晶体管及其制备方法
KR102145387B1 (ko) 박막 트랜지스터 및 그 제조방법
CN102969364A (zh) 一种改善器件均匀性的顶栅结构金属氧化物薄膜晶体管及其制作方法
WO2018214480A1 (zh) 一种类岛状电子传输的薄膜晶体管及制备方法
KR101816877B1 (ko) 박막 트랜지스터 및 박막 트랜지스터 제조 방법
CN111081788B (zh) 一种底部为肖特基接触的铟铝锌氧化物二极管及其制备方法
CN113097231B (zh) 一种基于锡氧化物的pn结及其制备方法
CN107546262A (zh) 一种基于锶铟氧化物的薄膜晶体管及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant