CN112802038A - 一种基于多尺度边缘注意力的全景分割方法 - Google Patents
一种基于多尺度边缘注意力的全景分割方法 Download PDFInfo
- Publication number
- CN112802038A CN112802038A CN202110100670.0A CN202110100670A CN112802038A CN 112802038 A CN112802038 A CN 112802038A CN 202110100670 A CN202110100670 A CN 202110100670A CN 112802038 A CN112802038 A CN 112802038A
- Authority
- CN
- China
- Prior art keywords
- contour
- segmentation
- attention
- edge
- panoramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000011218 segmentation Effects 0.000 title claims abstract description 143
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000004927 fusion Effects 0.000 claims abstract description 15
- 238000003708 edge detection Methods 0.000 claims abstract description 9
- 238000012937 correction Methods 0.000 claims description 27
- 238000012549 training Methods 0.000 claims description 25
- 238000005457 optimization Methods 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims description 4
- 230000000295 complement effect Effects 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 6
- 230000006870 function Effects 0.000 description 22
- 238000005070 sampling Methods 0.000 description 4
- 238000003709 image segmentation Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/12—Edge-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
- G06F18/253—Fusion techniques of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/181—Segmentation; Edge detection involving edge growing; involving edge linking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20016—Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110100670.0A CN112802038B (zh) | 2021-01-26 | 2021-01-26 | 一种基于多尺度边缘注意力的全景分割方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110100670.0A CN112802038B (zh) | 2021-01-26 | 2021-01-26 | 一种基于多尺度边缘注意力的全景分割方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112802038A true CN112802038A (zh) | 2021-05-14 |
CN112802038B CN112802038B (zh) | 2022-05-24 |
Family
ID=75811681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110100670.0A Active CN112802038B (zh) | 2021-01-26 | 2021-01-26 | 一种基于多尺度边缘注意力的全景分割方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112802038B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113902750A (zh) * | 2021-10-09 | 2022-01-07 | 中北大学 | 图像处理方法、装置、电子设备及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111292334A (zh) * | 2018-12-10 | 2020-06-16 | 北京地平线机器人技术研发有限公司 | 一种全景图像分割方法、装置及电子设备 |
CN111428726A (zh) * | 2020-06-10 | 2020-07-17 | 中山大学 | 基于图神经网络的全景分割方法、系统、设备及存储介质 |
CN112036555A (zh) * | 2020-11-05 | 2020-12-04 | 北京亮亮视野科技有限公司 | 目标检测框架的优化方法及装置、存储介质、电子设备 |
WO2020257812A2 (en) * | 2020-09-16 | 2020-12-24 | Google Llc | Modeling dependencies with global self-attention neural networks |
-
2021
- 2021-01-26 CN CN202110100670.0A patent/CN112802038B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111292334A (zh) * | 2018-12-10 | 2020-06-16 | 北京地平线机器人技术研发有限公司 | 一种全景图像分割方法、装置及电子设备 |
CN111428726A (zh) * | 2020-06-10 | 2020-07-17 | 中山大学 | 基于图神经网络的全景分割方法、系统、设备及存储介质 |
WO2020257812A2 (en) * | 2020-09-16 | 2020-12-24 | Google Llc | Modeling dependencies with global self-attention neural networks |
CN112036555A (zh) * | 2020-11-05 | 2020-12-04 | 北京亮亮视野科技有限公司 | 目标检测框架的优化方法及装置、存储介质、电子设备 |
Non-Patent Citations (2)
Title |
---|
YANWEI LI等: "Attention-Guided Unified Network for Panoptic Segmentation", 《 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)》 * |
王小雨: "基于超像素分割和图神经网络的图像语义分割研究", 《中国优秀博硕士学位论文全文数据库(硕士) 信息科技辑》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113902750A (zh) * | 2021-10-09 | 2022-01-07 | 中北大学 | 图像处理方法、装置、电子设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN112802038B (zh) | 2022-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108256562B (zh) | 基于弱监督时空级联神经网络的显著目标检测方法及系统 | |
CN113592894B (zh) | 一种基于边界框和同现特征预测的图像分割方法 | |
CN111612008B (zh) | 基于卷积网络的图像分割方法 | |
CN111931684A (zh) | 一种基于视频卫星数据鉴别特征的弱小目标检测方法 | |
CN112052876B (zh) | 一种基于改进ra-cnn的细粒度图像检测方法与系统 | |
CN111160407B (zh) | 一种深度学习目标检测方法及系统 | |
CN111696110B (zh) | 场景分割方法及系统 | |
Chen et al. | Dr-tanet: Dynamic receptive temporal attention network for street scene change detection | |
WO2019136591A1 (zh) | 基于弱监督时空级联神经网络的显著目标检测方法及系统 | |
CN111027493A (zh) | 一种基于深度学习多网络软融合的行人检测方法 | |
CN112802039B (zh) | 一种基于全局边缘注意力的全景分割方法 | |
CN113657560A (zh) | 基于节点分类的弱监督图像语义分割方法及系统 | |
CN115331245B (zh) | 一种基于图像实例分割的表格结构识别方法 | |
CN110310305B (zh) | 一种基于bssd检测与卡尔曼滤波的目标跟踪方法与装置 | |
CN113139896A (zh) | 基于超分辨重建的目标检测系统及方法 | |
CN113344000A (zh) | 证件翻拍识别方法、装置、计算机设备和存储介质 | |
CN110866938B (zh) | 一种全自动视频运动目标分割方法 | |
CN116645592B (zh) | 一种基于图像处理的裂缝检测方法和存储介质 | |
CN113393434A (zh) | 一种基于非对称双流网络架构的rgb-d显著性检测方法 | |
Zhou et al. | Attention transfer network for nature image matting | |
Zhu et al. | Semantics and contour based interactive learning network for building footprint extraction | |
CN109636818A (zh) | 一种拉普拉斯正则约束下低秩稀疏优化的目标分割方法 | |
Jiang et al. | Semantic segmentation network combined with edge detection for building extraction in remote sensing images | |
CN112802038A (zh) | 一种基于多尺度边缘注意力的全景分割方法 | |
Qi et al. | UGNet: Uncertainty aware geometry enhanced networks for stereo matching |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20210514 Assignee: Guilin Sensing Material Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980046110 Denomination of invention: A Panoramic Segmentation Method Based on Multi scale Edge Attention Granted publication date: 20220524 License type: Common License Record date: 20231107 Application publication date: 20210514 Assignee: Guilin Xingyuan Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045835 Denomination of invention: A Panoramic Segmentation Method Based on Multi scale Edge Attention Granted publication date: 20220524 License type: Common License Record date: 20231107 Application publication date: 20210514 Assignee: Guangxi Guilin Yunchen Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045796 Denomination of invention: A Panoramic Segmentation Method Based on Multi scale Edge Attention Granted publication date: 20220524 License type: Common License Record date: 20231108 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EC01 | Cancellation of recordation of patent licensing contract |
Assignee: Guilin Sensing Material Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980046110 Date of cancellation: 20241012 Assignee: Guilin Xingyuan Technology Co.,Ltd. Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY Contract record no.: X2023980045835 Date of cancellation: 20241012 |
|
EC01 | Cancellation of recordation of patent licensing contract |