CN113072526B - Anthraquinone/coumarin dimer compound and preparation method and application thereof - Google Patents
Anthraquinone/coumarin dimer compound and preparation method and application thereof Download PDFInfo
- Publication number
- CN113072526B CN113072526B CN202110339099.8A CN202110339099A CN113072526B CN 113072526 B CN113072526 B CN 113072526B CN 202110339099 A CN202110339099 A CN 202110339099A CN 113072526 B CN113072526 B CN 113072526B
- Authority
- CN
- China
- Prior art keywords
- anthraquinone
- methanol
- compound
- preparation
- column chromatography
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 150000004056 anthraquinones Chemical class 0.000 title claims abstract description 18
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 238000002360 preparation method Methods 0.000 title claims abstract description 15
- -1 coumarin dimer compound Chemical class 0.000 title claims description 7
- 102100033001 Tyrosine-protein phosphatase non-receptor type 1 Human genes 0.000 claims abstract description 43
- 150000001875 compounds Chemical class 0.000 claims abstract description 39
- 239000003814 drug Substances 0.000 claims abstract description 14
- 208000001072 type 2 diabetes mellitus Diseases 0.000 claims abstract description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 72
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 28
- 241000221079 Euphorbia <genus> Species 0.000 claims description 18
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 15
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 12
- 238000004440 column chromatography Methods 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000284 extract Substances 0.000 claims description 10
- 239000000499 gel Substances 0.000 claims description 9
- 238000010898 silica gel chromatography Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 7
- 230000002829 reductive effect Effects 0.000 claims description 7
- 238000000926 separation method Methods 0.000 claims description 7
- 239000002246 antineoplastic agent Substances 0.000 claims description 6
- 229940041181 antineoplastic drug Drugs 0.000 claims description 6
- 239000003208 petroleum Substances 0.000 claims description 6
- 238000004128 high performance liquid chromatography Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 238000003810 ethyl acetate extraction Methods 0.000 claims description 4
- 239000000741 silica gel Substances 0.000 claims description 4
- 229910002027 silica gel Inorganic materials 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 3
- XELZGAJCZANUQH-UHFFFAOYSA-N methyl 1-acetylthieno[3,2-c]pyrazole-5-carboxylate Chemical compound CC(=O)N1N=CC2=C1C=C(C(=O)OC)S2 XELZGAJCZANUQH-UHFFFAOYSA-N 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 230000005526 G1 to G0 transition Effects 0.000 claims description 2
- 239000007864 aqueous solution Substances 0.000 claims description 2
- WORJEOGGNQDSOE-UHFFFAOYSA-N chloroform;methanol Chemical compound OC.ClC(Cl)Cl WORJEOGGNQDSOE-UHFFFAOYSA-N 0.000 claims description 2
- 239000002532 enzyme inhibitor Substances 0.000 claims description 2
- 229940125532 enzyme inhibitor Drugs 0.000 claims description 2
- 239000011259 mixed solution Substances 0.000 claims description 2
- 238000001953 recrystallisation Methods 0.000 claims description 2
- 101001087394 Homo sapiens Tyrosine-protein phosphatase non-receptor type 1 Proteins 0.000 claims 1
- 239000012141 concentrate Substances 0.000 claims 1
- 238000012856 packing Methods 0.000 claims 1
- 238000005191 phase separation Methods 0.000 claims 1
- 238000000746 purification Methods 0.000 claims 1
- 108010015847 Non-Receptor Type 1 Protein Tyrosine Phosphatase Proteins 0.000 abstract description 42
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 abstract description 23
- 229960000956 coumarin Drugs 0.000 abstract description 11
- 230000000694 effects Effects 0.000 abstract description 11
- 235000001671 coumarin Nutrition 0.000 abstract description 10
- 230000008878 coupling Effects 0.000 abstract description 5
- 238000010168 coupling process Methods 0.000 abstract description 5
- 238000005859 coupling reaction Methods 0.000 abstract description 5
- 239000000539 dimer Substances 0.000 abstract description 4
- 239000003801 protein tyrosine phosphatase 1B inhibitor Substances 0.000 abstract description 4
- 230000000259 anti-tumor effect Effects 0.000 abstract description 2
- 150000004775 coumarins Chemical class 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 33
- LJEROUHPDCFEGJ-VVTLTYDVSA-N (1r,3r,4s)-4,7,9-trihydroxy-1,3-dimethyl-3,4-dihydro-1h-benzo[g]isochromene-5,10-dione Chemical compound O=C1C2=CC(O)=CC(O)=C2C(=O)C2=C1[C@H](O)[C@@H](C)O[C@@H]2C LJEROUHPDCFEGJ-VVTLTYDVSA-N 0.000 description 21
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 20
- 239000008103 glucose Substances 0.000 description 17
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 14
- 230000003281 allosteric effect Effects 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 239000003112 inhibitor Substances 0.000 description 11
- 238000003032 molecular docking Methods 0.000 description 11
- 102000004877 Insulin Human genes 0.000 description 10
- 108090001061 Insulin Proteins 0.000 description 10
- 229940079593 drug Drugs 0.000 description 10
- 229940125396 insulin Drugs 0.000 description 10
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 230000002401 inhibitory effect Effects 0.000 description 9
- 230000005764 inhibitory process Effects 0.000 description 8
- 244000067602 Chamaesyce hirta Species 0.000 description 7
- 239000002609 medium Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 238000012258 culturing Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 4
- 102100028516 Receptor-type tyrosine-protein phosphatase U Human genes 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229920001469 poly(aryloxy)thionylphosphazene Polymers 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 210000002027 skeletal muscle Anatomy 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229940125528 allosteric inhibitor Drugs 0.000 description 3
- 239000003472 antidiabetic agent Substances 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000001472 cytotoxic effect Effects 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- WCGUUGGRBIKTOS-GPOJBZKASA-N (3beta)-3-hydroxyurs-12-en-28-oic acid Chemical compound C1C[C@H](O)C(C)(C)[C@@H]2CC[C@@]3(C)[C@]4(C)CC[C@@]5(C(O)=O)CC[C@@H](C)[C@H](C)[C@H]5C4=CC[C@@H]3[C@]21C WCGUUGGRBIKTOS-GPOJBZKASA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 244000117371 Euphorbia sp Species 0.000 description 2
- 206010022489 Insulin Resistance Diseases 0.000 description 2
- 102000016267 Leptin Human genes 0.000 description 2
- 108010092277 Leptin Proteins 0.000 description 2
- 208000008589 Obesity Diseases 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000030609 dephosphorylation Effects 0.000 description 2
- 238000006209 dephosphorylation reaction Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 230000007071 enzymatic hydrolysis Effects 0.000 description 2
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000004190 glucose uptake Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 125000000686 lactone group Chemical group 0.000 description 2
- 150000002611 lead compounds Chemical class 0.000 description 2
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 2
- 229940039781 leptin Drugs 0.000 description 2
- 210000000663 muscle cell Anatomy 0.000 description 2
- 235000020824 obesity Nutrition 0.000 description 2
- 210000002826 placenta Anatomy 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 102000005962 receptors Human genes 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 210000004881 tumor cell Anatomy 0.000 description 2
- PLSAJKYPRJGMHO-UHFFFAOYSA-N ursolic acid Natural products CC1CCC2(CCC3(C)C(C=CC4C5(C)CCC(O)C(C)(C)C5CCC34C)C2C1C)C(=O)O PLSAJKYPRJGMHO-UHFFFAOYSA-N 0.000 description 2
- 229940096998 ursolic acid Drugs 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- GOLORTLGFDVFDW-UHFFFAOYSA-N 3-(1h-benzimidazol-2-yl)-7-(diethylamino)chromen-2-one Chemical compound C1=CC=C2NC(C3=CC4=CC=C(C=C4OC3=O)N(CC)CC)=NC2=C1 GOLORTLGFDVFDW-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 208000026310 Breast neoplasm Diseases 0.000 description 1
- DVCZISQUENRYIE-UHFFFAOYSA-N C1=CC=C2OC(=O)C=CC2=C1.C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 Chemical compound C1=CC=C2OC(=O)C=CC2=C1.C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 DVCZISQUENRYIE-UHFFFAOYSA-N 0.000 description 1
- 206010007247 Carbuncle Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 241000093828 Euphorbia characias subsp. characias Species 0.000 description 1
- 206010062717 Increased upper airway secretion Diseases 0.000 description 1
- 108010001127 Insulin Receptor Proteins 0.000 description 1
- 102100036721 Insulin receptor Human genes 0.000 description 1
- 244000188405 Knoxia valerianoides Species 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 1
- 208000002151 Pleural effusion Diseases 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 241001107098 Rubiaceae Species 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- XAIKOVRFTSBNNU-UHFFFAOYSA-N anthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1.C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 XAIKOVRFTSBNNU-UHFFFAOYSA-N 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 125000000319 biphenyl-4-yl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000008727 cellular glucose uptake Effects 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 229960004679 doxorubicin Drugs 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 239000012156 elution solvent Substances 0.000 description 1
- 239000002024 ethyl acetate extract Substances 0.000 description 1
- 239000002038 ethyl acetate fraction Substances 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000004153 glucose metabolism Effects 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 230000011132 hemopoiesis Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 238000002114 high-resolution electrospray ionisation mass spectrometry Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 229940042040 innovative drug Drugs 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229930013686 lignan Natural products 0.000 description 1
- 150000005692 lignans Chemical class 0.000 description 1
- 235000009408 lignans Nutrition 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 201000007227 lymph node tuberculosis Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000003098 myoblast Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000007965 phenolic acids Chemical class 0.000 description 1
- 235000009048 phenolic acids Nutrition 0.000 description 1
- 208000026435 phlegm Diseases 0.000 description 1
- RGCLLPNLLBQHPF-HJWRWDBZSA-N phosphamidon Chemical compound CCN(CC)C(=O)C(\Cl)=C(/C)OP(=O)(OC)OC RGCLLPNLLBQHPF-HJWRWDBZSA-N 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 230000009819 post translational phosphorylation Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000012679 serum free medium Substances 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 210000002363 skeletal muscle cell Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 150000003648 triterpenes Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/06—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2
- C07D311/08—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring
- C07D311/16—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 2 not hydrogenated in the hetero ring substituted in position 7
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
Landscapes
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Diabetes (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明涉及一种蒽醌/香豆素二聚体类新骨架化合物及其制备方法和应用。该二聚体化合物结构式为:
是蒽醌与香豆素通过亚甲基碳桥偶联形成的骨架新颖的化合物。所述化合物能高效、高选择性地抑制蛋白酪氨酸磷酸酯酶1B活性。本发明涉及该化合物、其制备方法,及其在制备PTP1B抑制剂、治疗2型糖尿病药物和抗肿瘤药物中的应用。The present invention relates to an anthraquinone/coumarin dimer type new skeleton compound and its preparation method and application. The structural formula of the dimer compound is:
It is a novel skeleton compound formed by the coupling of anthraquinone and coumarin through a methylene carbon bridge. The compound can effectively and selectively inhibit the activity of protein tyrosine phosphatase 1B. The present invention relates to the compound, its preparation method, and its application in the preparation of PTP1B inhibitor, medicine for treating type 2 diabetes and antitumor medicine.Description
技术领域technical field
本发明属于药物化合物领域,具体涉及来源于红大戟的一种蒽醌与香豆素以碳碳键偶联形成的新骨架化合物,以及该化合物的制备方法、该化合物在制备PTP1B酶抑制剂、2型糖尿病治疗药物和/或抗肿瘤药物中的应用。The invention belongs to the field of pharmaceutical compounds, and in particular relates to a new skeleton compound formed by coupling of anthraquinone and coumarin with carbon-carbon bonds derived from Euphorbia sp., a preparation method of the compound, and the use of the compound in the preparation of PTP1B enzyme inhibitor ,
背景技术Background technique
蛋白激酶和磷酸酶分别负责蛋白质翻译后的磷酸化和去磷酸化修饰,协同调节细胞信号通路,维持正常生命活动,当这种平衡被打破时,就会引发各种如癌症、免疫、代谢系统疾病,因此二者是药物研发的重要靶点。蛋白酪氨酸磷酸酯酶1B(PTP1B)是PTP家族分布于细胞内的一个亚型,最早由人胎盘组织分离得到,广泛分布于肝脏、肾脏和胎盘等组织中。PTP1B与胰岛素抵抗和肥胖密切相关,在胰岛素和瘦素信号通路中起负调节作用,通过促胰岛素受体脱磷酸化,下调胰岛素和瘦素水平,降低机体的糖脂代谢能力。通过抑制PTP1B活性,可提高外周组织对胰岛素的敏感性,因此PTP1B是治疗2型糖尿病和肥胖症的重要靶点。近年研究报道,PTP1B在多种肿瘤细胞中高表达,针对PTP1B设计的抑制剂能显著抑制乳腺癌、肺癌等细胞增殖,是抗肿瘤药物的新靶点。Protein kinases and phosphatases are respectively responsible for the post-translational phosphorylation and dephosphorylation of proteins, and coordinately regulate cell signaling pathways to maintain normal life activities. Therefore, both are important targets for drug development. Protein tyrosine phosphatase 1B (PTP1B) is a subtype of PTP family distributed in cells. It was first isolated from human placenta and widely distributed in liver, kidney and placenta. PTP1B is closely related to insulin resistance and obesity, plays a negative regulatory role in the insulin and leptin signaling pathways, and reduces the body's glucose and lipid metabolism by promoting insulin receptor dephosphorylation, down-regulating insulin and leptin levels. By inhibiting the activity of PTP1B, the sensitivity of peripheral tissues to insulin can be improved, so PTP1B is an important target for the treatment of
但PTP1B的两个特点极大地限制其抑制剂研发,一个是PTPs的催化活性位点保守性高,使得抑制剂对PTP1B与其他PTPs间的选择性低。比如T-细胞PTP(TCPTP),二者的催化区域近80%氨基酸序列一致,TCPTP在血细胞生成和免疫系统中起重要作用,对TCPTP的交叉抑制会引起明显的副作用。另一个是因其底物磷酸基呈负电性,PTP1B的活性位点呈正电性,针对活性位点设计的抑制剂结构中有可解离出负电荷的基团如羧基、磺酸基等,这类模拟底物合成的抑制剂具有强极性,难以透过细胞膜,生物利用度差,严重影响其成药性。2004年报道了一个PTP1B的变构位点,该位点距离活性位点大约由α3和α6螺旋构成,具有保守性低、主要由亲脂性氨基酸组成的特点,结合于变构口袋的抑制剂显示出更佳的理化性质和显著的选择性。但PTP1B变构抑制剂报道非常少,作用于变构位点的先导化合物极度缺乏。天然产物中的化学成分具有独特的分子骨架和空间构型,表现出多样的生物学活性,是创新药物和新颖结构先导化合物的重要来源。However, two characteristics of PTP1B greatly limit the development of its inhibitors. One is that the catalytic active site of PTPs is highly conserved, which makes the inhibitor have low selectivity between PTP1B and other PTPs. For example, T-cell PTP (TCPTP) has nearly 80% identical amino acid sequences in the catalytic region of the two. TCPTP plays an important role in hematopoiesis and immune system, and cross-inhibition of TCPTP can cause obvious side effects. The other is that the phosphate group of its substrate is negatively charged, and the active site of PTP1B is positively charged. The inhibitor structure designed for the active site has groups that can dissociate negative charges, such as carboxyl group, sulfonic acid group, etc., Such inhibitors that mimic substrate synthesis have strong polarity, are difficult to penetrate cell membranes, and have poor bioavailability, which seriously affects their druggability. An allosteric site of PTP1B was reported in 2004, which is approximately approx. It is composed of α3 and α6 helices, and has the characteristics of low conservation and mainly composed of lipophilic amino acids. The inhibitor bound to the allosteric pocket shows better physicochemical properties and significant selectivity. However, there are very few reports of allosteric inhibitors of PTP1B, and the lead compounds acting on the allosteric site are extremely lacking. The chemical components in natural products have unique molecular skeletons and spatial configurations, exhibit diverse biological activities, and are an important source of innovative drugs and novel structural lead compounds.
红大戟Knoxia valerianoides是茜草科红芽大戟属多年生草本植物,分布于中国南部各省,主产于广西,其他地区如广东、云南、福建、贵州及海南等省亦有少量分布。该植物块根入药,有泻水逐饮、攻毒消肿散结的功效;主治胸腹积水、二便不利,痈肿疮毒、瘰疬痰核等症。发明人多年来对红大戟的研究表明,该植物富含蒽醌和三萜类成分,以及少量的木脂素、香豆素和酚酸,其中蒽醌类成分具有抗病毒、抗炎和肝细胞保护活性,研究结果为红大戟的应用提供了物质基础和科学依据。Knoxia valerianoides is a perennial herb of the Rubiaceae family, distributed in the southern provinces of China, mainly in Guangxi, and in other regions such as Guangdong, Yunnan, Fujian, Guizhou and Hainan. The root tuber of the plant is used as medicine, and has the effects of diarrhoea and drinking, attacking toxins, reducing swelling and dispersing knots; treating mainly pleural effusion, unfavorable stools, carbuncle, swollen sore, scrofula and phlegm core embolism. The inventor's research on Euphorbia for many years has shown that the plant is rich in anthraquinone and triterpenoids, as well as a small amount of lignans, coumarin and phenolic acids, among which anthraquinones have antiviral, anti-inflammatory and The protective activity of hepatocytes, the research results provide material basis and scientific basis for the application of Euphorbia chinensis.
发明人在对红大戟的持续研究中,发现了一种由蒽醌和香豆素通过亚甲基桥偶联形成的新骨架化合物,红大戟醌A。天然来源的蒽醌和香豆素母核结构分别为苯并环二烯酮和苯并α-吡喃酮,其衍生物大多含羟基、甲氧基、异戊烯基等简单取代基,或与糖结合成苷。文献报道了很多蒽醌二聚体、香豆素二聚体,主要有蒽醌-蒽醌、蒽醌-口山酮、香豆素-香豆素以及香豆素-查尔酮二聚体等类型,连接方式有母核间通过苯基-苯基偶联,也有母核间通过氧原子相连,尚未见本发明中蒽醌-香豆素通过亚甲基偶联形成的化合物的结构、制备方法及其应用报道。本发明所涉及的化合物具有高效、高选择性的PTP1B抑制活性,是一种结构新颖的PTP1B变构抑制剂,并能抑制多种肝癌细胞增殖,可用于研发特异性高、生物利用度好的新型降糖药物、2型糖尿病治疗药物和/或具有新机制、新靶点的抗肿瘤药物。In the continuous research on Euphorbia, the inventor discovered a new backbone compound, Euphorbia quinone A, which is formed by coupling anthraquinone and coumarin through a methylene bridge. The core structures of anthraquinone and coumarin derived from natural sources are benzocyclodienone and benzoα-pyrone, respectively, and most of their derivatives contain simple substituents such as hydroxyl, methoxy, and isopentenyl, or are combined with Sugars combine to form glycosides. Many anthraquinone dimers and coumarin dimers have been reported in the literature, mainly including anthraquinone-anthraquinone, anthraquinone-koushanone, coumarin-coumarin and coumarin-chalcone dimer. and other types, the connection methods include phenyl-phenyl coupling between parent nuclei and oxygen atoms between parent nuclei. The structure of the compound formed by anthraquinone-coumarin through methylene coupling has not yet been seen in the present invention. Preparation method and application report. The compound involved in the present invention has efficient and highly selective PTP1B inhibitory activity, is an allosteric inhibitor of PTP1B with novel structure, can inhibit the proliferation of various liver cancer cells, and can be used for research and development with high specificity and good bioavailability Novel hypoglycemic drugs,
发明内容SUMMARY OF THE INVENTION
本发明通过对红大戟开展系统性化学成分及生物活性研究,从中分离得到一种蒽醌与香豆素以碳碳键偶联的新骨架化合物。In the present invention, a new skeleton compound in which anthraquinone and coumarin are coupled by carbon-carbon bonds is isolated and obtained by carrying out systematic chemical composition and biological activity research on Euphorbia sp.
本发明的目的之一是提供一种蒽醌偶联香豆素的二聚体化合物,命名为红大戟醌A,其结构如下所示:One of the objects of the present invention is to provide a dimer compound of anthraquinone coupled coumarin, named as spurge quinone A, and its structure is as follows:
该化合物的结构特征是含有蒽醌和香豆素结构片段,其中蒽醌为苯并环二烯酮结构,香豆素为苯并α-吡喃酮结构或苯并六元内酯环结构,蒽醌的2-甲基与香豆素的C-3通过碳碳键偶联形成一种新型二聚体化合物。The structural feature of the compound is that it contains anthraquinone and coumarin structural fragments, wherein anthraquinone is a benzocyclodienone structure, coumarin is a benzo α-pyrone structure or a benzohexamethylene lactone ring structure, anthracene is a benzocyclodienone structure The 2-methyl group of quinone is coupled with C-3 of coumarin through carbon-carbon bond to form a novel dimer compound.
本发明的目的之二是提供所述化合物的制备方法,包括以下步骤:The second object of the present invention is to provide a preparation method of the compound, comprising the following steps:
1)红大戟根粉碎后用乙醇提取,提取液减压蒸干得浸膏;1) The roots of Euphorbia are pulverized and extracted with ethanol, and the extract is evaporated to dryness under reduced pressure to obtain an extract;
2)浸膏用水溶解,水溶液用乙酸乙酯萃取,乙酸乙酯减压蒸干得到乙酸乙酯萃取部位,乙酸乙酯萃取部位依次用硅胶柱层析、MCI柱层析、凝胶柱层析分离,得到含红大戟醌A的部位;2) The extract is dissolved in water, the aqueous solution is extracted with ethyl acetate, the ethyl acetate is evaporated to dryness under reduced pressure to obtain the ethyl acetate extraction part, and the ethyl acetate extraction part is successively subjected to silica gel column chromatography, MCI column chromatography, and gel column chromatography. Separation to obtain a site containing Euphorbia quinone A;
3)将含红大戟醌A的部位用氯仿-甲醇混合溶液重结晶,或用高效液相色谱纯化得到红大戟醌A。3) Recrystallize the part containing quinone A of spurge with chloroform-methanol mixed solution, or purify with high performance liquid chromatography to obtain quinone A of spurge.
优选地,步骤1)中,乙醇浓度为95%,提取温度为常温。Preferably, in step 1), the ethanol concentration is 95%, and the extraction temperature is normal temperature.
优选地,步骤2)中,硅胶柱层析法中,先用100~200目硅胶、石油醚/丙酮为流动相分离,再用200~300目硅胶、氯仿/甲醇为流动相分离。MCI柱层析法中,固定相为MCI gelCHP20p,流动相为甲醇/水。凝胶柱层析法中,凝胶为Sephadex LH-20,流动相为氯仿/甲醇。Preferably, in step 2), in silica gel column chromatography, firstly use 100-200 mesh silica gel and petroleum ether/acetone as mobile phases for separation, and then use 200-300 mesh silica gel and chloroform/methanol as mobile phases for separation. In MCI column chromatography, the stationary phase is MCI gelCHP20p and the mobile phase is methanol/water. In gel column chromatography, the gel is Sephadex LH-20, and the mobile phase is chloroform/methanol.
优选地,步骤3)中,重结晶方法中氯仿/甲醇的比例为3:1。Preferably, in step 3), the ratio of chloroform/methanol in the recrystallization method is 3:1.
优选地,步骤3)中,高效液相色谱法中,色谱柱为ODS填料,流动相为80%甲醇/水。Preferably, in step 3), in the high performance liquid chromatography, the chromatographic column is ODS filler, and the mobile phase is 80% methanol/water.
更为优选地,步骤2)中,所述硅胶柱层析使用石油醚/丙酮的体积比依次为10:0、10:1、10:2、2:1、1:1、0:1,收集石油醚/丙酮2:1洗脱部分再次硅胶柱层析所用的氯仿/甲醇体积比依次为100:1、10:1、2:1、1:1、0:1;收集氯仿/甲醇1:1洗脱部分经MCI柱层析分离所用的甲醇浓度依次为30%、50%、70%、90%、100%;收集70%甲醇/水洗脱部分经凝胶柱层析分离所用的氯仿/甲醇体积比为1:1。More preferably, in step 2), the volume ratio of petroleum ether/acetone used in the silica gel column chromatography is successively 10:0, 10:1, 10:2, 2:1, 1:1, 0:1, The chloroform/methanol volume ratios used in the collection of petroleum ether/acetone 2:1 elution part and silica gel column chromatography were followed by 100:1, 10:1, 2:1, 1:1, 0:1; the chloroform/methanol 1 : 1 The methanol concentration used in the separation of the eluted part by MCI column chromatography was 30%, 50%, 70%, 90%, 100%; the 70% methanol/water eluted part was collected by gel column chromatography. The chloroform/methanol volume ratio was 1:1.
本发明的目的之三是提供该类化合物在制备PTP1B抑制剂、2型糖尿病治疗药物和/或抗肿瘤药物中的应用。The third object of the present invention is to provide the application of such compounds in the preparation of PTP1B inhibitors,
本发明所述化合物是一种结构新颖的PTP1B变构抑制剂,具有高效、高选择性的PTP1B抑制活性。对PTP1B和TCPTP抑制的IC50值分别为2.42μM和73.33μM,选择性大于30倍。酶抑制动力学实验、分子对接和对胰岛素抵抗的骨骼肌C2C12细胞糖摄取能力影响的实验结果表明,该化合物是PTP1B的混合型抑制剂,能与PTP1B变构位点结合,形成稳定的分子-蛋白复合物,能提高胰岛素抵抗的骨骼肌细胞对葡萄糖的消耗能力。在PTP1B变构抑制剂报道很少的情况下,本发明所公开的化合物提供了一种新型的结构模板,为进一步合成和结构改造开发特异性高、生物利用度好的PTP1B抑制剂提供了参考,在开发靶向PTP1B的新型降糖药物、2型糖尿病治疗药物和/或抗肿瘤药物方面有很好的应用前景。The compound of the present invention is an allosteric inhibitor of PTP1B with novel structure, and has high-efficiency and high-selective PTP1B inhibitory activity. The IC50 values for PTP1B and TCPTP inhibition were 2.42 μM and 73.33 μM, respectively, with greater than 30-fold selectivity. The results of enzyme inhibition kinetic experiments, molecular docking and effects on the glucose uptake capacity of insulin-resistant skeletal muscle C2C12 cells showed that the compound is a mixed-type inhibitor of PTP1B and can bind to the allosteric site of PTP1B to form a stable molecule- A protein complex that increases glucose consumption in insulin-resistant skeletal muscle cells. Under the circumstance that there are few reports of PTP1B allosteric inhibitors, the compounds disclosed in the present invention provide a novel structural template, which provides a reference for further synthesis and structural modification to develop PTP1B inhibitors with high specificity and good bioavailability , has a good application prospect in the development of new hypoglycemic drugs,
附图说明Description of drawings
图1:酶抑制动力学实验结果Figure 1: Enzyme Inhibition Kinetic Experiment Results
图2:分子对接结果Figure 2: Molecular docking results
图3:胰岛素抵抗的骨骼肌C2C12细胞葡萄糖摄取量的变化Figure 3: Changes in glucose uptake in insulin-resistant skeletal muscle C2C12 cells
具体实施方式Detailed ways
以下通过具体实施例对本发明的化合物、制备步骤和活性筛选实验过程作进一步的说明,以下实例是用于阐释本发明的技术内容,并不是对本发明内容的限定,所有基于本发明所作出的变化或等同替换,均应属于本发明的保护范围。The compounds of the present invention, preparation steps and activity screening experiments are further described below through specific examples. The following examples are used to illustrate the technical content of the present invention, not to limit the content of the present invention. All changes made based on the present invention Or equivalent replacement, all should belong to the protection scope of the present invention.
实施例1红大戟醌A的制备Example 1 Preparation of Euphorbia quinone A
红大戟20Kg,粉碎后用95%乙醇于常温超声提取,提取液合并减压蒸干溶剂得浸膏3.9Kg。浸膏溶于水后,用乙酸乙酯萃取3次,蒸除溶剂得乙酸乙酯萃取部分400g。乙酸乙酯部分用硅胶柱层析分离,依次用体积比为10:0、10:1、10:2、2:1、1:1、0:1的石油醚/丙酮洗脱。石油醚/丙酮2:1洗脱部分(30g)再次用硅胶柱层析分离,依次用体积比为100:1、10:1、2:1、1:1、0:1的氯仿/甲醇洗脱。氯仿/甲醇1:1洗脱部分(4.7g)用MCI柱层析分离,依次用30%、50%、70%、90%、100%的甲醇/水洗脱。70%甲醇/水洗脱部分减压蒸干后,用少量氯仿/甲醇溶解,用Sephadex LH-20凝胶柱色谱纯化,氯仿/甲醇(V/V)1:1为洗脱溶剂,用薄层色谱分析洗脱液,合并、蒸干后得到橙色固体,其中一部分用适量氯仿/甲醇(V/V)1:1重结晶得到红大戟醌A(3.1mg)。其余部分用HPLC纯化,流速2.5mL/min,检测波长280nm,流动相为80%甲醇/水,得到红大戟醌A(15.3mg)。经以下波谱学信息和理化性质鉴定结构。Red spurge 20Kg, crushed and then extracted with 95% ethanol by ultrasonic at room temperature, the extract was combined with the solvent under reduced pressure and evaporated to dryness to obtain 3.9Kg of extract. After the extract was dissolved in water, it was extracted three times with ethyl acetate, and the solvent was evaporated to obtain 400 g of ethyl acetate extract. The ethyl acetate fraction was separated by silica gel column chromatography and eluted successively with petroleum ether/acetone in volume ratios of 10:0, 10:1, 10:2, 2:1, 1:1, and 0:1. The eluted fraction (30 g) of petroleum ether/acetone 2:1 was separated again by silica gel column chromatography, and washed with chloroform/methanol with a volume ratio of 100:1, 10:1, 2:1, 1:1 and 0:1 in turn. take off. The chloroform/methanol 1:1 elution fraction (4.7 g) was separated by MCI column chromatography, eluting sequentially with 30%, 50%, 70%, 90%, 100% methanol/water. The 70% methanol/water eluted part was evaporated to dryness under reduced pressure, dissolved in a small amount of chloroform/methanol, and purified by Sephadex LH-20 gel column chromatography, chloroform/methanol (V/V) 1:1 was the elution solvent, and thin The eluates were analyzed by layer chromatography, combined and evaporated to dryness to obtain an orange solid, a part of which was recrystallized with an appropriate amount of chloroform/methanol (V/V) 1:1 to obtain Euphorbia quinone A (3.1 mg). The remaining part was purified by HPLC, the flow rate was 2.5 mL/min, the detection wavelength was 280 nm, and the mobile phase was 80% methanol/water to obtain Euphorbia quinone A (15.3 mg). The structure was identified by the following spectroscopic information and physicochemical properties.
红大戟醌A(Valeriaquinone A):橙黄色无定形粉末;UV(MeOH)max(logε)204(6.2),239(4.4),281(4.3),336(3.6),407(3.3)nm;IR max 3743(OH),3304(OH),3216(OH),2924,2854,1663(C=O),1590,1512,1462,1396,1365,1331,1301,1280,1163,1120,1092,1030,994,953,829,790,712cm-1;1H NMR(DMSO-d6,500MHz)δ7.37(1H,s,H-4),8.19(1H,dd,J=7.0,1.75,H-5),7.95(1H,dd,J=7.0,7.0,1.95,H-6),7.93(1H,dd,J=7.0,7.0,1.75,H-7),8.24(1H,dd,J=7.0,1.95,H-8),3.77(2H,d,J=3.77,H-11),7.18(2H,t,J=3.77,H-4′),6.68(1H,s,H-5′),13.18(1H,s,1-OH),11.47(1H,s,3-OH),3.70(3H,s,6′-CH3),9.36(1H,brs,7′-OH),9.41(1H,brs,8′-OH);13C NMR(DMSO-d6,125MHz)δ163.3(C-1),117.7(C-2),163.9(C-3),108.2(C-4),133.5(C-4a),127.3(C-5),135.2(C-6),135.1(C-7),126.9(C-8),133.3(C-8a),186.8(C-9),109.8(C-9a),182.4(C-10),133.5(C-10a),23.4(C-11),161.8(C-2′),121.9(C-3′),139.0(C-4′),100.3(C-5′),145.8(C-6′),138.7(C-7′),133.1(C-8′),138.4(C-9′),111.0(C-10′),156.3(4′-OCH3);(-)-HRESIMS m/z459.0710(calcd for C25H15O9,459.0722).Valeriaquinone A: orange-yellow amorphous powder; UV(MeOH)max(logε)204(6.2), 239(4.4), 281(4.3), 336(3.6), 407(3.3) nm; IR max 3743(OH), 3304(OH), 3216(OH), 2924, 2854, 1663(C=O), 1590, 1512, 1462, 1396, 1365, 1331, 1301, 1280, 1163, 1120, 1092, 1030,994,953,829,790,712cm -1 ; 1 H NMR (DMSO-d 6 , 500MHz) δ 7.37 (1H, s, H-4), 8.19 (1H, dd, J=7.0, 1.75, H-5), 7.95 ( 1H,dd,J=7.0,7.0,1.95,H-6),7.93(1H,dd,J=7.0,7.0,1.75,H-7),8.24(1H,dd,J=7.0,1.95,H- 8), 3.77 (2H, d, J=3.77, H-11), 7.18 (2H, t, J=3.77, H-4'), 6.68 (1H, s, H-5'), 13.18 (1H, s, 1-OH), 11.47 (1H, s, 3-OH), 3.70 (3H, s, 6'-CH 3 ), 9.36 (1H, brs, 7'-OH), 9.41 (1H, brs, 8 '-OH); 13 C NMR (DMSO-d 6 , 125MHz) δ 163.3 (C-1), 117.7 (C-2), 163.9 (C-3), 108.2 (C-4), 133.5 (C- 4a), 127.3(C-5), 135.2(C-6), 135.1(C-7), 126.9(C-8), 133.3(C-8a), 186.8(C-9), 109.8(C-9a ), 182.4(C-10), 133.5(C-10a), 23.4(C-11), 161.8(C-2′), 121.9(C-3′), 139.0(C-4′), 100.3(C -5'), 145.8(C-6'), 138.7(C-7'), 133.1(C-8'), 138.4(C-9'), 111.0(C-10'), 156.3(4'- OCH3);(-)-HRESIMS m/z459.0710(calcd for C25H15O9,459.0722).
实施例2PTP1B和TCPTP抑制活性评价Example 2 Evaluation of PTP1B and TCPTP inhibitory activity
化合物用DMSO配制成梯度浓度(终浓度分别为50、25、12.5、6.2、3.1、1.6μM)。将预先配制好的酶溶液(缓冲液含25mM Hepes pH 7.5,150mM NaCl,5mM DTT,2mM EDTA,含0.1μg PTP1B或0.15μg TCPTP)加入96孔板中,每孔90μL,各加入1μL化合物溶液,以DMSO为空白对照,每个浓度设置三个平行复孔,将96孔板放入恒温振荡器中,37℃振摇15min。15min后,加入10μL终浓度为4mM的p-NPP溶液,于恒温振荡器中37℃振摇30min。30min后取出,依次加入20μL 3M NaOH溶液终止反应,最后在酶标仪405nm处测OD值,计算化合物对PTP1B的抑制率及IC50值。以熊果酸为阳性对照药。Compounds were formulated in DMSO at gradient concentrations (50, 25, 12.5, 6.2, 3.1, 1.6 μM final concentrations, respectively). The pre-prepared enzyme solution (buffer containing 25mM Hepes pH 7.5, 150mM NaCl, 5mM DTT, 2mM EDTA, containing 0.1μg PTP1B or 0.15μg TCPTP) was added to the 96-well plate, 90 μL per well, and 1 μL compound solution was added to each well, Using DMSO as a blank control, three parallel duplicate wells were set for each concentration, and the 96-well plate was placed in a constant temperature shaker and shaken at 37°C for 15 min. After 15 min, 10 μL of p-NPP solution with a final concentration of 4 mM was added, and the solution was shaken at 37° C. for 30 min in a constant temperature shaker. Take out after 30 min, add 20 μL of 3M NaOH solution in turn to stop the reaction, and finally measure the OD value at 405 nm of the microplate reader, and calculate the inhibition rate and IC 50 value of the compound on PTP1B. Ursolic acid was used as the positive control drug.
计算公式:抑制率=(OD空白-OD样品)/OD空白×100%Calculation formula: inhibition rate=(OD blank -OD sample )/OD blank ×100%
对以上数据釆用GraphPad Prism 8.0软件开展统计学分析,重复三次独立实验,数据用均数±标准差表示。Statistical analysis was performed on the above data using GraphPad Prism 8.0 software, and three independent experiments were repeated, and the data were expressed as mean ± standard deviation.
表1红大戟醌A对PTP1B和TCPTP的抑制作用Table 1 Inhibitory effects of euphorbia quinone A on PTP1B and TCPTP
表1的结果表明红大戟醌A对PTP1B具有显著的抑制作用,且强于对照药熊果酸,而对TCPTP的作用很弱,对PTP1B显示出选择性抑制活性。The results in Table 1 show that spurge quinone A has a significant inhibitory effect on PTP1B, and is stronger than the control drug ursolic acid, but has a weak effect on TCPTP, and shows selective inhibitory activity on PTP1B.
实施例3PTP1B酶抑制动力学实验Example 3 PTP1B enzyme inhibition kinetics experiment
将预先配制好的PTP1B溶液加入96孔板中,每孔90μL,分别加入待测化合物溶液1μL,终浓度分别为0、1、2.5、5、10μM,每个浓度设置三个复孔,以DMSO为空白对照,将96孔板放入恒温振荡器中,37℃振摇15min。然后加入p-NPP溶液(终浓度分别为2、4、8mM),立刻用酶标仪测405nm处15min内OD值变化,计算酶解初速率。通过Dixon plot以化合物浓度和酶解初速率作图,通过Lineweaver-Burk plot得到的各浓度下直线的斜率,以化合物浓度和斜率作图得到抑制常数Ki值。分析化合物对PTP1B的抑制类型。The pre-prepared PTP1B solution was added to the 96-well plate, 90 μL per well, and 1 μL of the test compound solution was added to the final concentration of 0, 1, 2.5, 5, and 10 μM, respectively. As a blank control, the 96-well plate was placed in a constant temperature shaker and shaken at 37°C for 15 min. Then add p-NPP solution (final concentrations are 2, 4, 8mM), immediately measure the change of OD value at 405nm within 15min with a microplate reader, and calculate the initial rate of enzymatic hydrolysis. The compound concentration and the initial rate of enzymatic hydrolysis were plotted by Dixon plot, and the slope of the straight line at each concentration was obtained by Lineweaver-Burk plot, and the inhibition constant Ki value was obtained by plotting the compound concentration and the slope. The type of inhibition of PTP1B by compounds was analyzed.
图1为动力学实验结果,图1(A)中各组曲线交汇至xy轴区域,说明红大戟醌A是一种PTP1B混合型抑制剂,能与PTP1B的催化活性区域之外的其他位点结合。Figure 1 shows the results of the kinetic experiment. In Figure 1(A), the curves of each group converge to the xy-axis region, indicating that Euphorbia quinone A is a mixed-type inhibitor of PTP1B, which can interact with other sites outside the catalytically active region of PTP1B. point combination.
实施例4分子对接Example 4 Molecular docking
应用分子对接软件BIOVIA Discovery Studio 3.0的C-DOCKER模块,对红大戟醌A与PTP1B晶体结构的活性位点和变构位点进行分子对接模拟。PTP1B的晶体结构来自蛋白晶体库,编号为2HB1(底物与PTP1B活性位点结合形成的晶体)、1T49(化合物与PTP1B变构位点结合形成的晶体)。首先使用Discovery Studio 3.0软件对红大戟醌A的3D结构进行计算,得到最优构象。PTP1B蛋白结构经去水加氢后,用CHARM force field结构最优化。然后基于受体位点定义结合位点,受体移除后,将化合物的最优构象与PTP1B的晶体结构进行对接计算,经软件打分,分析最高分构象的作用位点和结合方式。Using the C-DOCKER module of the molecular docking software BIOVIA Discovery Studio 3.0, the molecular docking simulation was carried out on the active site and allosteric site of the crystal structure of Euphorbia quinone A and PTP1B. The crystal structure of PTP1B comes from the Protein Crystal Library, numbered 2HB1 (crystal formed by the combination of the substrate with the active site of PTP1B), 1T49 (crystal formed by the combination of the compound with the allosteric site of PTP1B). First, the 3D structure of Euphorbia quinone A was calculated using Discovery Studio 3.0 software, and the optimal conformation was obtained. The structure of PTP1B protein was optimized by CHARM force field after dehydration and hydrogenation. Then, the binding site was defined based on the receptor site. After the receptor was removed, the optimal conformation of the compound was calculated by docking with the crystal structure of PTP1B. The software was scored to analyze the action site and binding mode of the highest scoring conformation.
图2为分子对接结果,红大戟醌A能成功与2HB1的活性位点、1T49的变构位点对接成功。图2(a,b,c)分别是与活性位点对接后的整体分子-蛋白结合图(2a)、与活性位点的对接图(2b)和作用方式的二维图(2c)。红大戟醌A仅与催化活性位点P-loop(215~222残基)中Ala217形成弱的π-烷基相互作用,而与关键氨基酸残基Cys215和Arg221无作用。能与活性位点附近的其他位点作用,包括与辅助底物识别和结合的pTyr-loop(47~49残基)中Tyr46形成π-π堆积和氢键,与Lys-loop(119~121残基)中Lys120形成氢键,与第二结合位点Q-loop(261~262残基)中Gln262的NH2相互作用。有研究报道与pTyr-loop、Lys-loop和Q-loop结合的抑制剂对PTP1B显示更好的选择性。图2(d,e,f)分别是与变构位点对接后的整体分子-蛋白结合图(2d)、与活性位点的对接图(2e)和作用方式的二维图(2f),结果表明,红大戟醌A能与变构位点良好结合,蒽醌片段插入α3和α6螺旋中Phe280和Phe196形成的疏水性口袋,其结构中的三个环能与二者形成强π-π堆积作用,而且香豆素的内酯环也与变构位点中的非保守性、关键氨基酸残基Phe280(TCPTP中该位置是半胱氨酸Cys280)形成π-π堆积作用,整体上呈现一种化合物环绕包裹住Phe280的构象,形成稳定的分子-蛋白复合物,并通过与Asn193间的氢键、与Gln276间的氢键以及与Ala189的疏水作用进一步稳定复合物处于非活性构象,使PTP1B无法向具有催化活性的构象转变而失活。总体的分子对接结果表明,红大戟醌A与底物竞争活性位点的能力并不强,而与变构位点呈现更好的结合作用,可能是其选择性抑制作用的主要原因,是一种结构新颖的变构抑制剂,可开发为高效、高选择性的PTP1B抑制剂。Figure 2 shows the results of molecular docking. Euphorbia quinone A can successfully dock with the active site of 2HB1 and the allosteric site of 1T49. Figure 2(a, b, c) are the overall molecule-protein binding map (2a) after docking with the active site, the docking map with the active site (2b) and the two-dimensional map (2c) of the mode of action, respectively. Euphorbia quinone A only forms weak π-alkyl interactions with Ala217 in the catalytic active site P-loop (residues 215-222), but has no effect on the key amino acid residues Cys215 and Arg221. It can interact with other sites near the active site, including Tyr46 in pTyr-loop (residues 47-49) that recognize and bind to auxiliary substrates to form π-π stacking and hydrogen bonds, and it can interact with Lys-loop (119-121 Residues) Lys120 forms hydrogen bonds and interacts with the NH2 of Gln262 in the second binding site Q-loop (residues 261-262). It has been reported that inhibitors that bind to pTyr-loop, Lys-loop and Q-loop show better selectivity for PTP1B. Figure 2(d, e, f) are the overall molecule-protein binding map after docking with the allosteric site (2d), the docking map with the active site (2e), and the two-dimensional map of the mode of action (2f), respectively. The results show that spurge quinone A can bind well to the allosteric site, the anthraquinone fragment is inserted into the hydrophobic pocket formed by Phe280 and Phe196 in the α3 and α6 helices, and the three rings in its structure can form a strong π- π stacking, and the lactone ring of coumarin also forms π-π stacking with the non-conserved, key amino acid residue Phe280 in the allosteric site (this position is cysteine Cys280 in TCPTP). It presents a conformation that the compound wraps around Phe280, forms a stable molecule-protein complex, and further stabilizes the complex in an inactive conformation through the hydrogen bond with Asn193, the hydrogen bond with Gln276 and the hydrophobic interaction with Ala189, Make PTP1B unable to convert to a catalytically active conformation and inactivate. The overall molecular docking results show that the ability of quinone A to compete with the substrate for the active site is not strong, but it has a better binding effect with the allosteric site, which may be the main reason for its selective inhibitory effect. A structurally novel allosteric inhibitor that can be developed as a potent and selective PTP1B inhibitor.
实施例5肿瘤细胞毒活性评价Example 5 Evaluation of tumor cytotoxic activity
应用MTT法测试了红大戟醌A对三株人肝癌HepG2、SMMC-7721和QGY-7703细胞的细胞毒活性。肿瘤细胞复苏后,用含10%胎牛血清、1%双抗的DMEM培养基传代,取对数生长期的细胞用于实验。化合物最终浓度依次为50、25、12.5、6.25、3.13μM。取生长状态良好的细胞,按照2×104个/100μl种板;培养12h后,弃上清,将各浓度药物按每孔100μl体积加入细胞中,每浓度设置三个复孔。加药培养24h后,弃上清,每孔加100μl无血清培养基配制的MTT溶液,继续培养4h后,弃上清,每孔加DMSO 150μl,于微孔板振荡器上震荡10min后,用酶标仪测得570nm处的OD值并计算细胞存活率。细胞存活率=实验组OD值/对照组OD值×100%。实验重复三次。The cytotoxic activity of Euphorbia quinone A on three human hepatoma HepG2, SMMC-7721 and QGY-7703 cells was tested by MTT method. After the tumor cells were recovered, they were passaged with DMEM medium containing 10% fetal bovine serum and 1% double antibody, and the cells in the logarithmic growth phase were used for the experiment. The final concentrations of the compounds were 50, 25, 12.5, 6.25, and 3.13 μM in sequence. Cells in good growth state were taken and seeded at 2×10 4 cells/100 μl; after culturing for 12 h, the supernatant was discarded, and each concentration of drugs was added to the cells in a volume of 100 μl per well, and three replicate wells were set for each concentration. After culturing for 24 h, discard the supernatant, add 100 μl of MTT solution prepared in serum-free medium to each well, and continue to culture for 4 h, discard the supernatant, add 150 μl of DMSO to each well, shake on a microplate shaker for 10 min, and use The OD value at 570nm was measured by a microplate reader and the cell viability was calculated. Cell survival rate=OD value of experimental group/OD value of control group×100%. The experiment was repeated three times.
表2红大戟醌A的细胞毒活性Table 2 Cytotoxic activity of Euphorbia quinone A
试验结果表明红大戟醌A具有显著的抗肿瘤活性,其中对HepG2的抑制效果高于阳性对照药阿霉素。The test results show that spurge quinone A has significant antitumor activity, and its inhibitory effect on HepG2 is higher than that of the positive control drug doxorubicin.
实施例6化合物对胰岛素抵抗的骨骼肌C2C12细胞葡萄糖消耗的影响Example 6 Effects of compounds on glucose consumption in insulin-resistant skeletal muscle C2C12 cells
细胞分化:将C2C12小鼠成肌细胞培养至80%的密度时传代。培养足够量细胞后,将细胞消化、离心、重悬,按照2×104个/100μl进行种板,于细胞培养箱中培养12h,待细胞贴壁后,弃上清,每孔加入100μl PBS润洗三次后,每孔加入新鲜分化培养液200μl,继续培养24h。自此之后每24h更换一次新鲜的分化培养液,共分化培养96h,直至将单个梭形细胞分化为规则排列的多核融合的肌细胞。Cell Differentiation: C2C12 mouse myoblasts were passaged at 80% density. After culturing a sufficient number of cells, digest the cells, centrifuge, resuspend them, seed them at 2×10 4 cells/100 μl, and culture them in a cell incubator for 12 h. After the cells adhere to the wall, discard the supernatant and add 100 μl PBS to each well. After rinsing three times, 200 μl of fresh differentiation medium was added to each well, and the culture was continued for 24 h. After that, fresh differentiation medium was replaced every 24h, and co-differentiation was cultured for 96h until single spindle cells were differentiated into regularly arranged multinucleated fusion myocytes.
胰岛素抵抗的肌细胞模型构建:参考文献所用的建模方法,吸弃已分化的肌细胞培养液,每孔加入100μl PBS润洗细胞3次,正常组细胞每孔加入200μl高糖DMEM培养基,模型组及加药组细胞每孔加入200μl配制好的建模胰岛素溶液,将细胞放置在37℃、5%CO2的细胞培养箱中继续培养48h。48h后,若模型组与空白组比较,细胞葡萄糖摄取量显著降低,证明建模成功。Construction of a muscle cell model of insulin resistance: the modeling method used in the reference, the differentiated muscle cell culture medium was aspirated, and 100 μl of PBS was added to each well to rinse the cells 3 times, and 200 μl of high-glucose DMEM medium was added to each well of normal group cells. 200 μl of the prepared modeling insulin solution was added to each well of the cells of the model group and the drug-added group, and the cells were placed in a cell incubator at 37°C and 5% CO 2 for 48 hours. After 48 hours, if the model group compared with the blank group, the cellular glucose uptake was significantly reduced, which proved that the modeling was successful.
给药:将化合物用高糖DMEM培养基稀释,终浓度依次为50μM、33.3μM、22.2μM,吸弃每孔的培养液后,正常组及模型组细胞每孔加入200μl高糖DMEM培养基,加药组每孔加入200μl各浓度药物,每个浓度设置三个复孔,重复三次独立实验。Administration: The compounds were diluted with high-glucose DMEM medium, and the final concentrations were 50 μM, 33.3 μM, and 22.2 μM in turn. After aspirating the culture medium from each well, 200 μl of high-glucose DMEM medium was added to each well of cells in the normal group and model group. In the drug-added group, 200 μl of each concentration of drugs was added to each well, and three duplicate wells were set for each concentration, and the independent experiments were repeated three times.
葡萄糖含量检测:将细胞放置在培养箱中继续培养。48h后,按照试剂盒中说明书的操作方法配制葡萄糖含量检测液,在新的96孔板中,每孔加入180μl葡萄糖含量检测液,分别加入20μl各孔的细胞上清液,在37℃的恒温震荡器中震荡孵育15min。15min后将96孔板于酶标仪上测定505nm处OD值,按照试剂盒说明书的计算公式计算每孔葡萄糖含量。将含有细胞的96孔板的上清中分别加入20μl预先配制好的MTT溶液,置细胞培养箱中培养4h后,用酶标仪测定490nm处OD值。为了去除细胞数对检测结果的影响,采用葡萄糖含量/MTT数值作为最终葡萄糖含量。Glucose content detection: Place the cells in an incubator to continue culturing. After 48 hours, prepare the glucose content detection solution according to the operation method in the kit. In a new 96-well plate, add 180 μl of the glucose content detection solution to each well, and add 20 μl of the cell supernatant from each well respectively. Incubate in a shaker for 15 min. After 15 minutes, the OD value at 505 nm of the 96-well plate was measured on a microplate reader, and the glucose content in each well was calculated according to the formula in the kit instructions. 20 μl of pre-prepared MTT solution was added to the supernatant of the 96-well plate containing cells, and after culturing in a cell incubator for 4 h, the OD value at 490 nm was measured with a microplate reader. In order to remove the influence of cell number on the detection results, the glucose content/MTT value was used as the final glucose content.
图3是经不同浓度红大戟醌A处理后,对胰岛素抵抗的骨骼肌C2C12细胞对葡萄糖消耗量的变化。与正常组相比,模型组细胞对葡萄糖消耗量显著降低,而给药组细胞对葡萄糖消耗量显著增加,中、高浓度时的葡萄糖消耗量甚至接近正常组。可见,该化合物能显著逆转胰岛素耐受细胞的葡萄糖消耗能力,有望开发成为一种新型的降糖药物或治疗2型糖尿病药物。Figure 3 shows the changes of glucose consumption in insulin-resistant skeletal muscle C2C12 cells after treatment with different concentrations of spurge quinone A. Compared with the normal group, the glucose consumption of the cells in the model group was significantly reduced, while the glucose consumption of the cells in the administration group was significantly increased, and the glucose consumption at medium and high concentrations was even close to the normal group. It can be seen that the compound can significantly reverse the glucose consumption capacity of insulin resistant cells, and is expected to be developed into a new type of hypoglycemic drug or a drug for the treatment of
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110339099.8A CN113072526B (en) | 2021-03-30 | 2021-03-30 | Anthraquinone/coumarin dimer compound and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110339099.8A CN113072526B (en) | 2021-03-30 | 2021-03-30 | Anthraquinone/coumarin dimer compound and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113072526A CN113072526A (en) | 2021-07-06 |
CN113072526B true CN113072526B (en) | 2022-09-13 |
Family
ID=76611880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110339099.8A Active CN113072526B (en) | 2021-03-30 | 2021-03-30 | Anthraquinone/coumarin dimer compound and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113072526B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116808097B (en) * | 2023-06-30 | 2024-02-20 | 云南中医药大学 | A kind of Red Euphorbia extract with hypoglycemic activity and its application |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101376653A (en) * | 2008-10-10 | 2009-03-04 | 昆明理工大学 | Flavonol compound, and preparation and use thereof |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0022079D0 (en) * | 2000-09-08 | 2000-10-25 | Inst Of Molecul & Cell Biology | Novel protein tyrosine phosphatase inhibitor |
CN112441925B (en) * | 2020-11-13 | 2022-04-01 | 宁波大学 | Anthraquinone compound and preparation method thereof from ranunculus spinosus |
-
2021
- 2021-03-30 CN CN202110339099.8A patent/CN113072526B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101376653A (en) * | 2008-10-10 | 2009-03-04 | 昆明理工大学 | Flavonol compound, and preparation and use thereof |
Also Published As
Publication number | Publication date |
---|---|
CN113072526A (en) | 2021-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2021500578A (en) | How to separate 8 ingredients from Chinese herbal composition | |
CN110627861B (en) | A kind of Anemarrhena steroid saponin compound and its preparation method and application | |
CN110330503B (en) | A kind of compound, its preparation method and application and the medicine of resisting rheumatoid arthritis | |
CN104370871B (en) | Kosanones Isolated from Purple Swertia and Their Application in Inhibiting Hepatitis B Virus | |
CN113072526B (en) | Anthraquinone/coumarin dimer compound and preparation method and application thereof | |
CN108191931B (en) | Three new compounds in Xinjiang peony and health care and medical application thereof | |
CN110357847B (en) | A kind of isoflavane compound and its preparation method and use | |
CN105837506B (en) | The preparation method and purposes of Diterpenoid Alkaloids in chaetotary aconitum soongoricum Stapf | |
CN111548255B (en) | Diterpenoids in Douglas fir and its preparation method and use in pharmacy | |
CN101519436A (en) | Cyclic octapeptide compound in Hsisha sponge and application thereof | |
CN108796022B (en) | Preparation method and application of saikosaponin A and saikosaponin D | |
CN114262294B (en) | Phenyl isoquinoline alkaloid compound and preparation method and application thereof | |
CN100590119C (en) | A kind of anti-tumor compound pimeline A and its preparation method and application | |
CN113620912B (en) | A kind of furanone compound and its preparation method and application | |
CN105601693A (en) | Preparation of Ginsenoside F1 and Its Antitumor Effect | |
CN113633704B (en) | Preparation method and application of wikstroma wikstroemia herb leaf extract | |
CN110507662B (en) | Polygonatum sibiricum steroidal sapogenin and preparation method and application thereof | |
CN103910633A (en) | Eight cassane diterpenoid compounds having substantial antitumor activity | |
CN108129541B (en) | Triterpenoid extracted from Ganoderma, and its preparation method and application | |
CN116162094B (en) | Suaeda Ge Ren alkali type alkaloid and application thereof in preparation of antitumor drugs | |
CN103202837B (en) | Application of artemisinin derivative and medicinal salt thereof in preparing medicament for treating leukemia | |
CN115477678B (en) | A method for preparing a triterpene diglycoside compound and its application in preparing anti-tumor drugs | |
CN103417528B (en) | New application of isojacareubin | |
CN103202836B (en) | Application of artemisinin derivative and medicinal salt thereof in preparing medicine for treating acute myelocytic leukemia | |
CN114685420B (en) | Compound with anti-tumor activity and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |