CN112887944B - 一种物理层跨技术通信方法和装置 - Google Patents

一种物理层跨技术通信方法和装置 Download PDF

Info

Publication number
CN112887944B
CN112887944B CN202110019811.6A CN202110019811A CN112887944B CN 112887944 B CN112887944 B CN 112887944B CN 202110019811 A CN202110019811 A CN 202110019811A CN 112887944 B CN112887944 B CN 112887944B
Authority
CN
China
Prior art keywords
zigbee
signal
physical layer
offset
layer cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110019811.6A
Other languages
English (en)
Other versions
CN112887944A (zh
Inventor
赵庆林
姚舒敏
赵静
冯丽
梁勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macau University of Science and Technology
Original Assignee
Macau University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macau University of Science and Technology filed Critical Macau University of Science and Technology
Priority to CN202110019811.6A priority Critical patent/CN112887944B/zh
Publication of CN112887944A publication Critical patent/CN112887944A/zh
Application granted granted Critical
Publication of CN112887944B publication Critical patent/CN112887944B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/323Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the physical layer [OSI layer 1]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种物理层跨技术通信方法和装置,用于实现ZigBee到BLE的直接通信,该方法包括:接收ZigBee信号;将所述ZigBee信号分割成多个信号片段,所述信号片段包括抗偏移片段。识别所述抗偏移片段的规律,并根据所述抗偏移片段的规律确定解码算法;根据所述解码算法对所述ZigBee信号进行解码;识别解码后的所述ZigBee信号。本发明通过对ZigBee信号分割成多个信号片段,所述信号片段包括抗偏移片段,识别所述抗偏移片段的规律,以获取解码算法;利用所述解码算法,可以以非常低的处理复杂度对ZigBee符号进行解码,同时实现很高的解码精度。本发明可广泛应用于物联网通信技术领域。

Description

一种物理层跨技术通信方法和装置
技术领域
本发明物联网通信技术领域,尤其是一种物理层跨技术通信方法和装置。
背景技术
目前,实现异构设备之间的直接通信的跨技术通信(cross-technologycommunication,CTC)方法主要分为两类,一类是数据包层CTC,它使用数据包级别的信息来实现跨技术消息的传达;另一类是物理层CTC,它利用物理层信息来实现跨技术消息的传达;接收机端的物理层CTC将处理复杂性转移到接收机。LEGO-Fi和XBee是接收机端CTC的两个典型代表,它们分别实现了ZigBee到WiFi和ZigBee到BLE的直接通信;其过程除了重用它们各自的接收机的标准模块之外,两种方案都将附加的软件定义的模块引入其接收机用于解码。但是,两种方案用的都是穷举相关的方法解码,ZigBee定义了16个非正交符号来传达信息,每当接收到ZigBee符号时,这两种方案都会在接收到的符号与16个已定义符号中的每个建立相关,并将对应于最大相关值的视为接收到的符号;因此,这种穷举的解码方法的处理复杂度很高;此外,由于ZigBee符号的非正交性以及发送机和接收机的异构性,最终解码结果容易受到噪声的影响。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种物理层跨技术通信方法和装置。
本发明所采取的技术方案是:
一方面,本发明实施例包括一种物理层跨技术通信方法,用于实现ZigBee到BLE的直接通信,包括:
接收ZigBee信号;
将所述ZigBee信号分割成多个信号片段,所述信号片段包括抗偏移片段;
识别所述抗偏移片段的规律,并根据所述抗偏移片段的规律确定解码算法;
根据所述解码算法对所述ZigBee信号进行解码;
识别解码后的所述ZigBee信号。
进一步地,所述根据所述抗偏移片段的规律确定解码算法这一步骤,具体包括:
检查所述ZigBee信号的的各个信号片段,获取抗偏移片段;
获取所述抗偏移片段的索引、相位和象限;
根据所述抗偏移片段的索引、相位和象限,确定解码算法。
进一步地,所述根据所述解码算法对所述ZigBee信号进行解码这一步骤,具体包括:
对接收到的所述ZigBee信号进行采样,得到采样样本;
对采样后的ZigBee信号进行处理得到相移数据;
根据所述解码算法,利用所述采样样本和所述相移数据,对所述ZigBee信号进行解码。
另一方面,本发明实施例还包括一种物理层跨技术通信装置,所述装置用于执行所述的物理层跨技术通信方法。
进一步地,所述装置包括:
BLE正交解调器模块,用于对接收到的所述ZigBee信号进行采样,得到采样样本;
BLE相移模块,用于对采样后的ZigBee信号进行处理得到相移数据。
另一方面,本发明实施例还包括一种物理层跨技术通信方法,包括:
向上述装实施例所述的物理层跨技术通信装置发送ZigBee信号。
进一步地,向上述装实施例所述的物理层跨技术通信装置发送ZigBee信号之前,还包括:
将ZigBee符号调制成ZigBee信号;
将所述ZigBee信号进行放大。
进一步地,所述将ZigBee符号调制成ZigBee信号这一步骤,具体包括:
采用直接序列扩频技术将ZigBee符号转换多个码片序列;
采用偏移正交相移键控技术将多个所述码片序列转换为ZigBee信号。
进一步地,所述采用偏移正交相移键控技术将多个所述码片序列转换为ZigBee信号这一步骤,具体包括:
在多个所述码片序列中选择奇数码片构建成同相序列,在多个所述码片序列中选择偶数码片构建成正交序列;
将所述同相序列转换成同相信号,将所述正交序列转换成正交信号;
将所述正交信号延迟,并将延迟后的正交信号与所述同相信号合并,生成ZigBee信号。
另一方面,本发明实施例还包括一种物理层跨技术通信装置,所述装置用于执行上述实施例所述的物理层跨技术通信方法。
本发明的有益效果是:
本发明通过对ZigBee信号分割成多个信号片段,所述信号片段包括抗偏移片段,识别所述抗偏移片段的规律,以获取解码算法;利用所述解码算法,可以以非常低的处理复杂度对ZigBee符号进行解码,同时实现很高的解码精度。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1为目前采用的数据包层跨技术通信方案的示意图;
图2为目前采用物理层跨技术通信方案的示意图;
图3为本发明实施例所述的由ZigBee发射机执行的物理层跨技术通信方法的步骤流程图;
图4为本发明实施例所述将ZigBee符号调制成ZigBee信号的过程示意图;
图5为本发明实施例所述由BLE接收机执行的物理层跨技术通信方法的步骤流程图;
图6为本发明实施例所述BLE接收机工作流程示意图;
图7为本发明实施例所述ZigBee符号的示意图;
图8为本发明实施例所述ZigBee符号“1”的第12个片段的示意图;
图9为本发明实施例所述ZigBee符号“9”的第12个片段的示意图;
图10为本发明实施例所述ZigBee符号“3”的第15个片段的示意图;
图11为本发明实施例所述ZigBee符号“11”的第15个片段的示意图;
图12为本发明实施例所述解码算法的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,涉及到方位描述,例如上、下、前、后、左、右等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,若干的含义是一个或者多个,多个的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到第一、第二只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
下面结合附图,对本申请实施例作进一步阐述。
首先,对现有的目前跨技术通信方法进行介绍,实现异构设备之间的直接通信的跨技术通信(cross-technology communication,CTC)方法主要分为两类。
一类是数据包层CTC,它使用数据包级别的信息来实现跨技术消息的传达;如图1所示,它可以采用基于能级的方案(即,通过更改数据包的能量级来传送比特),或基于包间间隔的方案(即,通过改变数据包的传输间隔来传送),再或者基于包重新排序的方案(即通过改变数据包的传输顺序来传送比特)。不过这项技术要求发送方和接收方修改其各自的调制和解调方法,这对于低端(即资源受限)的IoT设备而言是不可行的。并且它在数据速率方面也有固有的局限性,因为每个数据包一次只能传送几个比特。
另一类是物理层CTC,它利用物理层信息来实现跨技术消息的传达;具体地,它利用的是每个物理层符号来传送比特,因此它的吞吐量比数据包层CTC高得多。如图2所示,对于常规传输,发射机将比特序列B馈送到其发射机硬件中,在其中经过两个操作T1和T2(例如,白化和调制)顺序处理后,将比特序列B转换成波形W;对于常规接收,接收机将接收到的波形W馈送到其接收机硬件中,在其中波形W经过两个操作R1和R2(例如,解调和去白化)顺序处理后,被解码为比特序列。
现有的物理层CTC设计还可以分为两种不同的方案。第一种是发射机端方案,它的发射机能够模拟接收机的波形,以便接收机能够照常接收信号。第二种是接收机端方案,在这种方案中,发射机照常运行,但是接收机添加了一些其他软件模块用于直接解码发射机的信号。
接收机端的物理层CTC将处理复杂性转移到接收机。例如,LEGO-Fi和XBee是接收机端CTC的两个典型代表,它们分别实现了ZigBee到WiFi和ZigBee到BLE的直接通信。除了重用它们各自的接收机的标准模块之外,两种方案都将附加的软件定义的模块引入其接收机用于解码。但是,两种方案用的都是穷举相关的方法解码。ZigBee定义了16个非正交符号来传达信息。每当接收到ZigBee符号时,这两种方案都会在接收到的符号与16个已定义符号中的每个建立相关,并将该符号(对应于最大相关值)视为接收到的符号。因此,这种穷举的解码方法的处理复杂度很高。此外,由于ZigBee符号的非正交性以及发送机和接收机的异构性,最终解码结果容易受到噪声的影响。
参照图3,本发明实施例包括一种物理层跨技术通信方法,由ZigBee发射机执行,包括:
S100.向BLE接收机发送ZigBee信号。
具体地,向BLE接收机发送ZigBee信号之前,还包括:
S001.将ZigBee符号调制成ZigBee信号;
S002.将所述ZigBee信号进行放大。
具体地,所述步骤S001,也就是将ZigBee符号调制成ZigBee信号这一步骤,具体包括:
S001-1.采用直接序列扩频技术将ZigBee符号转换多个码片序列;
S001-2.采用偏移正交相移键控技术将多个所述码片序列转换为ZigBee信号。
所述将ZigBee符号调制成ZigBee信号这一步骤,具体包括:
S001-a.将ZigBee符号转换成多个码片序列;
S001-b.在多个所述码片序列中选择奇数码片构建成同相序列,在多个所述码片序列中选择偶数码片构建成正交序列;
S001-c.将所述同相序列转换成同相信号,将所述正交序列转换成正交信号;
S001-d.将所述正交信号延迟,并将延迟后的正交信号与所述同相信号合并,生成ZigBee信号。
本是实施例中,采用现成的ZigBee发射机来传输ZigBee符号。发射机首先将ZigBee符号调制成ZigBee信号。然后,它放大并发出这些信号给BLE接收机。具体地,调制过程如下:
在调制中,根据图4(a)的映射表,发射机首先采用直接序列扩频(directsequence spread spectrum,DSSS)技术将ZigBee符号转换为32个码片序列,其中一个码片是一个二进制比特;然后,它采用偏移正交相移键控(offset quadrature phase-shiftkeying,OQPSK)技术将32码片序列转换为ZigBee信号。参照图4(b),以ZigBee符号“0”为例,在以下步骤中说明转换过程:
i)发射机选择32个码片序列的奇数和偶数码片,分别构建同相序列和正交序列。
ii)发射机分别将同相序列和正交序列转换为同相信号(如曲线所示)和正交信号(如虚线曲线所示)。具体地说,它将序列的每个码片转换为长度为1的半正弦波。如果码片为“1”,则该波的幅度为正,否则为负。
iii)发射机将正交信号延迟0.5,然后将其与同相信号合并以生成ZigBee信号。
本实施例中,ZigBee信号具有相移特性,具体为:合并信号的相移每0.5μs变化一次±π/2。如图4(c)所示,在时刻A=0.5μs时,同相和正交信号对(I,Q)=(1,0);在时刻B=1μs时,同相和正交信号对(I,Q)为(0,1);在时刻C=1.5μs时,同相和正交信号对(I,Q)为(1,0)。在星座图中标记这些I/Q对(如4(d)所示)。我们可以看到ZigBee信号从时刻A到B发生了π/2的相移变化,从时刻B到C发生了-π/2的相移变化。则Zigbee发射机可以用π/2的相移来传送码片“1”,-π/2的相移来传送码片“0”。
本发明实施例还包括一种物理层跨技术通信装置,所述装置用于执行如图3所示的物理层跨技术通信方法;本实施例中,所述装置为ZigBee发射机。
参照图5,本发明实施例包括一种物理层跨技术通信方法,用于实现ZigBee到BLE的直接通信,由BLE接收机执行,包括但不限于以下步骤:
D1.接收ZigBee信号;
D2.将所述ZigBee信号分割成多个信号片段,所述信号片段包括抗偏移片段;
D3.识别所述抗偏移片段的规律,并根据所述抗偏移片段的规律确定解码算法;
D4.根据所述解码算法对所述ZigBee信号进行解码;
D5.识别解码后的所述ZigBee信号。
本实施例中,执行主体为BLE接收机,通过对ZigBee信号分割成多个信号片段,所述信号片段包括抗偏移片段,识别所述抗偏移片段的规律,以获取解码算法;利用所述解码算法,可以以非常低的处理复杂度对ZigBee符号进行解码,同时实现很高的解码精度。
具体地,所述步骤D3中,也就是根据所述抗偏移片段的规律确定解码算法这一步骤,具体包括:
D301.检查所述ZigBee信号的的各个信号片段,获取抗偏移片段;
D302.获取所述抗偏移片段的索引、相位和象限;
D303.根据所述抗偏移片段的索引、相位和象限,确定解码算法。
参照图6,接收机重用标准BLE接收机来采样ZigBee信号。由于BLE的带宽(1MHz)是ZigBee的带宽(2MHz)的一半,因此接收机的采样间隔(1μs)是ZigBee接收机(0.5μs)的两倍。我们将一个ZigBee信号中时长为1μs的双码片对应的部分定义为一个片段。在图4(b)中,我们展示了一个与ZigBee符号“1”中的双码片“11”所对应的片段。每个ZigBee符号有32个码片,因此共有16个信号片段(可参照图7)。此外,根据ZigBee信号的相移特性,其码片的相移每0.5μs变化±π/2,每1μs片段的相移是2个ZigBee码片相移的累加。
在实际的跨技术通讯(CTC)系统中,由于发射机和接收机不同步或信号在无线信道中传输后失真,不可避免地会带来采样偏移(记为Δt)。在存在Δt的情况下,一些片段的相移为0,而另一些则不是。本实施例中,将相移为0的片段定义为抗偏移片段(offsetresistant piece,ORP)。抗偏移片段(ORP)分为两种类型:
(1)全ORP(Full-ORP):Full-ORP是无论Δt<0还是Δt>0,相移始终为0的一个片段。参照图7,图7展示了所有ZigBee符号的所有full-ORP(实心框标记)。参照图8,图8展示了ZigBee符号“1”的第12个片段,即full-ORP,当Δt<0和Δt>0时,其相移都为0。
(2)半ORP(Semi-ORP):Semi-ORP是仅当Δt<0或Δt>0时,相移为0的片段;参照图7,图7展示了ZigBee符号“3”和“11”的一些semi-ORP(实心圆圈标记)。图10展示了ZigBee符号“3”的片段15即semi-ORP,当Δt<0时,其相移为0,而当Δt>0时,其相移为正。
图8是ZigBee符号“1”的第12个片段,属于full-ORP,并且相位落在在第二象限中;图9是ZigBee符号“9”的第12个片段,也属于full-ORP,并且相位落在第三象限中,图10是ZigBee符号“3”第15个片段,属于semi-ORP,因为只有当且相位出现在第二象限时,它的相移才为0,以及图11是ZigBee符号“11”的第15个片段,也属于一个semi-ORP,因为仅当且相位落在在第三象限时,它的相移才为0。
本实施例中,通过观察所有ZigBee符号的所有片段,发现full-ORP和semi-ORP的出现有一定规律,如表1所示:
表1.ORP规律
full-ORP的规律为:图7展示了16个ZigBee符号的所有full-ORP(实心框标记)。从图7可以看出:
(1)ZigBee符号“3”和“11”没有full-ORP;
(2)除了这两个符号之外,其他每个ZigBee符号有且仅有一个full-ORP;令Ω={2,4,6,8,10,12,14},则:
1.索引为i的full-ORP(i∈Ω)与两个不同的符号关联。例如,索引为2的full-ORP与符号“4”和“12”相关联;
2.给定索引为i的full-ORP(i∈Ω),与其关联的两个不同的符号,在采样偏移为Δt时相位所落入的象限q是不同的,q的值为2或3。例如图8和图9所示,对于片段12,若q=2则其对应的为符号“1”,若q=3则对应的为符号“9”。
semi-ORP的规律为:只有符号“3”和“11”没有full-ORP。本实施例中,检查了符号“3”和“11”的所有片段,发现片段15和16是它们的semi-ORP(如图7中圆圈标记)。
semi-ORP的性质包括:
1.当Δt<0时,符号“3”和“11”索引为15的Semi-ORP相移为0,但是如图10和图11所示,符号“3”的Semi-ORP的相位和象限q为2,而符号“11”的q为3。
2.当Δt>0时,符号“3”和“11”索引为16的Semi-ORP的相移为0,但符号“3”的Semi-ORP的相位和象限q为2,而符号“11”的q为3。
根据图7和表1,可知,由n个片段构成的ZigBee符号可以通过其唯一ORP的索引和象限来确定。因此,为了解码符号,本实施例提出的基于规律的算法最多只需要检查它的n个片段一次,以找到ORP,然后确定ORP的索引i和象限q。因此,本实施例中解码算法的时间复杂度为O(n)。
参照图12,对于每个收到的ZigBee符号,令表示其片段的样本集(来自图6中的正交解调器模块的输出),并令/>表示这些片段的相移(来自图6中的相移模块的输出)。假设已测得Δt的符号(比如,使用帧头部得到),如果Δt>0则令x=15,否则使x=16。图12所示的算法1将C、ΔΦ和x作为输入(图12中的第2行),并将已确定的ZigBee符号索引S作为输出。本实施例中,解码算法的核心部分是如何确定ORP的索引i和象限q(图12中的第5和6行)以及解码ZigBee符号(图12中的第7至8行)。
对于每个片段i∈{2,4,...,14,x},本实施例中将进行如下步骤:
(1)第5至6行:检查|ΔΦi|是否小于预定义的阈值。若小于,利用样本(Ii,Qi)的星座点得到片段i的象限q。
(2)第7至8行:如果q=2或3,可以保守推断片段i是某个ZigBee符号的ORP,因为所有的ORP仅出现在象限2和3中。因此,再查询表1中的<i,q>,即可返回ZigBee符号索引S。
具体地,所述步骤D4,也就是根据所述解码算法对所述ZigBee信号进行解码这一步骤,具体包括:
D401.对接收到的所述ZigBee信号进行采样,得到采样样本;
D402.对采样后的ZigBee信号进行处理得到相移数据;
D403.根据所述解码算法,利用所述采样样本和所述相移数据,对所述ZigBee信号进行解码。
本实施例中,在接收ZigBee信号时重用了标准BLE模块。接收机的核心在于新提出的基于规律的解码算法。该解码算法可参照图12,其利用ZigBee发射信号的相移特性来对ZigBee符号进行解码。参照图6,接收机解码ZigBee信号主要包括以下步骤:
(1)接收器重用BLE正交解调器模块(如图6(i)所示)以1μs的间隔对接收到的ZigBee信号进行采样,得到一组采样样本其中(Ii,Qi)是第i个同相和正交信号对;
(2)重用BLE相移模块(如图6(ii)所示)得到一组相移其中ΔΦi=∠(Ii+1,Qi+1)-∠(Ii,Qi)是第i个相移,∠(Ii,Qi)是(Ii,Qi)的相位;
(3)将C和ΔΦ馈入新引入的基于规律的解码模块中,对接收到的ZigBee符号进行解码。
本发明实施例还包括一种物理层跨技术通信装置,所述装置用于如图5所示的物理层跨技术通信方法。本实施例中,所述装置为BLE接收机。
具体地,所述装置包括:
BLE正交解调器模块,用于执行步骤D401,也就是对接收到的所述ZigBee信号进行采样,得到采样样本;
BLE相移模块,用于执行步骤D402,也就是对采样后的ZigBee信号进行处理得到相移数据。
综上所述,本实施例中所述的一种物理层跨技术通信方法具有以下优点:
本发明实施例通过对ZigBee信号分割成多个信号片段,所述信号片段包括抗偏移片段,识别所述抗偏移片段的规律,以获取解码算法;利用所述解码算法,可以以非常低的处理复杂度对ZigBee符号进行解码,同时实现很高的解码精度。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (8)

1.一种物理层跨技术通信方法,用于实现ZigBee到BLE的直接通信,其特征在于,包括:
接收ZigBee信号;
将所述ZigBee信号分割成多个信号片段,所述信号片段包括抗偏移片段;
识别所述抗偏移片段的规律,并根据所述抗偏移片段的规律确定解码算法;
根据所述解码算法对所述ZigBee信号进行解码;
识别解码后的所述ZigBee信号;
所述根据所述抗偏移片段的规律确定解码算法这一步骤,具体包括:
检查所述ZigBee信号的各个信号片段,获取抗偏移片段;
获取所述抗偏移片段的索引、相位和象限;
根据所述抗偏移片段的索引、相位和象限,确定解码算法;
所述根据所述解码算法对所述ZigBee信号进行解码这一步骤,具体包括:
对接收到的所述ZigBee信号进行采样,得到采样样本;
对采样后的ZigBee信号进行处理得到相移数据;
根据所述解码算法,利用所述采样样本和所述相移数据,对所述ZigBee信号进行解码。
2.一种物理层跨技术通信装置,其特征在于,所述装置用于执行权利要求1所述的物理层跨技术通信方法。
3.根据权利要求2所述的一种物理层跨技术通信装置,其特征在于,所述装置包括:
BLE正交解调器模块,用于对接收到的所述ZigBee信号进行采样,得到采样样本;
BLE相移模块,用于对采样后的ZigBee信号进行处理得到相移数据。
4.一种物理层跨技术通信方法,其特征在于,包括:
向权利要求2-3任一项所述装置发送ZigBee信号。
5.根据权利要求4所述的一种物理层跨技术通信方法,其特征在于,向权利要求2-3任一项所述装置发送ZigBee信号之前,还包括:
将ZigBee符号调制成ZigBee信号;
将所述ZigBee信号进行放大。
6.根据权利要求5所述的一种物理层跨技术通信方法,其特征在于,所述将ZigBee符号调制成ZigBee信号这一步骤,具体包括:
采用直接序列扩频技术将ZigBee符号转换多个码片序列;
采用偏移正交相移键控技术将多个所述码片序列转换为ZigBee信号。
7.根据权利要求6所述的一种物理层跨技术通信方法,其特征在于,所述采用偏移正交相移键控技术将多个所述码片序列转换为ZigBee信号这一步骤,具体包括:
在多个所述码片序列中选择奇数码片构建成同相序列,在多个所述码片序列中选择偶数码片构建成正交序列;
将所述同相序列转换成同相信号,将所述正交序列转换成正交信号;
将所述正交信号延迟,并将延迟后的正交信号与所述同相信号合并,生成ZigBee信号。
8.一种物理层跨技术通信装置,其特征在于,所述装置用于执行权利要求4-7任一项所述的物理层跨技术通信方法。
CN202110019811.6A 2021-01-07 2021-01-07 一种物理层跨技术通信方法和装置 Active CN112887944B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110019811.6A CN112887944B (zh) 2021-01-07 2021-01-07 一种物理层跨技术通信方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110019811.6A CN112887944B (zh) 2021-01-07 2021-01-07 一种物理层跨技术通信方法和装置

Publications (2)

Publication Number Publication Date
CN112887944A CN112887944A (zh) 2021-06-01
CN112887944B true CN112887944B (zh) 2024-02-23

Family

ID=76047100

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110019811.6A Active CN112887944B (zh) 2021-01-07 2021-01-07 一种物理层跨技术通信方法和装置

Country Status (1)

Country Link
CN (1) CN112887944B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765929B (zh) * 2021-09-13 2022-05-10 西北工业大学 一种ZigBee-Bluetooth通信实现方法
CN113794668B (zh) * 2021-09-15 2023-03-10 西北工业大学 一种基于符号级码片组合模式的WiFi-ZigBee可靠数据传输方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006288A (ja) * 1999-06-22 2001-01-12 Victor Co Of Japan Ltd ディジタル信号再生装置
JP2001285138A (ja) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd 受信装置及び受信方法
CN1461540A (zh) * 2000-03-05 2003-12-10 伊特兰通信有限公司 使用差分码移键控的扩展频谱通信系统
CN105578194A (zh) * 2016-01-06 2016-05-11 珠海全志科技股份有限公司 Jpeg图像解码方法和解码器
CN109600771A (zh) * 2018-11-26 2019-04-09 清华大学 一种WiFi设备到ZigBee设备的跨协议通信方法及装置
CN109617649A (zh) * 2018-11-12 2019-04-12 清华大学 一种基于WiFi设备的ZigBee信号解码方法及装置
CN110602131A (zh) * 2019-09-24 2019-12-20 清华大学 Wi-Fi到BLE的跨协议通信方法和装置
CN110912619A (zh) * 2019-12-12 2020-03-24 大连理工大学 一种ZigBee到WiFi的跨协议通信方法
WO2020086987A1 (en) * 2018-10-26 2020-04-30 Regents Of The University Of Minnesota Emulation-based cross-technology for decoding communications
WO2020120195A1 (en) * 2018-12-13 2020-06-18 Technische Universitaet Graz Method and system for transmitting a cross-protocol message
CN111835492A (zh) * 2020-06-09 2020-10-27 北京邮电大学 面向非对称信道的对称的跨协议通信方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942576B1 (fr) * 2009-02-23 2011-02-18 Commissariat Energie Atomique Procede d'estimation d'un decalage de frequence porteuse dans un recepteur de signaux de telecommunication, notamment un dispositif mobile.
US10749991B2 (en) * 2017-05-31 2020-08-18 Regents Of The University Of Minnesota Emulation-based cross-technology communication

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006288A (ja) * 1999-06-22 2001-01-12 Victor Co Of Japan Ltd ディジタル信号再生装置
CN1461540A (zh) * 2000-03-05 2003-12-10 伊特兰通信有限公司 使用差分码移键控的扩展频谱通信系统
JP2001285138A (ja) * 2000-03-31 2001-10-12 Matsushita Electric Ind Co Ltd 受信装置及び受信方法
CN105578194A (zh) * 2016-01-06 2016-05-11 珠海全志科技股份有限公司 Jpeg图像解码方法和解码器
WO2020086987A1 (en) * 2018-10-26 2020-04-30 Regents Of The University Of Minnesota Emulation-based cross-technology for decoding communications
CN109617649A (zh) * 2018-11-12 2019-04-12 清华大学 一种基于WiFi设备的ZigBee信号解码方法及装置
CN109600771A (zh) * 2018-11-26 2019-04-09 清华大学 一种WiFi设备到ZigBee设备的跨协议通信方法及装置
WO2020120195A1 (en) * 2018-12-13 2020-06-18 Technische Universitaet Graz Method and system for transmitting a cross-protocol message
CN110602131A (zh) * 2019-09-24 2019-12-20 清华大学 Wi-Fi到BLE的跨协议通信方法和装置
CN110912619A (zh) * 2019-12-12 2020-03-24 大连理工大学 一种ZigBee到WiFi的跨协议通信方法
CN111835492A (zh) * 2020-06-09 2020-10-27 北京邮电大学 面向非对称信道的对称的跨协议通信方法及装置

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
2.4GHz无线网络共存技术研究进展;何源;郑霄龙;;计算机研究与发展(第01期);全文 *
Cross-Technology Communications for Heterogeneous IoT Devices Through Artificial Doppler Shifts;W. Wang, S. He, L. Sun, T. Jiang and Q. Zhang;IEEE Transactions on Wireless Communications;全文 *
卷积信道编码与物理层网络编码的联合设计;杨志民;胡永江;王长龙;袁全盛;;电子技术应用(第02期);全文 *
水声通信中差分相干检测及其相位补偿方法;冉茂华;黄建国;韩晶;阎振华;;系统仿真学报(第10期);全文 *
能量高效的跨技术邻居发现协议研究与设计;杨璐齐;硕士电子期刊;全文 *

Also Published As

Publication number Publication date
CN112887944A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN112887944B (zh) 一种物理层跨技术通信方法和装置
CN101584170B (zh) 利用受限通带的用于人体通信的系统和方法
EP2175583B1 (en) Mapping of data blocks to resource elements
NO328009B1 (no) Generering av kontrollinformasjon for pakkedata
CN110855713B (zh) 一种WiFi设备到ZigBee设备的跨协议通信方法及系统
TW202141957A (zh) 基帶發射機、基帶接收機、調製解調系統及終端
KR20140123764A (ko) 무선 통신 시스템에서 비트 심볼 매핑 방법 및 장치
JP5619065B2 (ja) 通信システムにおけるデータ送受信方法及び装置
CN104333525B (zh) 一种gmsk调制系统同步方法
US8971450B2 (en) Transmission device, reception device, transmission method and reception method for wireless communication system
EP3214784B1 (en) Dual transport block data transmission and reception method, device, transmitter, and receiver
KR20100055955A (ko) 데이터 변조방법 및 복조방법
KR101234311B1 (ko) 차동변조 방식을 사용하는 패킷 데이터 통신에서 프리앰블에 부가정보를 전송하는 송신장치와 방법
EP3836409A1 (en) Low power long-range radio
Zhang et al. Link quality estimation of cross-technology communication: The case with physical-level emulation
Yao et al. PatternBee: enabling ZigBee-to-BLE direct communication by offset resistant patterns
US10819544B2 (en) Symbol demodulator with error reduction
CN107317777A (zh) Bpsk解调过程中观测空间的划分方法及应用
KR20110055302A (ko) 그룹 변조 방법 및 이를 이용한 송수신 장치
US8050355B2 (en) Transmitter and receiver using pseudo-orthogonal code
KR100466544B1 (ko) 디지털 오디오 방송 수신기의 ofdm 심벌 오류 교정방법 및 시스템
CN110024346B (zh) 用于数据处理的方法和发送端设备
CN113055332B (zh) 一种pcm/fm和gmsk复用接收机
JP7520272B1 (ja) 無線通信装置、無線通信方法、制御回路および記憶媒体
JPH02100548A (ja) 有効領域判定信号発生回路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant